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Abstract
We shall call a graph triangle-free if it does not contain any cycles of length three. We
give a method of recursively constructing all of the triangle-free planar 3-connected
graphs. Duality gives us a construction of the planar 3-connected 4-edge-connected
graphs. A slight modification of our procedure gives a generating procedure for the
planar 3-connected graphs without 3-valent vertices. The graphs are generated using

four operations, and we show that all four operations are necessary.

1. Introduction. One of the most fundamental theorems of planar 3-connected graphs is
that they can be generated from the complete graph on four vertices by face splitting

(see [1] and [9]). There are similar theorems for all 3-connected graphs (see [5], [10] and
[11]). There are also a number of recursive generation procedures for various classes of
planar 3-connected graphs (see [2], [3], [4]. [7], and [8] ). In this paper we investigate
the family J | of triangle-free planar 3-connected graphs, that is, those without any cycles
of length three. We shall also generate the planar 3-connected graphs without 3-valent

vertices, and we shall see using duality that we will have a recursive construction of the

planar 3-connected 4-edge connected graphs.

2.Definitions and notation.

The graphs in this paper are without loops or multiple edges.
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If a graph G is embedded in the plane, then the closures of the connected components of
the plane minus G are called the faces of G. The planar 3-connected graphs are ot
characterized by the fact that the faces are bounded by cycles, and that two faces me

a vertex, an edge, or not at all (a proof of this can be found in section 2, Ch.5 of [6]).

When the faces meet in only these ways, we say that the faces meet properly.

An edge of a planar 3-connected graph G, is removable provided removing it and
coalescing any pairs of edges meeting resulting 2-valent vertices into single edges
produces a 3-connected graph. The inverse of removing edges is face splitting. Face

splitting consists of adding a new edge across a face, with endpoints on edges or vertices

of the face, but the endpoints are not both on the same edge of the face. An edge is

*-removable provided it is removable, and when it is removed the resulting graph has no

triangles.

Ifan edge e ofa 3-connected graph is not removable, then removing e produces a pair
of faces that do not meet properly. These two faces thus have a multiply connected union.
One of these two faces will be split by the inverse of the edge removal, and thus we will
have a set of three faces F 1» Fy, and Fy such that each two meet but there is no vertex
belonging to all three. Any set C = {F 1- Fo, F3} of faces such that each two meet, but no

vertex belongs to all three, will be called a 3-chain. With the graph embedded in the plane
such that none of these three faces is the unbounded face, the union of the three faces has
a complement that consists of two open regions - one that is bounded and is enclosed by
the union of the faces, and one unbounded region. These are called the inner and outer
regions of the chain, respectively. The outer region is bounded by a closed curve
consisting of three simple paths, one along each face of C, with each two paths
intersecting on a vertex. This curve will be called the outer curve, and its constituent

paths will be called the outer paths. There is a similar inner curve, bounding the inner
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region, consisting of three inner paths, one along each face of C and meeting just at their
endpoints. Anedge e belonging to two faces of C will be called a connecting edge of
C. If two faces of C meet on just a vertex v, then v will be called a connecting vertex
of C. A 3-chain C is minimal provided no 3-chain has an inner region that is a subset

of the inner region of C.

A cycle is a simple closed curve consisting of edges of the graph. 1f a cycle has exactly n
edges it is called an n-cycle. A 3-cycle will be called a triangle. In planar

3-connected graphs there are two types of cycles. A cycle is separating if and only if there
is an edge inside and an edge outside the cycle, otherwise the cycle is called
nonseparating. The faces of planar 3-connected graphs have been characterized as the
nonseparating cycles [11]. A separating n-cycle will be called an ns-cycle. We shall be
particularly concerned with 4s-cycles. A 4s-cycle X is minimal provided no

4s-cycle encloses a proper subset of the faces enclosed by X.

We shall say that a vertex is inside a 3-chain C provided it is in the bounded open region
bounded by the outer curve. A face is inside C provided it is in the bounded closed
region bounded by the outer curve. An edge is inside C provided it is in this bounded
closed region and it is not an edge of the outer curve. Faces, vertices, and edges that are
inside C will also be called interior faces, vertices and edges, respectively. A vertex is
strictly inside C provided it lies in the inner region. An edge is strictly inside C provided
itisinside C and is not an edge of the inner curve. A Face is strictly inside C provided
it is inside C and is not a face of C. Vertices, faces, and edges that are strictly inside C

will also be called strictly interior vertices, faces, and edges respectively.

