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In an earlier paper [Opns. Res. 20, 1153-1161 (1972)] we proved that any feasi-
ble integer solution to the linear program associated with the equality-con-
strained set-covering problem can be obtained from any other feasible integer
solution by a sequence of less than m pivots (where m is the number of equa-
tions), such that each solution generated in the sequence is integer. mo.saﬁ_..
degeneracy makes it difficult to find a sequence of pivots leading to an .::oma—.
optimum. In this paper we give a constructive characterization of adjacency
relations between integer vertices of the feasible set that enables us to gen-
erate edges (all, if necessary) connecting a given integer vertex to adjacent
integer vertices. This helps overcome the difficulties caused by degeneracy
and leads to a class of algorithms, of which we discuss two.

OOZmHUmN THE weighted set-partitioning (or equality-constrained set-cover- :

ing) problem

(P): min{cz|Az=e, ;=0 or 1, jeN},

where A is 8 m Xn matrix of zeroes and ones, ¢ is an arbitrary n-vector, e= (1, - -, 1 !
is an m-vector, and N=1{1, -- -, n}. Let (P’) be the linear program obtained from 4
(P) by replacing the conditions z;=0 or 1 with z;20, jeN. ;

It is well known that, if A is totally unimodular, then (P) can be solved by
solving (P’), since the feasible set of (P’) has only integer vertices. This property.
also holds if A, while not totally unimodular, is balanced,” and was recently mrow |
to bold in the more general case where A is perfect.™ One should also Bmsewbu
that, even when none of the above properties holds, an optimal solution to (P')}
will often be integer. In general, however, this need not be the case, and Em.nm».c :
solving (P) by traditional methods requires either cutting planes or mzcﬁm:&s:. !

In a previous paper,"”! we have established several :ml..:_ mﬁcnm;_&mm of (P).;
The main result of that paper (Theorem 3.1) m”mnmm zuwr if z and r _mqm vnm_a»
feasible integer solutions to the linear program (P'), 2° better than z', ?S.ﬂ {
can be obtained from z' by a sequence of at most p pivots, such that each pivot]
generates a basic feasible integer solution not worse than :,n.w predecessor, p be s
the number of variables nonbasic in ', equal to 1in 2>. This Eovw;% of Grm.mao.
partitioning problem [which, incidentally, is not shared by the 53:&;?8:%35
set-covering problem obtained from (P) by replacing Az=e with Az=e] impl
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f that the problem can be solved by pivoting, without using cutting planes or parti-
k. tioning the feasible set by branch and bound, provided one can identify the correct
sequence of pivots. To be more specific, this property means that, given a basic
o feasible integer solution z' to (P'), there is a better integer solution if and only if
. there is one that is adjacent to z' on the polytope of feasible solutions to (P).
" The difficulty lies in identifying such adjacent vertices. Since set-partitioning
problems tend to. be highly degenerate, the feasible polytope usually contains an
enormous number of vertices adjacent to a given vertex. Furthermore, lexico-
graphic or similar techniques are of no avail in coping with degeneracy, since the
sequence of pivots required to reach an adjacent vertex may include pivots on a
Degative entry in a degenerate row (i.e., a row corresponding to a basic index ¢
L such that z'=0).
: In the present paper we usc the results of reference 1, and some new results to
be stated below, in order to overcome this difficulty by generating new columns
. that produce adjacent integer vertices when pivoted into the basis. This leads to a
class of algorithms (several different versions are possible) that solve the set-
partitioning problem (P) by a finite sequence of primal simplex pivots, without the
© use of cutting planes, but with the use of new columns added to the simplex tableau
f at certain intervals.
Section 1 contains a constructive characterization of adjacency relations among
i the integer vertices of the feasible set of (P'), which enables us to generate all
E edges connecting a given integer vertex to adjacent integer vertices. One of the
4 interesting by-products of this characterization is a rather tight bound on the diam-
g eter of the convex hull of 0-1 points satisfying Az=e (Corollary 3.4). Section 2
% describes a column-generating procedure for obtaining all integer vertices adjacent
1o a given vertex, while Section 3 states two algorithms based on variants of this
procedure. F inally, Section 4 gives a numerical example.

1. ADJACENT INTEGER VERTICES

FLer X = Kmm:_m&ns 220} AnD LET X; be the convex hull of the integer points
Jof X. Without loss of generality we can assume that A has no zero rows or
olumns.  Then clearly,

XiCXCK =[z]0<2,51, jeN). 1)

¥o vertices of X (of X,) are said to be adjacent if they are contained in an edge
{one-dimensional face) of X (of X;).
Any vertex of X, is known to be a vertex of X. Hence, with any integer solu-
n ' to (P') one can associate a basis B,. We will denote by I; and J; the basic
d nonbasic index sets associated with Bi, and Q.= {jeN|z, =1}, Q=N—-0Q. To
Mmplify notation, we shall assume that the variables of the tableau associated with
EB: have been ordered so thats ;= {1, - ,m}. The columns of 4 will be denoted
Ry a;. Furthermore, we let d;=B7"a; and denote by d’ the n-vector whose kth
nent is @, for kel;, —1 for k=7, and 0 for all keJ,— {715 e, @’ is the jth
Abasic column of the Tucker tableau.
We start by restating a result proved in reference 1 (Theorem 2.3).
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TuroreM 1. Let + and 2* be basic feasible inleger solutions to (P"), and let a;=
Bila; jeJ1. Then, B
1, ?Q_D@.
MUE_:S a;=1—L ?@»DOQ:: o 2)
0, ke A@DQNVCAQ,DQND?Y
Next we establish the converse of Theorem 1. , L
Turorem 2. Let £ be a basic feasible tnieger solution to (P"), let a;=B1a; jedy
and let the index set QCJ satisfy

3 ea Gri=

#=2'— Lo d )
is a basic feastble solution to Q&Y and

Ar je@=QUS,

0, otherwise,

0 or 1 keQr
) ) 3
Ao or —1, kel,NQs. @)

Then

x; =

where S = [keQi| X iea ?uo_c;,r:@__Mé ay=—1. ‘
Proof. Consider the problem CuJ in (n-+1)-space, obtained from (P ) by
augmenting A with the composite column @;,= Y ieq @i The transformed column
aj Hwﬂ_n... has an entry dxj,=1 for some ke, for otherwise (3) implies a;, =0,
Viel 1, which is impossible in view of the boundedness of the solution set. Pivoting
on drj,=1 yields a feasible solution #to (P), defined by

1, getiJUs,

;= .
R UA otherwise.

