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1. The main result

The “integer convex hull” of rB?, the ball of radius r centred at the origin, is,
by definition
P, = conv(Z‘ N rBY),

which is clearly a convex polytope. How many vertices does P, have? Motivation
for the question comes from different sources: integer programming (cf. [CHKM]
[BHL)), classical enumeration problems ([J],[Sch], or more generally [W],[Vin]),
and from the theory of random polytopes (see later). For the case d = 2 it is
shown in [BB] that

(L.1) ©0.33rY3 < fo(P,) < 5.55r%3

where f;(P) denotes the number of k—dimensional faces of the polytope P. The
limit, as R — oo, of the average of r~2/3fy(P,), on an interval [R,R + H], is
determined by Balog and Deshoullier {BD], and turns out to be 3.453..., (H
must be large). Our main result extends (1.1) to any d > 2 and to any f;(P,)
with k =0,...,d — 1.

Theorem 1. For every d > 2 there are constants c¢((d) and cy(d) such that for
allk £{0,...,d — 1}

(12 - )T < f(P) < eo(d)r?

* Partially supported by Hungarian Science Foundation Grant T 016391, and Research Grant 96—~
31/13 of the Academy. Part of this research was carried out while this author was visiting, with an
ESPRC grant, the Department of Mathematics at University College London whom he thanks for
their hospitality.
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Using Vinogradov’s < notation this can be written as rE < Se(Pr) <
rd“t . Here the implied constants depend only on dimension d&; we will keep to
this as a convention throughout the paper (unless stated otherwise).

It is the authors’ conviction that lattice points and random points, in relation
to convex bodies in “general position”, behave similarly. Theorem 1 is another
confirmation: (1.2) is in complete analogy with random polytopes. To see this,
choose n = [r? Vol B4] random, independent, and uniform points from B 4 and
let K, denote their convex hull. Then, according to {BL] and [B], ndT:Tl <
Efi(K,) < n%l, where E stands for expectation. But n% K rddd_:ll K n%:—ll,
showing that the convex hull of n random points and the convex hull of the n
lattice points lying in 7B have the same number of k—dimensional faces.

2. The upper bound

The upper bounds in (1.2) follows from a result of Andrews [An] who proved
the case k = 0 of the following more general

Theorem 2. Assume P C R? is a lattice polytope with nonempty interior. Then
@D i(P) < (VoI P)#
where the implied constant depends only on d.

The result was rediscovered by Arnol’d [Ar] (case d = 2), Konyagin and
Sevastyanov [KS], case d > 2, k = 0 with indication to any k. W. Schmidt [Sch]
proved (2.1) in slightly stronger form. A more general argument of Bardny and
Vershik [BV] implies the case d > 2, k = 0. Here we give yet another proof,
based on convex geometry and the technique of cap coverings. What we get is
a slight improvement over (2.1), which is also indicated in [KS]. A tower (or
flag) of the polytope P is a chain of incident faces Fo C F; C --- C Fy_ with
dimF; = i. Write T(P) for the number of towers of P.

Theorem 3. Under the previous assumptions
2.2) T(P) < (Vol P)TT

As clearly £ (P) < T(P), (2.2) indeed generalizes (2.1). The proof, however,
starts with the case k =d — 1 of (2.1) and uses, twice, a trick of Andrews later.

3. Lower bounds and approximation

W. Schmidt {Sch] asked whether the exponent ‘2%11 in (2.1) is best possible (when
d > 2). In the case d = 2 this is clear from [Ar] and [Sch], Arnol’d also indicates
the general case. The lower bounds of Theorem 1 show that the exponent in (2.1),
and also in (2.2), is best possible. An argument of the first named author (given
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in [BD]) proves that the average of fo(P,), over r € [R,R+H] is of order RIGT .
This is a weaker, or average, version of the case k = 0 of Theorem 1.

