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ABSTRACT

A d-polytope is a d-dimensional set that is the convex hull of a finite
number of points. A d-polytope is simple provided each vertex meets
exactly 4 edges. It has been conjectured that for simple polytopes
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where f; is the number of i-dimensional faces of the polytope. In this
paper we show that inequality (i) holds for all simple polytopes.

Let P be a d-dimensional convex polytope, that is, a d-dimensional set that is
the convex hull of a finite number of points. If each vertex of P has valence d
then P is called a simple d-polytope: if each facet of P is a simplex then P is called
4 simplicial d-polytope. The term d-dimensional convex polytope shall hereafter
he abbreviated d-polytope. Let f; be the number of i-dimensional faces (abbre-
viated, i-face) of P. For many years lower bounds on f; in terms of f,_, for
simple polytopes have been sought. (An interesting history of the problem can be
found in Griinbaum [2, p. 188].) The problem is known as the Lower Bound
Conjecture. The conjectured bounds are

gt foz(d=Dfyoy—(d+1)(d~-2)

1) fk;(ki])fd_l—-(;iii)kfor1§k§d—2.

Let P be a d-polytope obtained from the d-simplex by repeated truncations
"I vertices. We shall call such a polytope 2 ::uncution polytope. It is well known
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that equality holds in (i) and (ii) for any truncation polytope. It has been Conjec.
tured that these are the only polytopes for which equality holds €XCept whe,,
d =3 (for d = 3 the cube is a counterexample), We shall prove that (1) holg,
and that, for d # 3, equality holds only for truncation polytopes. By duality
will have lower bounds for tlie number of facets of a simplical d-

of the number of vertices. We shall also observe that the same
Ja-1 in terms of o

we
polytope in termg
lower bounds on
may be obtained for triangulated (4 — 1)-manifolds.

We begin with some definitions and basic facts a
cell complexes. A d-
such that

bout simple polytopes ang
cell complex is a collection € of k-polytopes — 1 < & <4

a) if Fe% then every face of F is in %; )
b) if F, and F;arein % then F, N F, is a face of both (possibly the empty face)
) each k-cellis a face of a d-cellin %.

A d-cell complex % is strongly connected if

d) given any two d-cells, F, and F,, there is a sequence Fy, F,,---, F, such that
FinF,_isa(d

— 1)-cell. We shall use the following theorem of Sallee [1, p. 470]:
The graph of a strongly connected d-cell complex is d-connected. By the
graph of a d-cell complex ¥ we mean the graph formed by the 1-skeleton of %.

If Fis a face of a d-cell complex %, then we define Star (F,%) to be the complex
consisting of all faces of @ meeting F and all of the faces of these faces. We define
Ast(F,%) to be the complex consisting of all faces of ¥ that miss F. We define
Link(F, %) = Ast(F, %) N Star(F,%). If € is a cell complex consisting of facets
of a simple d-polytope P and their faces, we define a vertex of % to be an exterior
vertex of % if it meets an edge of P not in %. In other w

ords the exterior vertices
are those which are (d — 1)-valent in %.

THEOREM 1. IfPisq simple d-polytope then
Joz(@=1f_ —(d+1)(d-2).

PROOF. LetPbea simple d-polytope with Jo vertices and let v be any vertex of P,
Let €, = Ast(v, P). Then %, is a strongly connected (d — 1)-cell complex and
each of the d vertices of P adjacent to v is an exterior vertex of ;. We may
suppose that €, contains at least two (d — 1)-cells, since otherwise P would be a
d-simplex for which the theorem is trivial. The desired inequality (i) is equivalent

to fo2(d+1)+(d- D(fi-1 —d — 1), which follows easily from repeated
application of the following lemma.
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LA 1. Suppose € is a strongly connected (d — 1)-cell complex which
iz a subcomplex of the boundary complex of a simple d-polytope. Suppose
/unhef that € contains at least two (d — 1)-cells and at least one exterior vertex.
Then there exist distinct vertices vy,--,0;_1 and two nonempty strongly con-
wected (d — 1)-cell subcomplexes €, and €, of € such that:

a) € =% uU¥%,and €, 0%, is of dimension d — 2.

b) Each v; is an exterior vertex of both €, and €.

