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One of our resuits: let X be a finite set on the plane, 0 < ¢ < 1, then there exists a set
F (a weak ¢-net) of size at most q\mN such that every convex set containing at least | X|
elements of X intersects F. Note that the size of F is independent of the size of X.

1. Introduction

This paper is about weak e-nets, point selections, convex hulls, and related topics. T
explain what they mean, we start with the assumption that d > 2 and

X < RY is a set of n points in general position. (1
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wm Technology. Supported in part by Hungarian National Science Foundation grant No. 1812.
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We only assume general position to simplify the presentation: all of our results can be
extended to any finite set X using an appropriate limit procedure (and suitable extensions
of the definitions). Write ( mw_v for the set of all (d + 1)-tuples of X. Since the points of X
live in R, these (d + 1)-tuples can, and will, be called simplices when we consider their
convex hull. This should not cause any confusion.

We deal with the following three problems. Given a (large) set of simplices # < A um_v,
find a point that is contained in the maximum possible number of simplices. We cail
this the point selection problem (Section 2, proof in Section 6). In the hitting set problem
(Sections 5 and 7), we shall look for a small set E meeting “almost all” simplices in A &M_v.
Finally, in the weak ¢-net problem (Sections 4 and 8-10), given a set X and 0 < ¢ < 1,
we look for a small set F such that any convex region C with |X N C| = ¢ X| contains
a point of F. We shall find several upper bounds for min |F|, together with polynomial
algorithms for finding a small set F.

2. Piercing many simplices by one point

A family # is called pierceable if there exists a point common to int conv(S) for every
S € . We have the following Point Selection Theorem.

Theorem 2.1. Given d > 2, there exists a constant s = s; such that any family # c CM_Y
with |#| = nA m.ﬂ_v_ contains a pierceable subfamily #' such that

' 5 n
_x_vaOiv.

Here, and in what follows, we are using Vinogradov’s notation. For two functions f
and g, f > g means that there are two absolute constants ¢; > 0 and ¢; € R such that
f = c1g + c3 for all values of the parameters. Similarly, f >, g means that there are
constants ¢;(d) > 0 and c3(d) such that f > ¢|(d)g + c»(d) for all values of the parameters.

The first point selection theorem is due to Boros and Fiiredi [7]. They show that for
d =2, the family (¥) contains a pierceable subfamily of size (2/9) (3). This is extended for

any dimension in Barany [3], where it is proved that CM_V contains a pierceable subfamily
of size at least
[n/(d + _:v 1 n
d+1 = (1 — o(1
@D =M g n\a +1 @

The term “point selection™ comes from Aronov et al. [2]. They prove, again when d = 2,
that any family J# = (%) of size n’~* contains a pierceable subfamily of size

xulwn

27 (3)

log’n’
Thus, s = 5, = 345 will do (for any positive §) in the point selection theorem in the
range p = n~ % « > 0. Here we prove that, in general, one can take

sq = (4d + D4 (4

3. The multicoloured Tverberg theorem

Our point selection theorem will follow from a nice recent result of Zivaljevi¢ an
Vrecica [19], which was also conjectured in [4). The result is a “multicoloured” version «
Tverberg’s theorem [16]. One form of the latter says that any set of (d + 1)t points in R
can be partitioned into ¢ sets, Sy, ..., S, each of cardinality d + 1, so that

D conv(S;) # 0.

i=1
In the multicoloured version, the (d + 1)z points come in d + 1 classes Ci, ..., Cy4i, ¢

colours, each of cardinality ¢, and one wants to find “many” pairwise disjoint sets Sy, .
S,, each of cardinality d + 1, such that every S; is multicoloured (i.e., [S;NC;| = 1 for ever

i and j) and
D conv(S;) # 0.

i=1
The question is how large ¢ = T'(r,d) must be in order to ensure the existence of such sef
Si, ..., Sy. In the planar case, one can take T(r,2) =r (see [5] or [12]} and this is clearl
best possible. Using tools of algebraic topology, Zivaljevi¢ and Vrecica [19] show that

T(r,d) <2p(r)—1, (5

where p(r) is the smallest prime that is not smaller than r. It is well known that p(r) < 2r—1
whence T(r,d) < 4r — 3. We will see later that this is where the value in (4) comes from

4. Piercing all large convex sets

A set F « R? is called a weak e-net for X if, for every Y < X with |Y]| > en, th
intersection F N conv(Y) is nonempty. At a DIMACS workshop in 1990, E. Welzl [17
asked whether there exists a weak e-net for X whose size depends only on ¢ and d. Thi
had been proved true in the planar case in [4] before Welzl posed his question; however
the bound O(¢~'°%%) given in [4] is enormous compared to the bound in the followin,

weak e-net theorem.