Since ME a;+a;,= M?.Eo a;=e, it follows that 2 as defined in the theorem
is feasible for (P"). Since # is integer, it is also basic. From Theorem 1, relation
(4) follows with Q=JNQ.. . )

A set QCJ, for which (3) holds will be called decomposable if it can be parti-
tioned into two subsets, Q* and Q**, such that (3) remains true when Q is replaced
by Q" and Qo respectively. ) .

We now give a necessary and sufficient condition for two integer vertices of X
to be adjacent. ) , . i
Tueorem 3. Let 1 and 7 be two inleger solutions to (P), with Q=J:11Q:. Then
2 is adjacent Lo 2 on X if and only if Q is not decomposable.

Proof. (i) Suppose £ and # are not adjacent on X. Let ¢ be the row vector
with n components defined by

—2, N
9, e iNGNQ,

F.nlr ?naxmhz%o:n S;Q‘
0, otherwise.

Consequently, crt>cr and 2 is an optimal solution to problem (P) ,&E ¢ as de-
fined above. Hence, Theorem 3.1 of reference 1 applies; ie., there exists a se-
quence of p= 1Q| pivots, each in a column whose index is in @, wmzmsowzm a sequence
of basic feasible integer solutions mﬁ_naﬁ ¢, .:‘muuun, with ezt z =cf’.
Define ?,H,:.??D&—DQ.LP.H 1} and 8= :T@Dbimmno:, i=0,1,-,P
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Then, from the definition of ¢, and the monotonicity of ct*, we have —2[@NQi =
—2{|@:NQe|— s} +2ri—1, or, equivalently, 0<2(ritsi) =1 for all ie{0, 1, - -+, p}.
Consequently, ri=s:=0 fori=0,1, -+, p;ie, & satisfies

i_ L 7eiNQs, .

13 lﬁp .‘.mN_D&—DQ». (i=0,1, <, p) (B)
Since by assumption 7 is not adjacent to 7*, p22 and there exists in the sequence
g, -+, & asolution ¢ =2" such that s’ Furthermore, since each solution
in the above sequence is generated by pivoting into the basis & column a; such that
jeQ, a solution ¢ differs from £=2z"if and only if £/=1 for some jeQ. Hence,
from 12, @ ={jeQlz’=1}>0. Also, Q** =1{jeQ|z, =0} 0, since otherwise
A=z Also, Q*UQ™ =0, and Q'NQ** =0.

Further, since 2 and z° are basic feasible integer solutions to (P"), from Theorem
1, relation (2) holds when JiNQ. is replaced by Q*. Therefore (3) also holds when
@ is replaced by Q"

To prove that (3) also holds when @ is replaced by Q**, we proceed as follows.

From Theorem 2, F=r— Mg..o. & Also from Theorem 2 and from Q=
Q@™ =2'~ 3 i P ', and hence the components of the vector
i &' must all equal 0, +1, or —1. Now define '=z'— 3 ieas @.

We will show that 0<z =1 for all jeN. Assume first that 2 = —1 for some
keN. Then we find that r'=1.=0, and =1 Consequently, ?93@& Since
each pivot in the sequence was performed on a nonbasic column with index in the
set Q, it follows that kel,. By (5) this implies that 2°=0, a contradiction. This
proves that z;/20 for all jeN. Similarly, we find that z;/=<1 for all jeN.
From this and the integrality of 3 jeqw & it follows that ' is a basic feasible integer
solution to (P'). Hence relation (3) holds when Q is replaced by Q.

Thus Q is decomposable.

(ii) Suppose now that Q is decomposable into Q* and Q**. Then the vectors

i1 i
g=2t— P &

where S;=@Q, S,=@Q", and S,=Q**, are all feasible integer solutions to (P"), hence
vertices of X7. Let xr=me be a supporting hyperplane for X, such that xz' =m0
for i=1,2 and sz =, VzeX; (If nosuch hyperplane exists, then 7' and & are
not adjacent on X, hence on X, and the statement is proved.) Then, from (6),

P - ') =m0, or

*(Liad)=0, )

(i=2,3,4) (6)

whereas

wt=mr = (L &) Em0= B e - @) <m=12,

(T d)20, (T )20 ®)

Then from (7) and (8) we have (X e &) =0, (e a’)=0, or =
xz'=w. Hence, any supporting hyperplane for X, that contains 7 and 2* also
contains z and ;e 2 and z° cannot lie on an edge of, or be adjacent on, Xr.
Hence a fortiori they cannot be adjacent on X.

Theorem 3 is stated in terms of the columns of the simplex tableau associated
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with a given solution ¢ and basis By. In reference 10 this result is restated in 1

terms of the columns of the original matrix A, without reference to a specific basis.