The proof of the lower bounds in Theorem 1 is based on a result from the
theory of approximation of (smooth) convex bodies by polytopes. To state what
we need, write %' (D) for the collection of convex bodies with &2 boundary
and radius of curvature at every point and every direction between 1/D and
D. (Here D > 1) Let K € #(D) and assume P C K is a convex polytope.
Approximation of K by P is measured as the “relative” missed volume, i.e.,

Vol(K \ P)

appr(K,P) = Vol K

The result we need (cf. [G1]) says that for any K € & (D) and for any polytope
P C K having n vertices

(3.1) appr(K,P) > n~ 71,

On the other hand, there is a polytope P C K with n vertices satisfying

5

(3.2) appr(K,P) < n~ 7.

Here > and < depend on D as well. More precise asymptotic information is
available on best approximation (cf. [G2]): the constant is const(d) times the dii—il—l
power of the affine surface area of K. But we won’t need this precision.

The proof of the lower bounds is based on

Theorem 4. For everyd > 2
Vol(rBY \ P,) < ré'@r

This implies the case & = O of Theorem 1: Assume f3(P,) = n. By (3.1) and
Theorem 4

~2 _ Vol(rBY\ P)) ad=l_g
T T ol Be

showing that fo(P,) = n > r4TT indeed. On the other hand, fo(P) <K rdwt
from Theorem 1 which together with (3.1) imply that

rm 1 < fo(P)TTT < appr(rBY, P,),

i.e., P, is a “best” aproximating polytope to rB? in the sense of (3.2). So we
have

Corollary .

fo(P) ™1 < appr(rBY, P,) < fo(P,)” 71,
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A long time ago, C. A. Rogers [R] proved the following analogue of (3.1).
For every polytope P C B? with n facets
3.3) appr(Bd,P) > nTT,

From this the case k = d — 1 of Theorem 1 (the lower bound) follows the same
way as above. Cases k = 1,...,d — 2 of Theorem 1 need special, and more
involved treatment. The proof would be simpler if, for every convex polytope P,
one would have

(3.4 fe(P) = min{fo(P), fa—1(P)}.

This would follow from the unimodality conjecture (see [Z]), which is known
to be false. But (3.4) may still be true. It is known to hold for simple (and then
simplicial) polytopes, see Bjorner [Bj].

4. Replacing B¢ by K
In this section we assume
4.1 K € (D) and O € intK.
Let Py be the integer convex hull of A\K, i.e.,
Py = PA(K) = conv(Z9 N AK).

Here A is large (we keep the letter r for radius of curvature). The questions,
and the answers, of the previous sections extend to this case, with the constants
implied in < depending on d and D:

Theorem 5. Assume K satisfies (4.1). Then, as A — oo,
d— d—
(4.2) AT < fiPAK)) < AT

We will indicate, after the proofs for B¢, how the extension goes.
The generalization of Rogers’ result (3.3) to this case has to be stated and
proved separately:

Theorem 6. Assume K satisfies (4.1) and P C K is a polytope with n facets.
Then

appr(K,P) > n= T
with the implied constant depending only on d, D.

Again, the proof of the lower bound in Theorem 1 for k = 1,...,d —2 would
be simpler if the following unusual approximation statement were true.

Conjecture, Assume K satisfies (4.1), k € {1,...d —2} and P C K is a polytope
with fi (P) = n. Then

appr(K, P) > nTT
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5. Proof of Theorem 4

We start by introducing notation and terminology. Let p € Z? be a primitive
vector, outward normal to the facet F(p) of P,. The hyperplane H (p) = aff F(p)
cuts off a small cap C(p) from rB¢ and

5.1 Z9NnintC(p) = 0.

Let p = p(p) be the radius of the (d — 1)-ball H(p) N rB* and let h = h(p) be
the width, in direction p, of the cap C. Then

(5.2) p? = (2r —h)h and so rh < p* < rh.

