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UNIVERSAL COUNTING OF LATTICE POINTS
IN POLYTOPES

IMRE BARANY and JEAN-MICHEL KANTOR

.Pcmnwwnn. Given a lattice polytope P (with underlying lattice L), the uni-
<mnmm.w_ counting function Up (') = |P N L] is defined on all lattices L’ containing L.
Motivated by questions concerning lattice polytopes and the Ehrhart polynomial
we study the equation Up = Ug. '

1. THE UNIVERSAL COUNTING mdz.m‘:OZ

We will denote by V a vector space of dimension n, by L a lattice in V. of
rank n. Let ;

G =L % GL(L)

be the group of affine maps of 1 inducing isomorphism of V and L into itself: in
case ‘

F“N:mavﬂh@:q Q:HN:XQNAN:V

noqmmvowmm to affine unimodular maps. An L-polytope is the convex hull of finitely
many v.o::m from LL; P denotes the set of all L-polytopes. For a finite set 4 denote
by |A[ its cardinality. Finally, let My be the set of all lattices containing L.

Definition 1. Given any L-polytope P, the function Up : My — Z defined by
Up(L') = |PNL|
is called the universal counting function of P.

This is just the restriction of another function i : Pr x ML = Z to a fixed
P € P, where U is given by -
P = 1AL,
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Note, further. that Ip is invariant under the group, G;,. generated by L—translations
and the reflection with respect to the origin, but, of course, not invariant under G .

Example 1. Take for L' the lattices Ly = WF with k € N. Then
1
Up(Ly) = Tu N mi — kP AL| = Ep(k)

where Ep is the Ehrhart polynomial of P (see [Ehr]). We will need some of its
properties that are described in the following theorem (see for instance [Ehr],[GWT]).
Just one more piece of notation: if F is a facet of I and H is the affine hull of F,
then the relative volume volume of F is defined as

_ /\‘O_.SIHAWJV

o) = oL

where D is the fundamental parallelotope of the (n — 1)—dimensional sublattice of
HNL. For a face F of P that is at most (n — 2)—dimensional let rvol(F') = 0. Note
that the relative volume is invariant under G; and can be computed, when L. = Z™,
since then the denominator is the euclidean length of the (unique) primitive outer
normal to F (when F' is a facet).

Theorem 1. Assume P is an n—dimensional L-polytope. Then Ep is a polynomial
in k of degree n. Its main coefficient is Vol(P), and its second coefficient equals

W MU rvol(F).

F a facet of P

It is also known that Ep is a Gi-invariant valuation, (for the definitions see
[GW] or [McM]). The importance of Ep is reflected in the following statement from
[BK]. For a Gy —invariant valuation ¢ from P to an abelian group G, there exists
a unique v = (¥;)i=o0,...,n With v; € G such that

#(P) = Muﬁmw;

where ep; is the coefficient of k' of the Ehrhart polynomial.

It is known that Ep does not determine P, even within Gy equivalence. [Ka]
gives examples of lattice—free L-simplices with identical Ehrhart polynomial that
are different under Gy. The aim of this paper is to investigate whether and to what
extent the universal counting function determines .

We give another description of Up. Let #: ¥V — 17 be any isomorphism
satisfying w(L) C L. Define, with a slight abuse of notation.

Up(m) = |m(PYNL| = [Pz L)
Set L' = 7~ 1(L). Since L' is a lattice containing L. we clearly have

Up(z) = Up(L').
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Conversely, given a lattice L' € .M, there is an isomorphism 7 satisfying the last
equality. (Any linear = mapping a basis of L' to a basis of L suffices.) The two
definitions of Up via lattices or isomorphisms with #(L) C _ are equivalent. We
will use the common notation Up.

Ezample 2. Anisotropic dilatations. Take 7 : Z" — Z" defined by

‘z‘AHw,. . qsz = QSHT R \ﬂ:.ﬁ:vq
where ki, ...k, € N. The corresponding map Up extends the notion of Ehrhart
polynomial and Example 1.

Simple examples show that Up is not a polynomial in the variables ;.

2. A NECESSARY CONDITION

The dual L* of the n—dimensional lattice L. € V (when V is also n-—
dimensional) is defined (see e.g. [Lo]) as

L*={z2€V*:z-z€Zforevery x € Z"},

where z - z denotes the scalar product of z and z.