Theorem 4.1. For any X < RY there exists a weak ¢-net F with

Nﬂ* AA& mii+::\_\.ﬁ.

Here, s is the constant s; of the point selection theorem. In the planar case, (3) give:
sy = 349, ic., a weak e-net of size O(e~**)) for any positive &’. We present here
separate argument for the planar case.

-2

Theorem 4.2. For uny X = R? there exists a weak c-net of size 7¢

The proof works in any dimension but gives 0(:™¥") for the size of the weak s-net

tor d > 2, this bound 1s worse than the bound in Theorem 4.1. Also. in Section 10 wc

in-2







give an algorithm with running time O(nlog(1/¢)), which, for a planar set, yields an e-net
of size O(g~*313-),
Define

fa(e) = maxmin{|F| : F is a weak e-net for X},
where the maximum is taken over all X satisfying (1). It is clear that fu(e) = 1/, so

1
= < fale) €q g0,

It is not known whether &f4(e) is bounded when & tends to 0.

Weak e-nets and the discrepancy of triangles. Consider the case when X is a set of n
points chosen randomly, independently, and uniformly from the unit square. When ¢ is
fixed and n is large, every triangle of area ¢ (and contained in the unit square) will contain
about en points of X. Using this one can show that there is a weak e-net F for X of size
0((1/¢) log(1/¢)). On the other hand, finding a lower bound for |F| leads to the following
old problem of Danzer (see [6] page 285) about irregularities of distributions. How many
points are needed to hit every triangle of area ¢ contained in the unit square?

When X is the vertex set of a regular n-gon in the plane, there is a weak ée-net
of size O((1/¢)2°¢(/9), where log”m denotes the function defined by the recursion
log®(2¥) = 1 +log” x and log’ 1 = 0. This is a result of Capoyleas [8].

We do not know how large the smallest weak e-net is for a set of n distinct points on
the moment’s curve {(t, 2, ..., t¥) 1 —o0 < t < oo} in RY.

A generalization of Helly’s theorem. In [1] the above Theorem 4.1 is combined with
some additional tools to prove the following Helly-type result, solving an old problem of
Hadwiger and Debrunner.

Theorem. [1] For every p > q > d + 1, there is a (finite) ¢ = c(p, g,d + 1) such that the
following holds: for every family X" of compact convex sets in RY with the property that
among any p members of the family some q are pierceable, there is a set F of at most c
points in RY so that every member of A" contains at least one point of F.

An easy consequence of Theorem 4.1 is the following result.

Proposition 4.1. For every n > 0 and for every integer d, there is a ¢ = c(n,d) such that
for every probability measure p on RY there is a set F of at most ¢ points in RY so that
every compact, convex set C of measure p(C) = n contains at least one point of F.

Let us sketch a proof of this resuft. By a usual compactness argument. it 1s enough

to prove the proposition for any finite family {Ci, .... Cxn} of compact convex sets,
with u(C) > 5 for every i. Choose points xi, ..., Xp randomly, independently, and
according to the distribution u. Set X = | ..., Xp). A straightforward applica-

tion of the large deviation theorem of Chernoff [9] says that the probability that

IX NG| < %1X| is very small. This shows that, with positive probability, for larg
enough n we have
IXNCl> W_k_ for every i = 1,...,N.

Fix such an X and let F be a weak e-net for X, where & = 1/2. Then, clearly, F intersect
every C; and is of size O(n@*+VU~1/9) completing the proof.

Another way of proving the proposition is to use the theorem establishing the Hadwiger
Debrunner conjecture. Namely, one can show easily that the family of all convex, compac
sets whose measure is at least 5 satisfies the conditions of that theorem, with p = [d/n]+
and g = d + 1. This gives that c(y,d) < c(p,q,d + 1). In fact, the first argument givel
above gives a better bound on c(r,d).

5. Piercing most of the simplices by many points

It turns out that the point selection theorem is closely related to some other results, whicl
we now describe. We say that a set E misses S € CM_V if ENnint conv(S) = 0. (Here
again, X is assumed to satisfy condition (1).) The following hitting set theorem asserts th
existence of a “small” set E that misses only “few” members of (,¥,).