An immediate consequence of Theorem 3 is the following interesting geometric -

property, first derived by TruBm.01%] ?
CoRrOLLARY 3.1. Two integer points are adjacent vertices of X if and only if they
are adjacent 518«« of N

m.ﬂc&. Let z' and 2* be adjacent vertices of X, and let B; be a basis mhmOo_we&
with z' in (P'). From part (i) of the proof of Theorem 3, or_m _Ev:mw that Qu
JiNQ, is not decomposable. Therefore, from Theorem 3, 7' and o° are m&wnmu«
vertices of X. The converse is obvious, since X;CX.
CoroLLARY 3.2. Two vertices of X, «' and 2°, are not adjacent if and only ¢f

AR V= DINNLEES DS HCESS ®

with an where the points £ =1'— Y jay a’, i=1, - k, are vertices of X adjs
cent to 7', and UiTk Qui=J1NQ.. E

WS&. If the condition holds, then (3) holds with @ replaced U% each 9._
i=1,---,k, and also 3‘ Uit Qu. Therefore. Y jca,; @ and Y jeq,, @ are orthog- :
o:w_ mOn all 4, he{l, -+, k}, ish, and hence (3) also holds i;v Q wov_mama by 4
Uizt Qu. .E:z Qis menogvogza into Qu and UiZt Qy;, hence z' and 2° are not 3
w&wcmze Oo:ﬁ,nmo_? :. z' and 2* are not adjacent, then @ can be dec oEvom&
into Q* and Q**. If #*=2'— 3 e @ and £ =2'— 3 jond’ are both w&wgi
to z!, the momamambo is proved; otherwise, the reasoning can be applied to Q* and/or §
Q**, and can be repeated as many times as needed to obtain sets Q. that are not
decomposable.
COROLLARY 3.3. If 2 and o are two 3§a&§mi verlices of X related to each esa
by (9), then for any subset H of {1, - k), ==Y M:o: g’ is a vertez of Xu.

Proof. Follows from the fact armo D jears @ and Y ian @ g’ are orthogonal for:
all 7, he{l, - - -, k}, t52h. ’

Oogzwn% w 2 has an interesting geometric interpretation. For an mnc:;_.wu
Uc_v;.ovm ~u a NES between two vertices z, y of Pis a mmn_:osg of vertices 7', 2,
«*, withz' =1, *—y, such that every pair of vertices z', 2 i=1, , k—1, is con-]
nected by an edge of P, the length of the path US:N k—1. f:, edge-dislance
d(z, y) between z and y is then defined as the length of a shortest path on P _.6.
tween z and y. The diameter 8(P) of P is the longest edge-distance between E_u
pair of vertices of P; i.e., 3(P)=maX,yeetr d(2, ¥).

For the next memaoao:a we shall require explicitly that the matrix A in th
definition of X not contain identical columns.
CoroLLARY 3.4. §(X, VA_N * 121 < (m/2q), where §(X1) is the diameter of Xi, q=1
minjex MU“U.. a.;, and 2¥=max.., Muum. z;. 3

Proof. Qv ,Ho prove the first inequality, let 7' and & be two vertices of N-
for which d(z', )=8(X;). If z' and 2 are not adjacent, from Corollaries 3.3;
and 3.3, (9) holds with k= 3(X,); if they are wﬂ:mrmi (9) holds with k=1=35X,)3
Now let K; be the set of indices 7 such that M:S. ’ has exactly one positive com-§
ponent. If K;=8, k<[z*/2] in (9), since |@i=z*. Supposc now that K8
Then for each :N: the composite column &= 3 .o, G’ has at least two negative
components. For if not, then Qi is a singleton, say @u:= {h}, and the only negative
component of ' =a" is dm=—1; hence the components corresponding to the ba
index set Iy form a unit vector, sw:,r implies that the nonbasic column ax of 4
identical to a basic column, contrary to our assumption.
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Now let
3 1 P
= |M:a_ Mn..c... nw

where K=1{1, --- k}.
But then

S.H &_I M:NI.: M}o: eLu

From Corollary 3.3, both z* and z* are vertices of X,

=2 3ix, (- D jeans @) — Dien-x, e @

b, JE% w:vmm_m that k=<[[Qs]/2], where @:= {jeN|z;'=1}. Consequently k=<[z*/2]
since |Qy| <2*. ; '
(ii) To prove the second inequality, let Z be such that

i=n _ -
DI fo=maxeg, 2ot ni=2".

Since the maximum over X s is attained at a vertex, it is no restriction to assume
that 7 is integer, and thus 2" =|Q|, where Q= {jeN[Z:=1}. Since T ieti=e, it

follows that _QAS\SAS_\? srﬁa go=minjq M”um. ai;2q.
Since |Q|=2", it follows that 2 *<m/q, and hence [ /2] m/2q].

Remark. If A= (Ag, I) in the definition of X, where A is the SXAN_V inci-

2 , dence matrix of the complete mwmvw with m vertices and I is the identity matrix of
E order m, then the upper bound [2*/2] on the diameter of X, is actually attained.

F In this sense, the upper bound on §( (X ;) provided by Corollary 3.4 is a best possible
: one.

- CoroLLARY 3.5.  T'wo vertices x' and r* of X1, which are at an edge-distance of k from
" each other, 25k <5(X, v are QS:%“& by k! paths of length k.
Proof. From (9), &'=+'— 317 30, @
For any permutation 7, -- -, % of the index set {1, -+, k}, it follows from
¢ Corollaries 3.2 and 3.3 that the points ', ¥ 20V ... ' where

: y
Gy f =i
eV =r'= 3,

(i) ) =7
T =r - M....o.: a,

Gg) 2 (o) )
e T

form a sequence of k41 vertices of X, adjacent on X, whenever adjacent in the

~sequence.  Since there are k! possible permutations of the index set {1, -, k},

there w?. k! mE.v sequences of adjacent vertices, cach one defining a path of _..:m:_
from z' to 2" on X .

Taeorem 4. Let _n be a nonoptimal vertex of X,, let 1, i=1, , k, be the vertices
.of X adjacent to x', and such that cx'”* <cx',i=1, --- k. Then the conver polyhedral

C={rle=2"+ 31280 (M= ra, M20, 1=1,

ontains an opitmal vertex of X,.