Given a nonzero z € L* and an L-polytope P, defire P(z) as the set of points
in P where the functional z takes its maximal value. As is well known, P(z) is a
face of P. Denote by H(z) the hyperplane z - ¢ = 0. H(z) is clearly a lattice
subspace. As usual, z € L* is called primitive if it cannot be written as kw with
wel*and k€Z, k> 2.

Theorem 2. Assume P, are L-polytopes with identical universal counting func-
tion. Then, for every primitive z € L*,

(*) rvol P(z) + rvol P(—z) = rvol Q(z) + rvol Q(—2).

The theorem shows, in particular, that if P(z) or P{—z) is a facet of P,
then Q(z) or Q(==z) is a facet of Q. Further, given an L- polytope P, there are
only finitely many possibilities for the outer normals and volumes of the facets of
another polytope @ with Up = Ug. So a well-known theorem of Minkowski (see
{BF}) implies,

Corollary 1. Assume P is an L-polytope. Then, apart from lattice translates,
there are only finitely many L-polytopes with the same universal counting functions
as P. -

Proof of Theorem. 2. We assume that P,Q arc full dimensional polytopes. As
the conditions and the statement of the theorem are affinely invariant, we may
assume that L = Z" and z = (1,0,...,0). There is nothing to prove when none of
P(z), P(~2),Q(2), Q(—2) is a facet since then both sides of (*} are equal to zero.
So assume that, sav, P(z) is a facet, that is. rvol (2] = 0.
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For a positive integer k define the linear map 7 : V' — V7 by
ﬂkA.HT.. - qHﬁv = AHH»#HNu s 1~m.\.:v.

The condition implics that the lattice polytopes mx (P} and 7 (Q) have the same
Ehrhart polynomial. Comparing their second coefficients we get,

M rvol g (F) = MU rvol my (G),

F a facet of P G a facet of Q

since the facets of 7 (F) are of the form 7, (F) where F is a facet of P.

Let ¢ = ((1,...,(n) € Z™* be the (unique) primitive outer normal to the
facet F of P. Then ¢’ = (k(1,o,--.,¢y) is an outer normal to mx(F), and so it isa
positive integral multiple of the unique primitive outer normal ¢, that is ¢’ = m¢”
with m a positive integer. When k is a large prime and ( is different from z and
(1 # 0, then m = 1 and rvolmi (F) = O(k™"~%). When ¢{; = 0, then m = 1, again,
and the ordinary (n — 1)-volume of mx(F) is O(k™~?). Finally, when ¢ = =*z.
Vol 7 (F) = k"~ Vol F.

So the dominant term, when k — oo, is k"7 (rvol P(z) + rvol P(—2)} since
by our assumption rvol P(z) > 0. [

3. DIMENSION TWO

Let P be an L-polygon in V of dimension two. Simple examples show again
that Up is not a polynomial in the coefficients of 7.

In the planar case we abbreviate rvol P(z) as |P(z)|. Extending (and special-
izing) Theorem 1 we prove

Proposition 3. Suppose P and Q are L-polygons. Then Up = Ug if and only if
the following two conditions are satisfied:

(ij Area(P) = Area(Q),

(i) |P(2)] +|P(-2)| = |Q(2)] + |Q(—2)| for every primitive z € L7
Prosf. The conditions aresufficient: (i) and (ii) imply that. for any 7. Arca(w(P)) =

Area =(Q)) and |7 (P)(2)l + [7(P)(=2)| = [7(@)(2)] + [7(Q)(—=)]. We use Pick’s
formula for =(P), (see (GW], say):

T%vain»amiw:w S R+ L

: primitive

This shows that Up = Ug, indeed.

The necessity of (i) follows from Theorem 1 immediately, (via the main coef-

ficient of Ep). and the necessity of (ii) is the content of Theorem 2. [

i
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Corollary 2. Under the conditions of Proposition 3 the lattice widths of P and
Q, in any direction z € L* are equal.

Proof. The lattice width, w(z, P), of P in direction z € LL* is, by definition (see
[KL],[Lo]),
w(z, P) =max{z-(z — y): z,y € P}.