Theorem 5.1. For every > 0 and X = RY, there exists a set E = R that misses at mos
:CH_V simplices of X and has size

|E| <4 n',

where s is the constant s4 in the point selection theorem.

In fact we shall show that the hitting set and the point selection theorems are equivalent

Observe that # may depend on n = |X|; for instance, one may take n = n~'/s, whicl
gives a set E of size O(n'~(/9) missing at most O(n?*'~'/*) simplices of X. This specia
case of Theorem 4 was proved in [4] for d = 2 with s = 343.

We emphasize again that the point selection, the hitting set, and the multicoloure
Tverberg theorems are equivalent. In fact, the multicoloured Tverberg theorem witl
r =d + 1 implies the point selection theorem with s = s4 = (T (d + 1,d)4*!, and the latte
implies the multicoloured Tverberg theorem with T(r,d) <4 r. The equivalence of the
point selection and the hitting set theorem is stronger, since it carries over to the exponen
s = sy. [t would be interesting to know the smallest possible exponent s,.

Remark on halving planes. As observed in [2] and [4], the point selection theorem (or th
hitting set theorem) implies the following upper bound on the number Hy(X) of halvin;
hyperplancs a set X < R¢ can have:

Hy(X) <y n'=0e,

The simplest way of proving this bound is to use the fact that no line mects more thai
(,",) halving simplices. (This was proved in [14] for the planar case, but the argumen
goes through in R¢ without difficulty.) Then the projection of X, and of the halving
simplices of X, to R™" gives rise to a family # in R“"" (on n points) so that no poin
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is contained in more than (,",) simplices of #. By the point selection theorem, # has
a pierceable subfamily of size >, p%-' (3), where |#| = p(}). So we get p <4 n~'/5%-1, as
required.

6. Proof of the point selection theorem

Here we prove Theorem 2.1. The method is similar to that of [4]. First, we define
V = V(X), the set of crossings determined by d distinct hyperplanes through the points
of X. To this end, let Qy, ..., Q4 be pairwise disjoint d-tuples from X. Their crossing
is defined as the point of intersection of the hyperplanes aff(Q,), ..., aff(Q,). Here we
assume that X is in a general position, so that any crossing is a well-defined, unique point.
To this end, condition (1) can be understood as saying that the coordinates of X are in
algebraically independent position. Clearly,

M= L) (57 (1),

so that n?’ < V| <y n?'.
Second, we need a theorem of Erdés and Simonovits [11], which is implicit in Erdés

[10] as well.

Theorem. [11] For all positive integers d and t, there exists a positive constant b = b(d, t)
such that the following holds: if # is an arbitrary (d + 1)-graph on n vertices and r(.5)

edges, where i~ < p <1, then S contains at least

g_i_ pld+0t

copies of K(t,...,1), the complete (d + 1)-partite (d + 1)-graph with t vertices in each of its
d + 1 vertex classes.

Proof of Theorem 2.1. Consider the family # < CM_V. Then the Erdds-Simonovits
theorem implies that # contains at least

vth pld+De

g

copies of K(t,....1), provided n <4 p < 1. Now choose

t=Td+1,d)y<2pd+1)~1<4d + 1 (6)

from the multicoloured Tverberg thecorem of N?m:dim and Vrecica, and consider a copy
of K(t,...,t) in .#. This consists of d + 1 pairwise disjoint sets Cy, ..., Cy41 < X, each
of size «, such that, for any x; € Cy, ..., x44; € Cyqy, the (d + 1)-tuple Ixi, ..., Xgii)
belongs to .#". By the multicoloured Tverberg theorcm, there are d + 1 pairwise disjoint
(d + 1)-tuples Sy, ..., Sy41 such that D”W__ conv(S;) is nonempty. The general position of
X implies that D_EM_ conv(S;) is a polytope P with nonempty interior.