Fs.w\. Let £ be an optimal vertex of X;. [If # is adjacent to 2!, then FeC.
herwise, & can be expressed (Corollary 3.2) as

1 - - S 1
== T @'=2"+ T (=),
, P, are vertices of X, adjacent to 2. Then

O<er' —cf= M“Hw M:o: @’ = M“HM M:S. (z,
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tor whose components are the components of ¢

. o] s vee o
where 2, =cabias b S " Then K #8, since ¢ <ecx'. From Corollary

indexed by .. Let K={1, -, kb

33, the point Fer e Tir Lo =t Yer @ =1

rtex of X7, and from the definition of K, .
et =o' = Lin Livass (2— e er'— LI Loy (@imes)=ck:

. o ,m
. and since the vertiees * ‘ ieK arc among thos
;

isa ve

. [T *

Thus, since T is ovsawr s0 18 o

. C. . .

that genera G cleat “n '] is not true for arbitrary integer programs,
T orty stated in Theorem 4 is not U ? . progmams.
e W trivial counterexample of Fig. 1. Here ¢x .VE >, »_ he
©a ontain the (unique) optimal poin
1l ag Theorem 3) to

as shown by t
i i Jearly does not ¢
cone C (here just a _E_m.:_i « v does no e (u
2. It is, however, possible to mﬂ:ﬁm_s. Theorem 4 (as
arbitrary 0-1 programs (see reference 2).

The above results can be used to overcome he difficulties cause y egeneracy
¢ above res Its ] d the diffi 1 d by d

1

L, - xha v g0l

N e ¢ = TLx = x
Figure 1
1 2 B
i inte; e . 'That is, by
in finding integer vertices of X adjacent to a given integer vertex T X
in J
i i g site )
wstematically generating compost = e
v%m.:m.__m.y oM:. M,%E?Bc:em for ¢ —d’* to be a vertex .o*, X: M::MFS_; wc, .o o
mﬂﬂm._”vw: ch? vertices.  While we arc basically interested only m g
obta s ) basically
adjacent vertices better than a given SW;;, we ﬁﬁ. ;_n
procedure which produces all :EE;.:MA_::,nMJ M:,m.:w w\.ﬁ,?r;i .,
qerating adjacent integer ve s be
. more specific goal of genera int / u
S:E X can Mc achieved in several ways by modifying the general proc
vertex ¢ : y me ‘
in this paper we confine ourselves to deseribing one suc

outlining a second one.
In the next section we

edure, whereas

discuss the general procedure.

2. COLUMN GENERATING PROCEDURE

a procedure for generating all integer <on.$nwm of X;
The procedure generates all composite colum i
is a vertex of X adjacent to It i

JN THIS SECTION we describe
adjacent to a given integer fi“,y.. , ;

a ai=x'—2" where
of the form m»uM:c ai=x!—2% wh

R

columns of the form @= > jea @5, where Q ;

ill first describe a more m»:.o—.&
This scems useful, since g8
tter than a given 3

h possible modification, and;
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Let z' be a basic feasible integer solution to (P’), B, an associated basis, I
and J, the basic and nonbasic index sets. Further, let A= (B,, R;), and let &’
be the jth column of By'R,.  Furthermore, let 1°= {7eyjz;' =0} denote the index
set of ‘degenerate’ rows of I.

We will work with & submatrix T of Ty= B7 'Ry, namely, the one consisting of
the rows of T specified by the index set I°. The columns of the submatrix (tableau)
T will be denoted by 4,. We shall continue to denote the components of 4; by a;;.
The column-generation procedure (CGP) generates a sequence of tableaux 7", T2,
-+, T with associated column index sets J', J%, - - -, J' by adding new columns
and/or deleting old ones. Initially, we set T'=7 and J'=J. The columns of
any tableau 7" for 2<k<{ are composites of the columns of T', so that the index j
of cach new column corresponds to some subset Q,CJ" of the original column index
set; i.e., d;= MU,.S dy. For the original columns, @,={j}.

The information required to generate the columns of 7**" is obtained from the
rows of the tableau 7%, which are processed one at a time. When all entries of a
row of T* become equal to 0 or —1, the row is marked; and another, unmarked row
is chosen for processing.

For simplicity, we will let 7 and J, respectively, denote any ‘current’ tableau
T* and its associated column index set J*, respectively, and let 7’ and J' denote the
‘next’ tableau T**' and its associated column index set J**' respectively. The
rules of CGP then are as follows:

1. If all rows have been marked, go to 4. Otherwise, go to 2.

2. Choose any unmarked row r. Define

Jt={jeJla,;>0], J-=|jet|a,;<0].

a. 1f J~ =0, mark row r and remove from T all columns with jeJ*. Call the result-
ing tableau 7" and set J' =J —J*. Go to 3.
b. If J= =8, but J* =8, mark row r, and remove from T all columns 4; such that
jeJ = {jeJ"|a, ;< —1}. Call the resulting tableau T’ and set J' =J —J. Go to 3.
c. If J= 70 and J+ 8, choose any teJ* and proceed as follows:
(i) Define S, =SMS2NS.?, where
Sit={jeJ [aa;=0},
Si={jeJ " |[@r;j+@r=~1 for all marked rows &},
8= {jeJ|Q,UQ, cannot be partitioned into Qs, k=ji, - -, jp, with jieJ, ji ¢, for i=1, ---, p}.
(it) For each jeS; add a new column 4;+d; to T and a new index k to J, where
Q:=Q;UQ,; then remove d; from T and ¢ from J. Call the resulting tableau 7 and the
resulting column index set J'. Go to 3.

3. Designate 7" and J’ to be the current tableau T and index set J, respectively, and

. return to 1.