Write x| for the Euclidean length of x € R?. Letting Area to denote (d — 1)—
dimensional volume, we have

(5.3) Area F(p) = {(p)lp| < p*~'

where £(p) > 0. |p| is, in fact, the determinant of the lattice Z¢ N H (p). So

1 d

Lemma 1. The contribution to Vol(rB¢ \ P,) of the caps C (p) with h(p) < r~ =)

. dé=1
s < rtdn,

Proof. Everything that is contained in such a C(p) is also contained in
d —d=1l nd
rB\ (r —r~ &1)B
whose volume is just (r’i —(r - r‘%:_ll)d> Vol B < ri'wt. O

From now on we can only consider facets F(p) with
(5.4) h(p) > r='m.

We are going to use the Flatness Theorem (cf. [K], [KL]) saying that the
lattice width of a lattice point free convex body (in R?) is at most cod? where
co is a universal constant. Applying this to C(p), or rather to int C(p) which is
lattice point free by (5.1), we get a primitive vector ¢ € Z¢ such that

(5.5) max{g(x —y)x,y € C(p)} < cod”.

Case 1: when h(p) < cod?|p|~!. In this case p is a flatness direction for C(p)
(since consecutive lattice hyperplanes with normal p are at distance |p|~! apart).
Then p* < rh < rlp|~" and

AreaF(p) = £p)lp| < o'~ < (rlp| )T,
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implying
d-—1 d+1
p)y<r™p|7 2.

As U(p) > (—dilT)" we get |p| € r& . We write b = b(d) for the implied constant.

The lost volume in Case 1 is

< > AreaF(ph(p) <Y lp)< Y r T pm
y/d

)/ d—1
lp|<br Tt

d—

d—1 [)r7+_ll d d—1

d—1 _dxl — d4—1

(5.0) L r? / x~ T x4y < rdE ,
0

as a simple computation reveals.

Case 2: when h(p) > cod?|p|™". Then some ¢ € Z¢, distinct from p, is the
flatness direction of C(p).

Assume C(p) is between hyperplanes gx = £; and gx = ¢, with 0 < £} <
{; < |glr and £, — €y < cod®. Set k; = |q|r ~ ¢ and x; = k;/|q|, ( = 1,2).
Consider the two—dimensional plane containing 0, ¢, and the centre of C (p). We
show first, assuming x; > 0, that ¢ (see the figure) gets small as r gets large.
Indeed, using (5.4)

. Xy — Xy Xy — X2 ky — ka cod? L
sing = = < < — & rT B
2p 2v/(2r = h)h 2[‘1lm 24q|Vr-r— &t
since |g| > L.
\
2p
¢
T
[/ I

T
Fig. 1.

As ¢ and ¢ (see the figure) are almost equal, (5.6) implies
(5.7) x1=r(l —cost) < rsin® ¢ < P

We can estimate p from the figure, again. As cos ¢ > 1/2 for large enough r,
we get
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Qr —xpx; — Q2r — x)x;
VQr —x)x +VQ2r — xa)x;
g < Fomowmox) o chiok il o [T
Vr(/x+/x) lal vk +vk lq1k1
The same estimate follows directly when x, = 0. From this & <« p*r~! «

(Jglk))~". Now (5.4) shows k|q| < r @t Set now k = [ki]. As p is not a
flatness direction, 1 < k; —k; <k;. Sok > 1 and

p< V@ —x)x; — VQr —x)x; =

d—1
klg| < ra.

Collect the F(p) with fixed flatness direction ¢ and fixed k into groups. The
missed volume in the corresponding caps is

(5.9) <Y AreaF(p)h(p) < S maxh(p)

where S is the surface area of rB? between hyperplanes gx = £, and gx = /5.
Since ¢ is small,

d—1

s < 2 ([(2r~x1)x11% [2r — x)x,] 5 >AreaBd !