The following simple geometric argument shows that there is an S; and there are subsets
Q=S i=1..,d+1,i# j) with |Q) = d such that the crossing of the Q;’s lies
n int conv(S;). Consider a facet F of the polytope P. It lics in a (uniquely determined)

Point Selections and Weak &-Nets for Convex Hulls 1
facet of a (uniquely determined) simplex conv(S;), say, conv(Sy). Thus F lies in mﬁm
for a (uniquely determined) Q; = S;, where |Q;| = d. Then the (d — :-&Bgm._g
polytope Py = aff(Q,) N DMWN_ conv(S;) has nonvoid (d — 1)-dimensional interior. So it h
a facet F, that lies in a facet of one of the simplices conv(S;) (i > 2), say conv(S;). Th
F, lies in a hyperplane aff(Q,) for a (uniquely determined) d-tuple Q; < S;. Then ti
(d — 2)-dimensional polytope P, = aff(Q;) N aff(@2) N Dwuw_ conv(S;) has nonvoid (d .IM
dimensional interior, and so on. We end up with a zero-dimensional polytope, ie.
singleton

{v} = aff(@1) N... Naff(Q4) N conv(Sy+1).
Then v is a crossing in the interior of conv(Sy41).
Now we give a lower bound for the number of pairs (5,v) with § € 5, v € V, ar
v € int conv(S). Such a pair can be identified with the (d + 1)-tuple of sets (S, Q1,..., Q.
As we have seen, every K(t,...,t) contains such a (d + 1)-tuple with

d
Dmﬁ@v < int conv(S).
i=1
A given (d + 1)-tuple (S, Q;,...,Qy) can appear in at most
m=§+_vlaw+&+:

copies of K(t,...,t). Consequently

ber of copies of K(t,...,t d+l g2
num p i ( ) > pliHd+L
Bntd+D)—di+d+1)

_:m,s e xV  veint ooiaz_ >

This shows that there is a crossing v in at least

P o " v
Vi P \d+1

simplices of #. Let #” be the set of those (d + 1)-tuples of 5# whose convex hull contair
v. Then, indeed, #” is pierceable and

s (") (
d+1

Here ¢ comes from (6). In the hypergraph theorem we needed p >4 n="", but (7) holc
trivially if this condition is violated, since then

i+l n
<y L.
4 @ + _v g

N

Remark (1). We deduced the point selection theorem from the multicoloured Tverber
theorem of Zivaljevi¢ and Vrecica. Now we show, in turn, that the latter follows from th
point selection theorem. To see this, take d + 1 sets Cy, ..., Cyyi in R4, each of omaimE
t, and set X = C?: C;. Define # to be the complete (d + 1)-partite (d + 1)-graph wit

i=1
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(d + 1)-partition Cy, ..., Cas1. Then n =1t(d + 1) and |#| = t4*! >4 (,1,)- By the point
selection theorem, 3 has a pierceable subfamily #” of size

] > A v oy .

n
d+1
Consider the largest integer r for which there exist pairwise disjoint (d + 1)-tuples Sy, ...,
S, in #'. Then any other S € #” intersects Ui, S, and the number of such (d + 1)-tuples
is at most (d + 1)rt?. Since here we counted Sy, ..., Sy as well, we get

d + Dret = | >4 1,

which shows that, indeed, T(r,d) <t <4 r.

Remark (2). We mention further that the proof method of the point selection theorem
cannot give a selection exponent s; smaller than (d + 1)@+1_ This is because T(r,d) = r
implies that t > d + 1 in (6).

7. Proof of the hitting set theorem

Proof of Theorem 5.1. We are going to use a greedy algorithm to produce the hitting set

E.
Start with # = (,},) and E = 0. The algorithm proceeds by choosing a maximal

cardinality pierceable subfamily #" < J#, together with a point v € ({int conv($) : S €
#'). Then set # = #' \ #" and E = EU{v}. We stop as soon as |#) < n(,%,). We claim
that when the algorithm stops
|E| <an'™
Assume the algorithm produced the sequence of families Cw_v =Hyo>H1D...0 Hnm
Denote by k; the index where
n

—i i n
[Hr] =2 A&.THV and |# 1] < 2 Aal_]_v.

It may happen that k; = iy, but that will not matter. We know that

o n
| Hpi \ 1l <1l <270 )
d+1
We also know from the point selection theorem that, for j > ki,1, we have
F \ —(i s n
T*,.\ \ ‘\?r_“ > AM ..IJ A&.T ~v,
since the deleted subfamily ;"\ # ;. was of maximum cardinality. This shows that

Nl A&H_v — N;m\:ul
N\:ﬁIKA n v ’

d+1

kivi — ki <4

Point Selections and Weak e-Nets for Convex Hulls 19’

Since we stop as soon as 27 < n, ie, i > [log 1/n], we get that the basic step of th
algorithm is carried out

flog 1/n1 [log 1/n1 .
m< M (kiv1 — ki) < M 2i6=Ds g, pt=s
i=0 i=0

times. This proves the claim.