., 4. Construct the full tableau T by computing for each column of T the entries in the
vondegenerate rows (indexed by I, — I°). Denote by &, the column of 7 corresponding to
Then create the final tableau T, by removing from T all columns d; that violate the
reondition a;; =0 or 1, Yiely—Io.
i Stop: T, yields all integer vertices adjacent to z!, each in one pivot.

kTaEOREM 5. In a finite number of steps CGP terminates with a tableau T, such that
¢ (1) pivoting inio the basis any column of T, yields an integer vertex of X adjacent to
P%, ond (ii) all integer vertices of X adjacent to r' can be obtained by such a pivot.
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Proof. The procedure generates composite columns @ = D jeas @5 We will
show that (i) each & satisfies (3), (ii) for each d, Qs is not decomposable, and
(iii) all composite columns satisfying (i) and (i) are generated and present in 7.
Since all integer vertices £ of X adjacent to #* are of the form &=z'—d", where
@ is a composite column (possibly a singleton) whose associated d, satisfies i)
and (ii), and since the variable associated with such a composite column can be 4
pivoted into the basis with value 1 {in view of (i)}, this will prove the theorem.

(i) Each g, satisfies (3): Composite columns violating (3) are eliminated 3
either as soon as they are generated (steps 2a, 2b of CGP), or at the end (step 4
of CGP).

(ii) For each d, Qs is not decomposable: This is guaranteed by the fact that
in combining a column @ with other columns @; to generate composites, we re-
strict ourselves to jeS.’ (step 2¢ of CGP). :

(iii) To show that all composite columns with the required properties are indeed
generated and present in T, we point to the fact that the original tableau Th= 4
BT'R, contains all the columns whose composites yield integer solutions correspond-
ing to vertices of X adjacent to #'. Suppose that at each iteration we construct the
full tableau T (obtained from 7 by completing the columns of T with the entries §
in the nondegenerate rows), and that at the kth iteration the current tableau T4
still has the above property of T1. Then, after one iteration of CGP, the new full 4
tableau 7" also has the property. Indeed, T’ is obtained from T in one of the 2
following ways: 9

(a) By removing from 7 all columns having positive entries in a degenerate
row that has no negative entries, or by removing from T all columns having entries
strictly less than —1 in a degenerate row that has no positive entries (steps 2a, 2b
of CGP). In both cases, none of the removed columns can yield, in conjunction
with any other column, a composite column satisfying (3).

(8) By removing from T a column @, having a positive entry in a degen-
erate row that has positive and negative entries, while adjoining to T all composite 3
columns of the form a;+a, that satisfy jeS,, where S, is defined in step 2c(i) of g
CGP. This set S is constructed so that no composite column @e= M jequ G4 €OD- 7

taining &, is excluded if it satisfies £=2'—a" for some vertex % adjacent to 2'; ie,

& satisfies (3), and Q. is not decomposable. In fact, in step 2c(ii) only such
composites d;+d; are excluded that satisfy at least one of the following relations:
(a) @i;20 and a;,>0 for some (degenerate ) row iel’. A
(b) aja=0.
(¢) @i;+@i<—1in a marked row 7.
(d) Q;UQ, can be partitioned into Qu, h=j1, -, J» where ji#, 3
jied, fori=1,---, p.
In case (a), the restriction is justified by the fact that, for any composite;
column g = MUE: @, if teQx and @ >0 for some 1el°, then (3) requires Qi to contain}
some index j such that a;;<0. Case (b) is obvious, whereas (c) eliminates col
umns @;4d, for which é:;4+di<—1in a row ieI” which has no positive entry, i.e,
columns that cannot yield, in conjunction with any other set of columns, a com-§
posite column satisfying (3) for the given row. Finally, case (d) eliminates col-3
umns that are composites of other columns present in the tableau; should such
column be needed, it will be generated again from those other columns.
Thus, if T contains all the columns whose composites (possibly includ

[ the size of the intermediate tableaux.
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singletons ) yield integer vertices of X ad;
g s ad y 7
T e fons e jacent to x, then so does 7' and therefore
The procedure is clearl i i
early finite, since each iterat i

currons ¢ ) ation either removes

s oamEmum: J::o ac_:a.amq or adds to it some new columng that muoaﬂ:oi .35
of the _m_sm columns, ) m::,o no composite column is added twice M :Mv:z;mm
m:,% columns in the original tableau, all legitimate composite oo, a:..m_,m
Oc_am number of iterations. posties are gencrated in
. LorOLLARY 5.1.  CGP remains finite of i

g ’ m step 2¢, new columns 6,46 adde
e W:“Ms mmSa (rather than 95 JeS, but 4, is not removed Jrom qw.+ M aN.M& .
ile rvals (say, at each pth iteration Jor some fired p>0 S y 3& o
original fom. P>0), step 2 1s applied in its
It should be mentioned th
ione at the successive tableaux 7'
¢ ! : J caux T need ici
Mﬁmmw‘gw and mao_,mi. It is sufficient to store (besides A and mw. w::ﬁwo _um MME._Q:%
-l mmmmuq?mvcza_m.m to each composite column jof T. mm:im ?w M,: ;s MW e
e one mew.raor;m% can be generated from 4 and BY! ?rez n :M M T e
stance (before the final step 4) when on ing outs:

o - . ¢ has to do somethi 1

. szym ﬂ:w w ﬂ_dmwmro construction of S%; and in this context one :Ew%mmw__”mﬂﬂa Fo
e Q.E m. S and vol,o::. p.vm test used in the definition of S, one Mvr e
. sideration has no positive entries. This way one ¢ 3 tict all calenty,
ions of step 2 to the current row. e restrct all caleula-