< (V@ —xm =V — o)l —xn] T < — (i> 2
lglk \lq

where we used the second half of (5.8). Evidently max h(p) < p*/r < (|q|k)~".
We continue (5.9):

L7 (rk)dz T
/= T q
lglk 'V lglk \ |q]

This is to be summed for all k = 1,2, ... and g € Z¢ primitive with k|g| <R
where R < r'@t . Then the total missed volume is

d+l d+1
F ety :
XERY, Ix|<

R P
< 1S g« T = (5) i
X

<

»lx

(5.10)

Zk 2<<(rR) <<rdT'
k=1

as one can check easily. O

Remark 1. This proof shows the inequality fo(P,) < it (from Theorem 1)
directly. Actually, it shows the stronger result that

P, Nz <« P
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To see this one has to use the simple fact

Area F(p)
p|

valid for every facet F(p) of P,. This gives, in Case 1,

Area F d-1 - .
Y IFEInzi < —(p)<<§ p(p)l < r T pm
» p p p

IF(p)nz!| <

Ip| Ip

which is <« rd%, according to (5.6). Case 2 is even simpler. Then

Area F(p)
lp|

and (5.9), (5.10) can be applied.

IF(pynZ9) < < Area F(p)h(p) < Vol C(p)

Remark 2. An essentially identical proof works when B¢ is replaced by K satis-
fying (4.1). The main difference is that H(p) N AK is not a ball. But it is very
close to an ellipsoid (since h(p) is very small, less than A~“FT: this is shown by
Lemma 1). This ellipsoid is sandwiched between two concentric balls of radii
\/ %"— and v2AhD. This shows that the corresponding p and Area F(p) can be
bounded as in (5.2) and (5.3) with the implied constants depending on D as well.

We elaborate on how to deal with ¢ and 1 on the figure. Let y € 9K be the
point where the outer normal to K is ¢. Then the figure shows the intersection
of Py with the two—plane H parallel with g, containing the centre of C(p) and
the point Ay. Write r for the radius of curvature at Ay of H N AK. Clearly, r/A
is between 1/D and D. The boundary of H N AK, in a neighbourhood of \y is
very close to the circle of radius r with centre Ay —rq/|q|. Now ¢ and v are the
same as on the figure and the estimation of sin ¢ and x; works the same way. (h
on the figure may be different from the depth of the cap C(p) but their ratio is
bounded as a function of D.)

6. Auxiliary results
Let K be a convex body in R?. For x € K and A > O define
Mg(x, ) = x + MK —x) N (x — K)}.
This is the M—region introduced by Macbeath [M] in 1953. We define two

functions u,v K — R by

6.1)  ulx)
6.2)  vx)

g (x) = Vol M (x, 1)
vg(x) =min{Vol(K N H)x € H, H is a halfspace}.

Il
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The set K(v > t) = {x € K v(x) > ¢} is evidently convex. So is K(u > 1) (see
[M]) but we will not need this. It follows from the existence of the Léwner—-John

ellipsoid that K'(v > r) is nonempty when ¢ < 5[17 VolK.

Several properties of these functions, their level sets, and of the M —regions
are established in [M], [ELR], [BL], [B]. We list those that will be needed later.
Lemma A. ([ELR]) If M (x,1/2)NM (y,1/2) £ 0, then M(x,1) C M(y,5).
Lemma B. (simple) u(x) < 2v(x).

Lemma C. ({BL]) If v(x) < 2d)"% Vol K, then v(x) < Bd)¥ulx).

Lemma D. ([B]) K(v > t) contains no line segment on its boundary (provided
t>0)

Lemma E. ([ELR],[B]) Let C be a cap, i.e., C = K NH with some halfspace H.
Ife < 2d)™* and C NK@w > e VolK) is a single point x, then C C M (x,3d)
and e Vol K < Vol C < desVolK.

Lemma F. ([BL]) For every convex body K C R*
Vol K (v < e Vol K) < 1 Vol K
with the implied constant depending only on d.