Remark. The hitting set theorem implies the point selection theorem. Indeed, let 5 <
CM_V with || = p(,},)- Set n =p/2 and let E be a set of cardinality O(n~¢~") missin
at most n(,},) simplices of X. Define

#, ={S € # : Enint conv§ # 0}.

Clearly, |#1] = £(;},). Since E meets every simplex in '}, there is a point v € E that i

contained in at least
_nv\w_ S n
£ 4P \d+1

simplices of ;.

8. Weak z-nets for convex sets in R4

Proof of Theorem 4.1. First we give a simple algorithm producing a weak e-net F, of siz

&g gD,
Start with F = §. Check whether there isaset Y < X, |Y| > en such that F misses a

simplices of CHL. If there is no such Y, stop. In this case F is a weak e-net for X. |
there is a Y like that, choose a point v common to at least

—af 1Y
(t —o(i)d +1) C N _v

simplices from Y. Such a point exists by (2). Set F=Fu{v}.
In each step of the algorithm, the number of missed simplices decreases by at least

—af Y] _af & A
—o(l 4 —o(1 1 .
oot + 171 ) 20 —omae (5 ) e (1)
Therefore, the algorithm terminates after at most

(4r1)

<y mI:T.:
gt ?u_v

steps, showing that |F| <, &0,

To get the sharper estimate in the theorem, we apply the previous algorithm, but instea
of starting with F = @, we start with ¥ = E, where E comes from Theorem 5.1, 1€., .

misses at most 7 () simplices of X and |E| <4 nt-s.
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This time the algorithm terminates after

1(a30)

(@+07(7)

(I +o(1y <4 ne @+

steps, producing a weak e-net F of size <, |E| + ne~“*) <4 #'=° + ne~@+1). The right
choice for 5 is £“¥*+V/s, which gives

|F| <y g @+D+HE+1)/s

9. Weak ¢-nets in the plane

Here we prove Theorem 4.2 by an inductive procedure. Let us start with some remarks
and definitions.

Given k > 3 and a finite set X = R2, let f(X,k) denote the minimal size of a weak
e-net for X, where ¢ = k/|X|, ie.,

f(X,k) = min{|F| : F =« R?, int conv(Y) N F # @ for every Y — X with Y| > k}.

Note that this definition is stronger than the original, as here we require that F intersect
the interior of conv(C). Consequently, our Theorem 9.1 below is a little stronger than
Theorem 4.2. Let f(n, k) be the maximum of f(X, k), where X satisfies (1) with d = 2, ie.,
no three points from X lie on a line. Obviously, we have f(k, k) = 1, and, more generally,
F(n,k) =1 if n < k. In order to bound f(n, k) for small values of k, we shall need a result
of Katchalski and Meir [13] claiming that

fn3) =2n—>5. ®)
Theorem 9.1. f(n, k) < 7(n/k)? for all n > k > 3.

Proof. The function f(n, k) is monotonic in the sense that

fnk) > f(n',K)

holds for n = n" and k < k. Since 7n*/25 > 2n — 5 for all n, relation (8) implies that the
theorem holds for k = 3, 4, and 5. From now on we suppose that n > k > 6.

Now let X be an n-set. First, find a line L that bisects X into two parts X; and X,
of almost equal size, ie., [X;| = m; with |m; —m,| < 1. Next we construct a set ¥ such
that V intersects int conv(Y) for every Y < X, |Y| > k that has more than ¢ points
on both sides of L. (We shall choose # = [k/6] later. For the time being we only need
0 </ < (k/2) — 1.) To this end consider the intersections of L with the line segments
connecting x; € X, to x; € X,. There are m;m, such intersection points. u(l), .... u(mym,),
indexed consecutively on L. (We may suppose that L is in general position with respect
to the lines z;z,, ie., all of these intersections are distinct.} Clearly, for any set Y < X,
Y1 > k that has at least / + | points on both sides of L. conv(Y) contains at least

h=(+1)k—¢-1

Point Selections and Weak e-Nets for Convex Hulls

of the u(i)’s. For V, choose a point from L between u(h — 1) and u(h), u(2h — 2) a
u(2h — 1), u(3h — 3) and u(3h — 2), etc. Then
mymy
vi= T_IL -6
What are those sets ¥ = X, |Y| = k, whose convex hull contains no point from
They are the Y that have at most £ points either in X, o.n in .k \. But such a Y must ha
at least (k — ¢) points in X| (or in X3, respectively). So it will be m:.ocmr to find a we
¢,-net for Xy, where ¢ = (k —£)/m (and a weak g-net for X, with & = (k - \v\&
These two sets together with V form a weak ¢-net for X. Next we apply the inducts

hypothesis twice, and obtain
.\ASW + Sw.v myms .
f,R) < flm, k= &)+ fom k=) + 1V < =023 + Gopa— 7o <