¢) No v; is an exterior vertex of € or any (d — 1)-cell complex containing %.

prooF OF LEMMA 1. Note that (c) will follow immediately from (b). Let v* be
an exterior vertex of € and let F be the unique facet that contains v’ and is in %.
We shall use a dual graph, G, defined as follows: The vertices of G will correspond
1o facets in € with two vertices being joined if and only if the corresponding
facets meet on a subfacet. Let V. be the vertex of G corresponding to F and let E
be a minimal set of edges of G with endpoint V; separating G. It is clear that we
have separated G into two components and these components determine two
strongly connected (d — 1)-cell complexes €; and €, of € (we shall assume
Fe%,). Similarly E determines a (d — 2)-cell subcomplex E’ of Ast (V, F). Since
in asimple polytope two facets meet only if they meet on a subfacet, we see that
€, N¥%, = E’ and E’ separates ¢ topologically.
We let F’ be a facet of %, that meets F on a subfacet and let v” be a vertex of F
that is not on E’. By Sallee’s theorem we may choose d — 1 independent paths
from v’ to v”. Let v, be the first vertex on the ith path from v’ to v” which is also
a vertex of E’ and let e, be the preceding edge. The edge e; demonstrates that v, is
an exterior vertex of %, . It remains to be shown that v; is an exterior vertex of €;.
By the definition of E’, v, is incident on a subfacet in E’, which in turn is incident
on F and some facet F” of #,. Let e/ be the unique edge of F” meeting v; which is
notin F. If ¢, is not an edge of any facet in %y, then v; is in an exterior vertex of %;.
Otherwise, there is some facet F” in %, with e; as edge. Since P is simple and
both F” and F” have v, as vertex, they must meet in a common subfacet, which
cannot be in E’ because E’ < Ast(v, F). This implies that E’ does not separate
€, and %,, which is a contradiction. Thus v; is also an exterior vertex of ¢, and
the proofs of the Lemma and Theorem 1 are complete.
By duality we have

(1ii) fi—1 2 (d—=Dfy —(d + 1)(d — 2) for all simplicial polytopes.
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' The theorem is now completed by observing the following which can
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We could have dualized our entire proof giving a direct proof of (iii). This wogk"
have had one advantage, namély that the same .broof would then work. for
triangulated manifolds, again giving inequality (iii): This was not done for ¢
reasons. First it loses its intuitive appeal and second, no dual form of Salle
theorem has been published. The dual form of Sallee’s theorem can be pro
using theorems by D, W. Walkup (unpublished) on lattices of manifolds.

Let Pbea d-polytope and let v be a point chosen close enough to some rel
interior point of a facet F of P so that con {v}up)
say that the polytope con({v} U P) is obtained from P by capping. A stacked
polytope is one that is obtained from the simplex by repeated capping.

Using (iii) for triangulated manifolds we can prove

THEOREM 2. If, for a simplical d-polytope P,

(v Jici = (@ =Dfo—(d+ 1)(d-2)
and if d > 3 then P is isomorphic to a stacked polytope.
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= con({v} UF)UP. We

PROOF. Suppose that for a simplical d-
of Theorem 1 to the dua] P*

times to the antistar of som

polytope P, (iv) holds. We apply the proof
of P. In the proof we apply Lemma 1 f,_,—d — |
€ vertex of P* The last application of Lemma 1
will be to write a cell complex % as the union of two facets F 1 and F, of P*,
Each vertex of the subfacet F 1 N F, will be exterior to F 1 and F, but not to %,
thus if (iv) holds there are only d — 1 vertices on Fy nF,, and Fin F,is a
(d — 2)-simplex. Corresponding to this subfacet will be an edge e in' P whose
linked complex, L, is the boundary of a (d —2)-
by a (d — 2)-face of P in the antistar of e we ma
from the boundary of P by replacing the star of e by two topological simplices
whose intersection is a (d — 2)-cell spanning L. If d > 3 then we have a manifold
for which (iii) does not hold, which is a contradiction.

We may now assume that L is spanned by a (d — 2)-cell S in the antistar of e.
Let v be a vertex of e..Consider the set consisting of S and all (d — 2)-faces of the

star of e that meet v. This set is the boundary of a (d — 1)-
We can get a simplex S,

simplex. Unless L is spanned
y create a new (d — 1)-sphere

simplex S;. Similarly,
by using the other vertex of e. If both of these simplices
are facets of P, then P is a simplex and we are done. If

not, then the a_ﬁine hull
of one of them, say S,,

separates P into two polytopes Py and P,. If equation
(iv) does not hold for P,, then we may replace P, by a stacked polytope P; and
obtain a polytope P; U P, that contradicts (iii). The same reasoning applies to
Py, thus P; and P, satisfy (1) and by induction they are isomorphic to stacked