When K € (D) and x is close to the boundary of K, u(x),v(x) are easy
to estimate. For instance, as we saw it in Remark 2, the boundary of K is very
close to an ellipsoid E in the vicinity of x, and for ellipsoids ug(x) and vg(x)
are simple to determine, and ug(x) = 2ug(x). It follows that, writing & = A(x)
for the width of the cap K N H giving the minimum in (6.2)

(6.3) hT < ug(x) < vg(x) < h'S

with the implied constants depending only on d, D.

7. Proof of Theorems 2 and 3

Set Vol P =V and define, with clear anticipation, € = [3(15d)?d!V]~!. Let F
be a facet of P (with outer normal p). Let xz be the point on the boundary of
P(v > €V) where the outer normal coincides with p. According to Lemma D,
xp is unique. Let C(xg) =P N {x p(x — xp) > 0}.

Claim. For distinct facets F and G of P

M (xp,1/2) N M (xg,1/2) = 0.

Proof. According to Lemma E

eV < VolC(xp) < deV and C(xp) C M(xp,3d).
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Assume M (xg, 1/2) N M(xg,1/2) # 8. Lemma A shows then, that M (xg, 1) C
M (X(; y 5), and so

F C Clxp) C M(xp,3d) C M(xg,15d).

Since G C C(xg) C M(xg,3d) C M(xg,15d) as well, M (xg, 15d) contains
d + 1 affinely independent lattice points: d from G and at least one more form
F. The volume of their convex hull is at least 1/d!. Thus by Lemma B

1 2
o < Vol M (xg, 15d) < (15d)%u(xg) < (15d)? - 2¢V = ik

a contradiction. 0O

So the M —regions M (xg, 1/2) are pairwise disjoint. P(v < V') contains half
of each: the half cut off by the halfspace p(x — xz) > 0. Then by Lemma F
(which is a version of the affine isoperimetric inequality)

1 l 2 d -
ZEVOIM(xF, 5) S VolP S eV) < eMV < VT,
F

On the other hand, by Lemma C
Vol M (xp, 1/2) = 27%u(xp) > 274(3d) ~“u(xp) > (6d) eV > 1.
This clearly implies
fimi(P) < V& = (Vol P) 7T

From this we show, using an idea of Andrews, that f,(P) < (VolP)dT:Tl.
Let z be a vertex of P with neighbouring vertices wy, ..., w,. Define

P, = conv{U'f{%z + %w,- +AMw; —z): A > 0}}

As z ¢ P, there is a facet F, of P, separating them. This facet is of the form
conv{3z + sw; : some i}. Set Q = NP for all vertices z of P. Then F, is a
facet of Q as well and F, # F, for distinct z,y. @ is a lattice polytope in %Z"
SO

olP) < f4-1(Q) < (Vol Q)FF < (VoI P)'F

We are now in a position to prove Theorem 3.

Proof of Theorem 3. We are going to define a polytope Q C P which is a lattice
polytope in ﬁzd (where s(d) depends only on d), and a map f from the towers
of P to the vertices of Q that maps distinct towers to distinct vertices. This will
show ) )

T(P) < fo(Q) < (s* Vol Q)™ < (Vol P)7T .

The proof is by induction and we start with ¢ = 2. The vertices of P are zy, ..., z,
in this order. The vertices of @ will be
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2 I 1 2
§Zi + §Z,'+1, and 3-2,- + §Z,‘+1 fori = 1, R (N

The towers of P are z;, {zi,zm} and z;41, {z;, 2141 }. Define

l 1 2
=Zi+1 and f(z;41, {ZzaZz+1}) = Zt + =Zi+1-

f(wv {Z17Zl+1}) 3 3

This is evidently fine; we get 5(2) = 3.

Now for d > 3. For every facet F of P the inductional hypothesis guarantees
the existence of a lattice polytope QF C F (in the lattice ——Z¢ N aff F) and
& mapping

(d 1)

fF {towers of F} — {vertices of Q}.