There are two types of configurations that can occur in a planar 3-connected graph that

we shall deal with. These are shown in Figure 1. The first is a set of three 4-sided faces



surrounding a vertex v. This configuration will be called a star, and v will be called the
center of the star. The second, we shall call a box. It consists of a star with an additional
4-sided face meeting one of the vertices that is joined to the center of the star

(see Figure 1).

3. Generating triangle-free graphs.

The planar 3-connected graphs without triangles will be generated from the graph of the
cube using four operations. We shall show that the graphs can be generated by these
operations by showing that the inverse of at least one of them can be performed on every
triangle-free planar 3-connected graph, other than the graph of the cube, producing a

planar 3-connected triangle-free graph. These inverse operations are:

1) Removing a *-removable edge.

2) Collapsing a star (See Figure 2A). Collapsing the star consists of contracting
the three edges that meet the center v. When the star is collapsed it is possible
that 2-valent vertices are created at a, b, or ¢ . If this happens the two edges

meeting a 2-valent vertex are coalesced into a single edge.

3) Collapsing a 4-sided face of a star. When we specify a collapsing we shall state

which vertices are to be identified. One of them will always be the center of the

star. (Figure 2B shows a collapsing of F, d to b.)

4) Simplifying a box. This can be thought of as removing two edges e and ¢’

(see Figure 2C).



One might suspect that with so many operations that fewer might suffice. It is rather
interesting that no subset of our set of four operations will suffice. The graphs in Figure

3 show the necessity of the four operations. Each graph admits exactly one of our inverse
operations. Graph 1 admits only edge removal; graph 2 - only star collapsing; graph

3 - only face collapsing; and graph 4 - only box simplifying. (In Figure 3, graph 4, we
have indicated a box and the two edges to be removed.) One might also conjecture that
by adding the operation "edge contracting" (the dual of edge removal) we might be able
to eliminate some of our operations and simplify things. Our four examples, however,
show that this is not the case. In each of the examples, no edge can be contracted, thus

even with this new operation at our disposal the other four are necessary

4. Minimal graphs.
We shall say that a planar 3-connected triangle-free graph G is minimal provided none
of operations 1, 2, 3, and 4 may be performed on it to produce a planar 3-connected

triangle-free graph. For the rest of this section G is always a minimal planar

3-connected graph.

Lemma 1: Every minimal 4s-cycle X of G admits a3-chain consisting of faces F, F',
Proof: Let e be an edge of X. Since G is minimal, e is not *-removable. We shall
begin by assuming that e is not removable. In this case it is a connecting edge of a
3-chain C={F, F, F"}.

Case L. Only one face of C lies inside X. Let that face be F. The face F must
contain two consecutive edges of X (recall that if two vertices of an edge lie on a face,
the edge lies on the face, because faces meet properly). Let F| and F, be the two faces

inside X that contain the two edges of X that are not on F. If {F, F 1> Fo} isnota



Case 11. Two faces of C lieinside X. Let these faces be F' and F". Now, F contains
a vertex of ¢ and must meet at least one other vertex v of X, thus F contains exactly
two edges of X, namely e and an edge vw. The edges e and vw must be consecutive
on X or else all edges of X lieon F, a contradiction. We may now assume that w is

on e. Let F' be the face sharing e with F. The face F" cannot meet F on an edge

because then {F, F', F"} surround w. Thus F" meets F onlyat v. Let H be the face
of G lying inside X and containing vw. If H, F' and F" surround a vertex, then H

is a triangular face. Thus {H, F', F"} is the desired 3-chain.

We now have that every edge of X is removable or we have the desired 3-chain, thus
we shall assume that every edge of X is removable. Ifan edge e of X is not
*-removable then that edge meets a 3-valent vertex. Since this is true for every edge of
X, there is a pair of nonconsecutive vertices x and y of X that are 3-valent. If the
third edge at each of x and y both lie inside X, then G can be disconnected at the

other two vertices of X, Thus for at least one vertex, say x, the third edge lies outside

X.