gmrwwa_wﬁmmr m.mwww HIWN.MN an _:Famsﬂmo: of CGP. The first five columns of 4 [t
-2, 4,5 ws_ﬁ_ .36_ ml« m» _m m:;.m_~® as shown in Table I. Thus Ji=16,7,8 9 _M_,:_wm
Tablesa 7, ’ The mt :M w cau is T of Table 11 Starting with i=2, we cmowm: Mgm. _
choosing 1 -5, we cv:::%%._Q.M,ﬂwﬁﬂ_ﬂ”%w“”wo@ i u»__noﬁ?omm the tableau to 7. Eshﬂe
. - g ng rows . i
“cn_www. H.M :%srmmm_“ﬂ% ec:mv.ncnam&w yielding f;. %rzmk the ”“_Mwwnhﬂwwﬂwﬂwﬂwnam; M_Bv_ox
s » 3, has three adjacent integer feasible solutions, defined by g =x J:ME oy
=rw=1,1;=

and 7, =z¢ =1, =1, res . .
A , respectively (with z; = . 7
the order in which the rows of the SEQEN N 0 unless otherwise specified).

=1

We notice th
hat

re y :

on chnowmma M._E% have a considerable impact on

e . me one chooses a row wi i

ber of positive entries, one tends to generate fewer tablegux row with a minimum num-

Our oc_:S:.Wozer.:m procedure is kindred j iri
s } P 2 ed in spirit to an algori )

1 vmﬁ_&_.m_swwwm c=>ﬁoommﬁ_n£ results by Buraer, W for msz,awzz_mrwzz AMM_MWMMW w
B the comtem o».. - mmwm —_~ a_wocmmEJ and restatement of Chernikova’s m_ma::::
‘It was actually xsizi Pt that ot ound in & yeecn paper by Runy. o
iho procecurc of e s paper that started our thinking along the lines that _.,m. t

e come weeniot o :.Mwn«_c_.r Our method, like Chernikova’s, generate T

B Gon from the %.wge.m?mnm_wﬁ vertex, by aQ:_&izm columns and using informa-
fentially useful in E:::.@;LM,M:_Mawmmmﬂwo?mmﬁg o Mc:::.:m:.::m 10 those po-

E Howevor, : ! ¢ ontains an adjacent vertex.

oo wﬁmwmm_“.m“”“m algorithm .Srzm _E.qu combinations with coofficients
wplics the e .o». n:oaor.:wmﬂﬂ%:zso n a certain degenerate row, which in general

sear combinatione it i chv from 1, whercas our composite columns are

o o i vy msm corflicients BF.E_. to 1. Also, we use the %E.:..,Er,;

squirement, and 1. owsm:_.“““ Mowvczmﬂﬁ n_::_zm:a:.maii,m are the orthogonality

Jo counterpart in Orﬁ::ﬂca\m“m, &.mo“lﬂvwmw ere peedliar to our problem and have
One could of course, in view of Corollary 3.1, generate all vortices of X, whothes

s edges of

h
e
¥
3
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integer or not, adjacent to a given vertex, by using Chernikova’s algorithm, and
then remove the noninteger ones.
tices can be vastly superior to that of the intej
In the case of the above numerical example,
generates 10 noninteger vertices adjacent to z1=
to the three integer vertices that were also generate

ger ones, this does not seem reasonable.
for instance, Chernikova’s procedure
rs=1, ;=0, j%1, 3, in addition
d by our procedure.

WITHOUT CUTTING PLANES

3. SET PARTITIO

lving the equality-constrained

In THIS sECTION we describe two algorithms for so
feature that they apply the

set covering problem (P). Both algorithms share the

TABLE 1

An ILLusTraTioN OF THE COLUMN-GENERATING PROCEDURE

0
1
0
0
1

However, since the number of all adjacent ver- 4

Set Partitioni
artitioning as

ArLgoriThM I
PriMaL, Apply the primal simy
simplex method to (P’) as long as 1 i
n 1 F S you can pivot on
pondegenerate row. Whenever this becomes impossible, let £ be the n::.m”o &:ommm.“.vﬂ”_uh

TABLE 11
TABLEAUX FOR THE ILLUSTRATION oF TaABLE I

6 8

7 9 10 11

-1 —1 -1

Ty: —~1

-1

-2

9 (6,10) (8,10) (9,10) (6,11) (7,11)

0 0 [ 0 0

-1 0 0 0

0 -1

(6,100 (8,10) (6,11) (7,11)

0 0 0 0

-1 0 °

primal simplex method to pro
use a column-generating procedur
eracy. In Algorithm I, the column-gi
one ‘improving edge’ as soon as possi

pivoted into the basis so as to yield an integ
than, the current one. In Algorithm II, CGP is used to generate all composite co

umnps that yield an integer solution adjacent to and better than the current ol
then, in view of Theorem 4, all remaining columns of the current tableau can
removed. Itis not clear at this stage which of the two procedures is preferable, a
hybrid algorithms are also feasible.

Both algorithms start by applying the primal simplex method to
course one has only to gain if one can simplify (P’) before starting. Thus,
s’ proposed in the literature (see, for instance, n&onm:oﬂ,‘
plied to (P’). Also, & good starting solution may be {
t heuristics for finding one can help a lot.

enerating procedure is geared to produci
ible, i.e., a composite column that can b

various ‘reduction rule
and 8) should first be ap
great help, and any efficien

blem (P’) without recourse to cutting planes, and
e to overcome the difficulties caused by degen-d

er solution adjacent to, and bettes

(P’), snd 0 nw

Te

&

8,10) (6,11) (7,11

Ty

L&W&rﬂ:mmmo&bﬁma gm.wm. 1 E&..\ the basic and nonbasic index sets, A =(B, R), and
o e M:..wa%o (all-integer) simplex tableau. Let d;, jeJ, be the columns m;‘ W.. and
) reduced costs, with ¢,;2 i imali It ¢ !
i o ¢,;20 required for optimality. If ¢;20, WjeJ, stop: T is
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ws of T indexed by I°= [iel|2:=0}.