Make sure, by contracting Q¥ suitably if necessary, that 7 NQ¢ = @ for distinct
facets F,G. It is not hard to see that one can take, as centre of contraction, a
point from ——Z¢ N conv F. Contractlon by the factor 1/2 suffices so QF is

—L 74 Maff F. Set

d(d 9}

a lattice polytope in the lattice 57— (d T

Q = conv(UrQF),

Qisu (d)Zd —lattice polytope (with s(d) = 2ds(d — 1)), contained in P. To define
f let To CcT, C---CTy_y be atower of P. Then T,_; = F for some facet F.
Define

F(Toy. . Ta ) =fF(Ty,... . Tan) € vert QF Cvert Q. O

8. Proof of Theorem 6

In this section the implied constants depend on d and D as well. We assume
VolK = . Then AreadkK > 1.

Let £ be a facet of P and denote by xr the point where the function vk is
maximal on aff . Note that xf need not be contained in F. But the cap C(xr)
cut off from K by aff F must have small (< n_ﬁ) volume as otherwise there
is nothing to prove. Write hr for the depth of the facet F in K; this is the same
as the width of the cap C(xr). As K € & (D) and hp is small, (6.3) applies
yielding

d+|

del det
(8.1) he K ulxrp) < vlxp) < hg?

Similarly,

d—1

d—1
(8.2) he.? < Area(K Naff F) < Area(M (xp, 1) Naff F) < k.’

Choose a system yi,...,y, € {xr F a facet}, maximal with respect to the
cond:ition that for distinct £,/
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Half of each M (y;,1/2) is contained in K \ P. So with (8.1) we get

N A | 1
(8.3) zljh,.- <<Z§V01M(yi,§)§V01(K\P).

On the other hand, by Lemma A, for every facet F of P there is an i such
that M (xg, 1) C M (y;,5). In this case the outer unit normals to the facets F and
F(y;) cannot differ much. Then §;, the total (d — 1)-volume of the projections
of all such facets F onto aff F(y;) is essentially equal to the (d — )-volume of
these facets. So we get, using (8.2) as well,

(8.4)

m m m d—1
Area OP = ZArea F& ZS,- < Z Arealaff F(y;) N M (y;,5)] < Zhi—z— :
F 1 i 1

Of course, AreadP > 1. We combine (8.3), (8.4), and the inequality between
the ‘1%1 and %l means:

2 d—1 71%-1 dxl JZT 2
1\ ™7 h* h,? Vol(K \ P)\ 71
853) <_> o | 20 S(L) <<(_9<_\>) ,

m m n m
This gives
Vol(K \ P d+ 2 2
appr(K, P) = —%ﬁ > mTE = T > T
sincen > m. O
Remark 3. The proof works even if the maximal system y,...,y, is chosen

from a subset of the facets, if the total (d — 1)-volume of these facets is >> 1.
This observation will be used in the next section.

9. Lower bounds for k =1,...,d — 2

We show first that most of the surface area of P, comes from facets whose depth
. do- d— . .
h is between blr_Tlx and bzr_Tll where b < | 1s small, 1 < b, is large.

Lemma 2. The contribution to the surface area of P, of the facets with h <

d—1 a1
byr i is < b7 riTl

Proof. The surface area of F(p) with h = h(p) < blr—% is at most

d—1

1 Area BT < )T < b7
P rea L (rh)y T <«b? rav,

5 d—1 . . .
The total number of facets is < r?'#7, so the surface area in question is indeed
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Lemma 3. The contribution to the surface area of P, of the facets with h >
d—1
byr = s & [)z_lrd*l

Proof. Define D(p) as the set of points x € rB? such that the segment [0, x]
intersects the facet F(p). Clearly, the D(p) are pairwise internally disjoint and
their union is rBY\ P,. Let y € F(p) be the point closest to X, the centre of the
cap C(p). Let m(p) denote the length of the longest segment parallel with p that
is contained in D(p). Clearly, this segment starts at y.