Let F be the face inside X meeting x, and let F' and F" be the two faces inside X
containing the two edges of X that don't meet x. If these three faces surround a vertex

then F' and F" are triangular faces. If not, then they form a 3-chain with faces inside

X n

Lemma 2:

Proof: Suppose F is a face of a 3-chain C'. One of the regions of C contains exactly

one face F' of C\



Proof: Suppose F isa face of a 3-chain C'. One of the regions of C contains exactly

one face F' of C'.

Case 1. F' isin the outer region of C. Inthis case F' meets two connecting vertices x

and y of C. Inside C are two faces F" and F" of C', each meeting one of x and y.
Let H be the face of C containing x and y. Now, either {H, F" F"} isa 3-chain

violating the minimality of C, or these three faces surround a vertex, and H is thus a

triangular face.

Case I1. F' isin the inner region. Again, F' meets two connecting vertices x and y of
C. Let H be the face of C containing x and y. Now either F' is a triangular face, or
else F' and the two faces of C, other than H, form a 3-chain that contradicts the

minimality of C. H

Lemma 3: If ¢ is an edge inside a minimal 3-chain C, andif e is not a connecting
| C :  connecti e of 3-chain (and theref :

removable).

Proof: Such an edge would lie on a face that is strictly inside C, and is a face of a

3-chain. By Lemma 2 this is impossible. B

In the following we shall assume that G is a minimal graph and
1) 1If G contains 3-chains, then C is a minimal 3-chain.
ii) If G contains 4s-cycles, then C lies inside a minimal 4s-cycle

(Lemma 1 allows us to do this.)

Lemma 4: There is a vertex strictly inside C.
Proof: If there were no edges strictly inside C, then C would surround a triangular face.

If there were edges but no vertices strictly inside C, then every strictly interior edge



would join a vertex of one interior path to a vertex of another interior path. Let Py and
P, be two interior paths with vertices on each that are joined by a strictly interior edge.
Let Py and P, meet at vertex z. If we choose an edge uw, with u on P and w on
P5, such that the sum of the path lengths from u and w to z along Py and P, is

minimal, then z, u, and w are the vertices of a triangular face. Thus there must be

strictly interior vertices. W

Lemma 5: If there are not two vertices joined by an edge strictly inside C, then C is

r i r.

Proof: Suppose that v is the only strictly interior vertex of C. Each edge meeting v is
joined to one of the interior paths of C. Furthermore there can't be two edges to the same
interior path because two consecutive such edges would be edges of a triangular face.
There must be at least three edges meeting v, and each must be joined to exactly one
interior path. If there are strictly interior edges not joined to v, then the argument in
Lemma 4 shows that there is a triangular face. If there is another strictly interior vertex
not joined to v it cannot be joined to each of the three interior paths, because of

planarity. Now v is the center of a star, and the chain is the set of faces surrounding it.

Lemma 6: There is a star with all of its faces inside C.

Proof. By Lemma 5 we may assume that there is an edge vw with v and w strictly
inside C. By Lemma 3, vw is removable, and since G is minimal, one vertex (say v )
of vw is 3-valent and belongs to a 4-cycle. Since vw is inside a minimal 4s-cycle, if
one exists, the 4-cycle meeting vw must be a 4-sided face F 1, which is strictly inside

C. Let the other vertices of F| be p, q, and r, as shown in Figure 4.



The edge pv is strictly inside C and thus it is removable, but not *-removable. Thus
either p or v is 3-valent and belongs to a 4-sided face F5 (Fq#Fy).

Casel F, meets p. We note that if p is 3-valent, it lies inside C, so F, lies inside
C. The edge pq cannot be a connecting edge of C because then v would not lie
strictly inside C. Thus we may apply the above argument to edge pq and get that it
meets a 4-sided face F3 ona 3-valent vertex. Ifthat 3-valent vertex is p then p is the
center of the desired star. If that 3-valent vertex is ¢, we note that if q is 3-valent then
it cannot be a connecting vertex of C, and thus F5 lies inside C, and q is the center of

the desired star.

Case Il. F, meets v. We apply an argument similar to that in Case I, and get a star

centered at either v or . W

Lemma 7: There is either a box with all faces inside C, or a star with all faces strictly
inside C.