Otherwise, let T be the tableau consisting of the ro
Let &, jeJ, be the columns of T. Go to MCGP.

MCGP (modified column-generating procedure).
be the current tableau, with column index set J.

At the kth iteration of MCGP, let T = e

1. If any of the following three situations holds: (a) all rows have been marked, ()
¢;20 for all jeJ, or (¢) @;;20 for all jeJ and all unmarked rows i, then stop: the solution 2 b
is optimal for (P). Otherwise, let E

;>0 for at least one unmarked row i},

Choose an unmarked row r such that d@,¢>0 and go to 2.

2. This is step 2 of the general procedure CGP (see section 2) with step 2c(ii) replaced by: 1 §
(if) Order S: so that ¢; <&=>j <k. Define JoC S, to be the subset of the jeS; such

that 3+ <0 and :
. B
.m:+?uﬁ R @) A

(i) If JO=8, let j be the smallest index in J°, define Qi =Q;UQ,, and go to Brock 3

Zi=minju

1,

Prvor.
(iv) 1f JO =8, for each jeS, add a new colu

Qi =Q;UQ; then remove 4, from T and t from
resulting column index set J'. Goto3.
1d J to be the current tableau T and index set

mn d;+d: to T and a new index k to J, where
7. Call the resulting tableau T* and the

3. Designate T’ ar J, respectively, and 3

return to 1.

Brock Prvor. In the simplex tableau T &
column jeQx. The resulting solution is integer an
integer. Go to PRIMAL.

ssociated with Z, pivot into the basis eachi 8
d better than I; the associated tablesu P

Avaoritam 11

rithm 1, with the following differences:
em (P’) rather than to (P'). At the stal
does not contain some (or all) of the origingiy
ciated in the obvious way with 2 (rather thail

Primav. This is like Algo

(a) Everything applies to the current problk
(P") =(P"), later (P") contains new columns and
columns. 1f&;20, YjeJ, then the n-vector asso
# itself) is an optimal solution to (P).

(b) The last sentence should read: Go to CGP.
This is the general CGP of Section 2, with

CGP (column-generating procedure). -
following amendment to step 4:

Also remove from 7 all columns &; such that &; =0.
jous way with Z is an optimal solution.
bleau (P’) and go to PRIMAL.

If no columns are left in the tablesly

the n-vector associated in the obv: QOtherwise,

the problem associated with the new tal

Both algorithms find an optimal solution to (P) in a finite number of stefl
. each time MCGP is used, either 4

For Algorithm I, this follows from Theorem 5

current solution is found to be optimal (because £;20, YjeJ or because no f
an be generated), or a composite column is generated whi

adjacent to and better than the current one. For Algol it

5. the latter one guarantees that CGP gen -

composite columns ¢
defines a vertex of X
11, it follows from Theorems 4 and
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all vertices of adjacent to the curren vertex Z, hence in part icular all vert es
8 X, adjac to the y I
) ) < the
adjacent to and better than z, T th id rant ~o t t :
A whereas ¢ forme guarantees that the m\_v_a”wc

composite columns def ning such vertices contains a, 1¢ col-
P! definin } 11tk 1

S
umns needed to U—.C&_:b an optimal solution e ‘

4. NUMERICAL EXAMPLE

IN THIS sECT § cx .
H. CTION we solve an ¢ ample by Algor thm 1
1S SE i ) Yy gor1

Table 111 gives the vector ¢ and th e matrix A for the example
np.

TABLE 111
Tue NumericaL ExampLe

2 a0 element @;; =1 (such that &;<0).

k' Brock Prvor i .
bod Taio qrp | rouees @ and o into the

; WEEF sends to the next step.
PMCGP. ' (2,4, 51,0 =11,3,6,7,9, 11, .- 15,

Aum. M_ A..uw_ %, 2,231,2 2 1,1, 1, 0 0)
611110 c‘ 1
h 011090
pirearenniiied
100601
0111000 o6
110100
00111010 oo
. 01011
The simplex tableau 7 "
1 -z -z -
& xy —Zs —Zy —Tw —In —In —1y z
H -5 3 2 2 s -
1 1 o )
: 3 -3 -
n.: w “ 1 1 1 1 0 N o _ T
> o 3 % 0 0 0 1 1 M ) !
iy o 0 a 1 1 0 -1 -1 1 0 _
- . 0 -1 0 1 0 1 -1 0 o
-1 0 -2 -2 2 0 1 ; i
—————— ! '
The simplex tableau 7" o -
1 -1y -z -
f o T =% —xn —xn ~2y 1y, z
z -3 8 -3 s - -
1 0 o
: 5 1 -
u“. M Iw -1 0 0 1 1 !w W : !
> ! h A_u 0 4 -1 0 1 -1 | 0
iy o h o 1 1 1 0 0 1 I_ 0
iy . S g |_~ -1 1 1 -1 0 W 0
2 —2 -2 i
3 0
1

PriMay, produces € simplex tableau able In which no mor Vvots are posstble
s th b T of Tab 11 hick b!
p! mplex tableat o I , c. € pivots ar
3 Pos

MCGP. I'={3,4,6}; J=|1,6, -, 12, 14, 15).

First ileration: No rows marked.