In the plane one can compute the width along the boundary of P as well which
gives

1
w(z, P) = 5 M [z e
€

where the sum is taken over all edges e of P. This proves the corollary. O

Theorem 3. Suppose P and ) are L-polygons. Then Up = Ug if and only if the
following two conditions are satisfied:

(i) Area(P) = Area(Q),
(i) there exist L-polygons X and Y such that P resp. Q is a lattice translate of
X +Y and X - Y (Minkowski addition).

Remark. Here X or Y is allowed to be a segment or even a single point. In
the proof we will ignore translates and simply write P=X+Y andQ =X -Y.

Proof. Note that (ii) implies the second condition in Proposition 3. So we only
have to show the necessity of (ii).

Assume the contrary and let P, Q be a counterexample to the statement with
the smallest possible number of edges. We show first that for every (primitive)
z € L* at least one of the sets P(z), P(—z),Q(2), Q(—=z) is a point.

If this were not the case, all four segments would contain a translated copy
of the shortest among them, which, when translated to the origin, is of the form
{0,¢]. But then P = P’ +[0,t] and Q = Q' + [0, {] with L~polygons P’,Q".

We claim that P’, Q' satisfy conditions (i) and (ii) of Proposition 3. This is
obvious for (ii). For the areas we have that Area P — Area P’ equals the area of the
parallelogram with base [0,¢] and height w(z, P). The same applies to Area@Q —
Area @', but there the height is w(z, Q). Then Corollary 2 implies the claim.

So the universal counting functions of P’, Q" are identical. But the number
of edges of P’ and @' is smaller than that of P and . Consequently there are
polygons X', YV with P = X'+Y, and Q' = X’'—Y. But then, with X = X'+[0,¢],
P=X+Y and Q@ = X - Y, a contradiction. -

Next, we define the polygons X,Y by specifying their edges. It is enough to
specify the edges of X and Y that make up the edges P(z), P(—z),Q(z), Q(-=z) in
X +Y and X - Y. For this end we orient the edges of P and @ clockwise and set

NUANV = ?T:.;.Numlmv - ::&L,QANV = TT@LQQAINV = T&TRM_
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each of them in clockwise order. Then

as — Qg HQ?&&}F Hﬁwqﬁw\g = \?«Nw1m} =4t

where ¢ is orthogonal to z and a.y > 0, 3.4 < 0 and one of them equals 0.
Moreover, by condition (ii) of Proposition 3, a — 3 = v — §.

Here is the definition of the corresponding edges, .y of X, Y

z=at,y=p0tif6=0,
z=J3ty=atif+ =0,
~ty=—60tif 3=0,
dty=—~tifa=0.

s

z

With this definition, X +Y and X — 1 will have exactly the edges needed. We
have to check yet that the sum of the X edges (and the Y edges) is zero, otherwise
they won’t make up a polygon. But 3 (x +y) = 0 since this is the sum of the edges
of P, and ) (z — y) = 0 since this is the sum of the edges of Q. Summing these
two equations gives ) x = 0, subtracting them yields > y = 0. O

4. AN EXAMPLE AND A QUESTION

Let X, resp. Y be the triangle with vertices (0,0), (2,0), (1,1), and (0,0),
(1,1}, (0,3). As it turns out the areas of P = X + Y and Q = X — Y are equal.
So Theorem 3 applies: Up = Ug. At the same time, P and Q are not congruent as
P has six vertices while @ has only five.

However, it is still possible that polygons with the same universal counting
function are equidecomposable. Precisely, Py, ..., P, is said to be a subdivision of
P if the P; are L-polygons with pairwise disjoint relative interior, their union is P,
and the intersection of the closure of any two of them is a face of both. Recall from
section 1 the group Gy, generated by L-translations and the reflection with respect
to the origin. Two L-polygons P.(Q are called G;.-equidecomposable if there are
subdivisions P = P, U---U Py, and Q = Q; U - U Q,, such that each P; is a
translate, or the reflection of a translate of Q; with the extra condition that P; is
contained in the boundary of P if and only if @; is contained in the boundary of
Q.

We finish the paper with a question which has connections to a theorem of
the late Peter Greenberg [Gr]. Assume P and @ have the same universal counting
function. Is it true then that they are G, cquidecomposable? In the example
above, as in many other examples. they are.
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