Proof: By Lemma 6 there is a star S inside C. Let the facesof S be F, F', and F".
Let the vertices of S be labeled as shown in Figure 5.

Case I. Two faces, F and F' of S, are faces of C. Since separating vertices of C must
lieon F or F', x is not a separating vertex, and since it lies on the strictly interior face
F", x is strictly interior. Now, the edge e (see figure) is not a connecting edge of a
3-chain, thus it is removable. Since G in minimal, either b is 3-valent; or x is
3-valent, and e meets a 4-sided face K at x. If K contains a and f, then we have a
box inside C. If K does not contain f, then a is not 3-valent and €' is *-removable
unless €' meets a 4-sided face J at x. If J and K exist, then they are inside C
because they meet x, and it is easily seen that we can collapse F", x to y. Thus b is

3-valent, and by symmetry, a is 3-valent.



The other would have to meet c¢. In G the two faces would have to meet on a vertex
that is a separating vertex of S, but such a vertex is a vertex of F or F', in which case

the collapsing would not make them meet improperly.

Case II. One face F, of S isin C. The edges e and e' are again removable, and by

the above argument a and b are 3-valent. Now, by symmetry, ¢ is 3-valent, and S

is clearly collapsible.

The only remaining case is where the faces of S are strictly inside C. ®

Lemma 8: There is a box inside C.

Proof: Suppose not. Then by Lemma 7 there is a star S with faces strictly inside C.
Let the faces and vertices of S be labeled as in Figure 6. If collapsing S destroys
3-connectivity, then the resulting graph will have two faces that meet improperly. Thus
these faces belong to a 3-chain in G, one of whose faces is destroyed when the star is
collapsed. The only faces, however, that are destroyed are faces of the star, and they do
not belong to any 3-chains. It follows that we may collapse S unless a triangle is
formed. This can happen in three ways.

Case 1. Vertex a is 3-valent, d isnot,and a and d belong to a triangle after the
collapsing. Then F meets a 4-sided face H on edge da. Now, edge da is removable,
and is *-removable unless F and H meet a third 4-sided face K meeting a. If K
meets ¢, then K and the three faces of S form a box. If K does not meet ¢, then g
is at least 4-valent, and we may collapse F, h to a.

Case 1I. Vertices a and d are 3-valent, vertex b isnot, and a, d, and b lieona
triangle after the collapsing. Then these three vertices belong to a 4-sided face F' that

forms a box with the faces of F.
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triangle after the collapsing. Then these three vertices belong to a 4-sided face F' that
forms a box with the faces of F.

Case III. Vertices a, d, and b, are 3-valent and belong to a 3-sided face after
collapsing. Now these three vertices belong to a 5-sided face vadbu. The edge uvis
removable because no face of S isina 3-chain. If uv is not *-removable then uv
meets a 4-sided face H ona 3-valent vertex. Let that vertex be v. By symmetry we

may now assume that g is 3-valent. Now F, F', F"and H form a box inside C. W

Lemma 9: There is a box B inside C_with at most one face of B as a face of C.

Proof:  From the previous lemmas we know that there is a box B inside C. Let the
faces be labeled as in Figure 7. Suppose that two faces of B are faces of C. They
cannot be F| and F; because then one of Fy and F4 would lie outside C. By

symmetry we may assume that F; and F, are faces of C. Let F be the third face of

C. Figure 7 shows the six ways that F can meet B.

Configuration 6 is not possible because {F, F3, F4} is a 3-chain that contradicts
minimality. In 1,3, and 4, vertices x and y are at least 4-valent. Thus if we remove
edges e¢ and e' (and both can be removed because the edges are not connecting edges of
3-chains) we do not create any triangles. Removing these two edges is essentially
operation 4. In 2 and 5 we may collapse F4, v to w, unless z is 3-valent and lies
ona 4-sided face Fgq that contains w, z, and y. In this case, however, we have a box

with faces Fi, F3, F4, and Fsg that has only one face as a face of C. M

Lemma 10: There is a box B_with all faces strictly inside C.