Using the facts that (m? +m3) < (i +1)/2, mymy < n*/4 and for k > m, ¢ = |k/6] E
has (k — £)* > (25/36)k* and (/ + )k —¢ —1) — 1= (5/36)k?, we A.ugmi that the rig
hand side of (9) is at most (252/50)(n* + 1)/ k* +(36/20) (n%/k?). This is at most 6.98(n/
forn=k=>6.

Remark. Without finding the fine structure (the clusters) of the set X, one cannot obt:
a smaller e-net than Q(1/¢%). This can be seen from the following ommBEn. _.LQ 9_, .
..., Cy/ be disjoint, smail circular discs in the plane such that z._oR is no vo:: wo v\m
in three of the regions conv(C; U C;), except if all the three oosS.E. the same disk Ci.

¢n/2 points around the centre of each C;. Then, every e-net avoiding |J C; must have

least Q(1/¢%) points.

10. An efficient algorithm to find weak e-nets

By applying the results of [15] and [18], one can give an alternative proof of Theorems
and 4.2 for d < 3. This proof gives a slightly worse estimate, but has the advantage tl
it provides an efficient algorithm for constructing the corresponding weak e-nets. Here

the assertion for the planar case.

Proposition 10.1. For every set X of n points in the plane and for every & > 0, there i
weak s-net of size O(e™ "% %). Such a net can be found in time O(n log (1/¢)).

Proof. Without loss of generality, we may assume that n is a power of 4. By the m:
result of [15], one can find in time O{n) two intersecting lines /, ,:a [» so that S_nA n.:_:_:
of points in each of the four closed regions to which EO\ partition Hr.aln_u:o is at M
n/4. Let y be the point of intersection of these two lines, and cmn:_c:&\._io gn
pairwise disjoint subsets X1, ..., X4 of cardinality n/4 each, where cach X, is 256,_&,
contained in one of the above closed regions. Observe that if a convex set contains
least one point from each X, then it contains y, ie, Y = {y} is a weak 3/4-nct mon%.,

It follows that any convex set that does not contain y misses ooan_ﬁo:\ ﬁ least ¢
of the sets X;, and hence, if it contains at least zn points of X. then it contains at le
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a fraction (4/3)e of one of the sets X;. Therefore, by recursively constructing (4/3)e-nets
in each X; we conclude that the size f(g) of our net satisfies f(e) < 1 +4f Ammv (and
f(3) = 1 for all 5 > 3/4). This easily gives the bound stated above. The time (n,¢) for
finding the net in our construction satisfies t(n, &) < O(n) + 4t(n/4, m&, which implies that
t(n,&) < O(nlog (1/¢)), completing the proof. ]
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Let o,n be two permutations selected at random from the uniform distribution on the
symmetric group S,. By a result of Dixon (5], the subgroup G generated by o, 7 is almost
always (ie. with probability approaching 1 as n — o) either S, or the alternating group
Ap. We prove that the diameter of the Cayley graph of G defined by {0, 7} is almost always
not greater than exp AC\N +0(1)) - (In ‘;NV .

1. Introduction

Let G be a finite group and S = G be a set of generators of G. The Cayley graph I'(G
has G for its vertex set and the set E = {{g,g s} : g € G, s € S} for its set of edges.
view T'(G, S) as an undirected graph and will be concerned with its diameter.

It has been conjectured by the first named author that for some absolute constant
diam (G, S) < (In|G|)*' for every finite simple group G. In particular, we conjecture t
diam (G, §) < n®* for G = A, (the alternating group of degree n). This implies the sa
statement for G = S,, the symmetric group of degree n.

The first nontrivial upper bound on the diameter of arbitrary Cayley graphs of S, 1

derived in {1}.
Theorem 1.1. Let the group G be either A, or S,. Then for any set S of generators of

diam (G, S) < exp(vVnlnn(l 4+ o(1)).

The aim of the present paper is to show that in most cases we can do much better.
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