=81, =518, = (8, 14, 6, 9). &i==38, 1=10; choose i=5. Slh,=1{6, 8, 9, 14);

CetCio=1-3=-2<0, and @ +aj, satisfies 3. ’

basis, replacing 7' by the simplex tableay
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tut R Fourth iteration: No rows marked. & =~—1, call {15, 4} =Qy;, so t=17. Choose i =5

' First iteration: No Tows marked. Ge=—5, t=12; choose i =2. Su=1(14,9 1}.
¥ Si=(6]. Remove column 17 and add column (6, 15, 4) to obtain T° with ¢; 20, Wje/

E1a=3— —5 =—-2<0, but @, 12+, _.lewﬂwn<~0—ﬁ»\mm (3. C+lun= =5-520. 2

Remove column 12 and add columns (14, 12), (9, 12), and (1, _mvacﬂ_A_.oomgan
of Table IV.

in Table I1I) to obtain the tableau T?
G = —3, t=3; choose i=2. S; = {14, 1}.

Second iteration: No Tows marked. C¢
(14, 3), (1,3) to T?t0 obtain T as shown in Table IV, -
T ACKNOWLEDGMENTS

Remove column 3 and add columns
¢ row with index i=21s marked. & =—2,call {14, 12) =Qus, s0 L =16.

it =1-2 <0, and @n+dis satisfies (3')-

Hence the solution 2, =21 =z =1, z; =0 for j11, 12, 14 is optimal.

Third iteration: Th
Choose i =5. S = {15, 11}.

i MMW s:w*__ TO thank Uﬁ:v S. RusIN for his helpful comments, and in particular

supplying the basic idea for the present version of part (i) of the proof of The-

TARLE IV
orem 3, which is both shorter and more appealing than the previous version

UMERICAL EXAMPLE

TapLEAUX FOR THE N
-
i 7 9 1 13 14 15 (14,12) (9,12) 1,12)

TABLE V

AppITIONAL TABLEAUX FOR THE NUMERICAL ExampPLE

: 2 s -3 1 o 5 t 2 3 0 _9 0 3
2 N R U S o | 1 s 3 5 6
T 4 e T T T 1| .- 7 8 9 1 (1513) (2,13)
5 I L e B . 1 3 % 5 4 . R ] P ,
L s - . - 3
E g T 10 1 0 _ _
Lo 7 e onomow 15041 009 A1 14,3 1,3) p o ” w w m 1 -1 1 1 o
i LRI - 0o 1 -1 0 0
! 2 5 4 6 7 8§ 9 15 (2,13)
I Z; 5 4 1 -1 3 9 1 1 0 3
Vil Mo 1 ¥ -1 -1 0 0 -1 -1 1 0
1 -1 1 2 -1 0 0 1 -1 o
1 2
306 7T 8 9 15 213 (5,0 64 (L4)
z 5 4 1 3 2 1 1 0o 3 -1 s s
10 1 0 -1 0 0
-1 -1 1 1 0 —1
§ |-1 -1 1 -1 o0 0 1 -1 © . . m

Brock Prvor introduces L, L1 and ry into the basis and produces the simplex

leau 77 of Table 1V,
PrimaL sends to the uext step.
MOGP. 10=110, 51, J =11, Lo, 4,6, 00,9, 13, 15)

First iferation: No rows marked, & =—1, { =13; choo=e 1-98

,Zn“z_a m_wo wish to thank the National Science Foundation and the US Office of

=Mma rmmw,mm.aor: for their support of the first author's research, as well as the
ors

o2, Then chungsgemeinschaft for its support of the second author’s work.

tableau is T2 of Table V
Second interation: No TOWs niked, &= —1, call {15 131 = (e, s0 t=16. Choa " REFERENCES
i=10. Sis=0. Remove column 16 to obtain T? c_. Table V. 3
Third iteration; No rows marked. & =-—1,1=4; choose 1=5. S4= {15, 6, 1}. 4 5 ! s
; E. Baras axp M. PapBERG, “On the Set-Covering Problem,” Opns. Res. 20, 1153-1161

ne (15, 4), (6,4 and (1, 4) to T* to obtain T* of Table Y (1972).

4 andadd
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the row-column sum method to yield an ‘inverse compactification’ that mini-

! » Graduate School of Business | mizes the basis information to be stored between successive iterations, and in
olytopes, Hill. March 1972 4 addition minimizes the arithmetic calculations required in pivoting. In par-
pel Hill, % nm_u_mam A.; a Special 2 g ticular, the solution procedure only requires the storage of a spanning tree and

r a (¢ 1) Xq matrix (where g is the number of additional constraints) for each
basis. The steps of updating costs and finding representations reduce to a
sequence of simpler operations that utilize fully the triangularity of the span-
ning tree. Procedures for obtaining basic primal ‘feasible’ starts are also
presented.

ﬁ.—.:ﬂm PAPER presents a specialized method for solving transportation problems
¢ <+ with several extra linear constraints. Such linear models occur frequently in
¥ transportation applications. The warehouse-funds-flow model and the gas-
blending model developed by CrarNEs aND CooPERE! are specific applications
that are transportation models with additional constraints. Some scheduling
§ models, such as a constrained version of WAGNER’s employment-scheduling prob-
;. Jem, (%! also fall into this class of problems.

Operations-research literature contains a number of ingenious techniques for
transforming a transportation problem with an extra constraint(s) into a larger
 equivalent transportation problem; for instance, the ecarly works by ManNE
¥ [reference 6, pp. 382-383], HabiEy,!'® SimmoNarDp,!?® Charnes and Cooper, Bl
f and the current work by Wagner,?! GLover, KLINGMAN, AND Ross,!'$ CHARNES,
Grover, aAND KringMaN,® and Charnes and Klingman® are indicative of the
# interest in this problem. However, these transformations are not possible with an
# arbitrary extra constraint.

This paper develops a solution procedure that exploits fully the topological
structure embedded -in this problem; it is basically the primal simplex method
fapecialized to take full advantage of the computational schemes and list strue-
es!2:10-24 ysed in codifying the row-column sum method® and the dual method. (2!
fThese specialized primal computer codes have typically solved pure transportation
problems 150 times faster than state-of-the-art linear-programming cndes 14

N