Proof: By Lemma 9 there is a box B inside C with at most one face as a face of C. Let

the edges faces and vertices be labeled as in Figure 7.
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Case 1. The face is not Fy or F3. By symmetry we may assume that the face is F4. 1f
x and z are both at least 4-valent, we may collapse Fy, v to w. We shall suppose
therefore that z is 3-valent. This forces one of the faces H of C to meet F, at vertex
w, and the other face H' of C tomeet F,4 only at x. The vertex y must be 3-valent
or we canremove ¢ and €. The edge wx is *-removable unless w is 3-valent and
wzyq is a 4-sided face. Now we have that H' meets q. But now {H,F|.F,} isa
3-chain contradicting minimality, or these three faces surround the vertex u. If they
surround u, then either H' is a triangular face or vertices of H' can be separated from

other vertices of the graph by removing x and q. ®

Theorem 1: The only minimal graph is the graph of the cube.

Proof: The above arguments give the existence of abox B in G. Ifthereisa 4s-cycle
X in G, the above arguments give a box with faces strictly inside a minimal 3-chain
inside X. Similarly if there are 3-chains we have a box strictly inside a minimal 3-chain.
Let the faces and vertices of B be as shown in Figure 8. We note that each of the edges
ab, be, cd, df, fg, and ga are removable, thus each is *-removable unless it has a
3-valent vertex. We also note that each of Fo and F4 is collapsible h to g and i to
¢, respectively, unless one of a, f and one of b, d is 3-valent. One of a and d must
be 3-valent or we can remove e and €', and similarly one of b and f must be
3-valent. Figure 8 shows the two possible arrangements (up to symmetry) of the

3-valent vertices (the vertices that must be 3-valent are indicated by large dots).

In 1, ifthe vertex a is 3-valent, then g and ¢ disconnect G, orelse g is joined to c,
and G is the graph of the cube. 1f the valence of a is greater than 3 then edge e" is
*-removable unless g, f, d, and ¢ lie ona 4-sided face. Thus g is joined to ¢, and

unless G is the graph of the cube, a and ¢ disconnect G.
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In 2, vertices g and ¢ disconnect the graph unless g is joined to ¢, and G is the

graph of the cube. W

Corollary:
-] l e the following f s
1) Splitting a face.

(These are the inverses of the operations 1,2,3 and 4.)
It is an easy exercise to show that these operations preserve 3-connectedness. Clearly
they preserve planarity. The only restriction on their application is that they must not be
applied in such a way that a triangle is ever formed. It is easily seen that the only

operation that could form such a triangle is face splitting.

We note here that in our arguments we only used the fact that G had no triangular faces.
Thus the above arguments also show that the family do of planar 3-connected graphs
without triangular faces may be generated by these four operations. (Such an argument
can be simplified somewhat for these graphs since we would not have to include any
lemmas dealing with 4s-cycles.) Our four examples show the necessity of the four
operations in generating J, also. With this family of graphs, the difference in the
generating procedure is that when any of the above operations is applied, it is admissible
to apply it in such a way that a 3s-cycle is created. In other words, we may do face

splittings that create triangles that are not faces. Applying duality we have:

Corollary:
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Applying duality to the family J; also is interesting.

Lemma 11: A graph G isin J 1 if and only if'its dual is a planar 3-connected
4-edge-connected graph.

proof: Let G bein 7. Clearly G*, the dual of G, is planar and 3-connected.

Suppose that we may disconnect G* by cutting three edges. Each pair of these edges
belongs to a common face. The vertices that correspond to these faces under duality thus
lie on an triangle, a contradiction. Thus G* is 4-edge-connected. The argument is easily

reversed to get the reverse implication. B

Coroliary:

Here, when applying the operations one must not apply vertex splittiing (the dual of face
splitting) in such a way that a set of three faces is formed such that each two share a

common edge.

5. remarks. The family of 3-connected graphs without triangles is an interesting family.
It would be of interest to find a generating procedure for this set. Could our four

operations, or perhaps our four plus vertex splitting, generate this set of graphs from the

graph of the cube and the complete bipartite graph K3 3?

Without duality at our disposal there doesn't appear to be any connection between the set
of 3-connected graphs without triangles and those without 3-valent vertices. It would be

of interest to find a recursive construction of the 3-connected graphs without 3-valent

vertices.
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