Claim. m(p) > h(p)

The claim implies the Lemma as follows. The halfline starting at the origin
and containing y intersects the boundary of rB< at y’. So conv(F(p) U {y'}) C
D(p) and its volume equals L Area F(p) times the p—component of the vector
y' — v. The latter is at least gm(p) since p is almost parallel with y’' — y. So,
using Theorem 4,

F4 T >  Vol(rB? \P,) > Z Vol D(p)

all p

> Z;{;m(p)AreaF(p)» Z h(p) Area F (p)

. d—1
i hp)>bar ~ BT

> bar ey Z Area F(p),

d—1
h(p)2bar ™ & T

which proves the Lemma.
Now for the claim. Set p = p(p), m = m(p), etc, and p; = |y — xp|. If

1< py /1 — ﬁ, then

P =P 1 1
>P Py s 1= h>—
"= l-( d~1> =2d 1)

and we are done. So suppose p; > py/1 — <.

Write By for the (d — 1)-ball ¥B? N aff F(p). Let C denote the (d — l)—cap
cut off from By by the hyperplane orthogonal to y — x,, and passing through y.
The diameter of C is 21/p? — p} < ﬁp. C contains F(p) and so it contains
d affinely independent vectors vy, ...,v; € Z%. The hyperplane aff F(p) is then
covered by lattice translates of the parallelotope spanned by vy — vy, ..., 07 — v,
and x, is contained in one of the translates. As it is well-known, this translate
has a vertex at distance at most £v/d — I max |v; — v;| < 3vd — 1diamC < p
from x,. So this vertex is in By and consequently in F(p). Then it cannot be
closer to x, than py, the shortest distance between xp, and F(p):

1
vid — I max |v; — vy| < ix/d— tdiam C = vVd — 11/ p* — p}.

m <

2] —
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This shows p; < p4/1 — % and the previous argument applies again:
— 1 1
m>2 Py > (1= J1- 2 h > —h
P d 2d

Now choose a small by = bi(d) and a large b, = by(d) so that half of the
surface area of P, comes from facets F(p) satisfying

J

d—1 d—1
bir™ < h(p) < byr~ T

Write .7 for the collection of these facets. We apply the proof method of Theo-
rem 6, this time with rB¢ instead of K. So choose a system F1,. .., F,, of facets
(from .7 ) maximal with respect to the condition that

where y; is the point where v is maximal on aff ;. The previous proof, combined
with Remark 3, gives
m > rier.

Now define
: d—1 ; d—1
F={Fi e Z :Yr o <h < YTy,

Clearly logb; <j < log b, implying the existence of a j such that

b\~ I
F > (log b—1> m > rlw
2

Fix such a j.

Now let L be a k-face of P, and fix a point x, € L. If L C F; fqr some
F; € .7, then the cap C(y;) lies in a ball with centre x; and radius 25%2r 3,
Indeed, as x;, € L C F; C C(y;), the distance between x; and y; is at most p;.
The diameter of C(y;) is

200 = 23/ Q2r — hhy < 2V 2r - ¥ w2 25w

Consider now the M -regions M (y;, 1/2) for i with F; € .%. Since they

are pairwise disjoint, so are their intersections with the sphere Sz of radius
. d—1 . . . . .

R=r— %2’ r~ @, centred at the origin. A straightforward, if tedious, computation

shows that Sg N M (y;, 1/2) contains a spherical cap of radius 25=1,77. These
caps are all contained in the intersection of Sg with the ball of radius 25+ p T
(centred at x;). An easy computation shows that there are at most 8¢~! such caps.
This implies that at most 8¢~! facets from .7 contain L. So the total number of
k-faces is at least 837D F] > m > P 0

Remark 4. The extension of this estimate to K € (D) from B¢ is similar to
the one outlined in Remark 2. Details are left to the reader.
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