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1. INTRODUCTION

It is well known that the four color conjecture for maps on the sphere is equiva-
lent to the four color conjecture for convex three-dimensional polyhedra (see Section
4). It is also well known that every map on the torus can be colored with seven or
fewer colors, and that there are toroidal maps requiring seven colors [3]. One might
guess that there exist toroidal polytopes that require seven colors. Surprisingly, this
is not the case. We shall prove that every toroidal polytope can be colored with six
or fewer colors.

2. DEFINITIONS

If a graph is embedded in a surface, the connected components of the com-
plement of the graph are called its faces. If every facc is a cell, we shall call the graph
a map. The dual of a graph in the torus is constructed the same way as the dual of a
graph in the plane. We place a vertex in each face and join vertices when the
corresponding faces meet on an edge. The vertices are joined by one edge for cach
edge that the two faces have in common. Generally, the edges of the dual are drawn
so that they cross the corresponding edges of the original graph.

A toroidal polytope is a topological torus consisting of convex polygons such
that:

(i) The intersection of two polygons is either an edge of both, a vertex of both,
or empty.
(ii) No two polygons that meet lie on the same plane.

The polygons will be called the faces of the polytope.

A polyhedral immersion of a torus is the continuous image in E* of a toroidal
map such that:

{) The image of each n-sided country of the map is a convex n-gon with the
vertices of the country taken one-to-one onto the vertices of the n-gon.
(if) No two n-gons in the immersion that meet on an edge are coplanar.

By a vertex, edge, or face of the immersion we shall mean the images of a vertex
cdge or country of the map. The valence of a vertex of the immersion is the valence
of its pre-image in the map.

A toroidal polytope is simple provided each vertex has valence 3. A polyhedral
immersion is simple provided it is the image of a map on the torus all of whose
vertices are 3-valent.
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Since the vertices and edges of a toroidal polytope form a graph on the torus, we
can speak of the dual graph of a toroidal polytope. Since two polygons can meet
only on a vertex or an edge or not at all in a polytope, we see that the dual graph

has no multiple edges or loops. .
We shall need an inequality that follows from Euler’s equation for graphs

embedded in the torus. For any graph embedded in the torus, let V be the number
of vertices, E the number of edges, and F the number of faces of the graph.

LemMA 1. For any graph in the torus we have

V—E+F=0,

with equality if each face is a cell.

(The reader is referred to [1] where a good treatment of Euler’s equation for
orientable surfaces is given.) We shall call this Euler’s inequality. In the case where
we have equality it is known as Euler’s equation for the torus.

3. THE MAIN RESULT

LEMMA 2. If v, is the number of i-valent vertices in a graph without loops and
multiple edges on the torus, then

Y (6—ij;=0

if and only if the graph is a triangulation of the torus. Otherwise, the sum on the left is

greater than 0.

Proof. Since the graph is without loops and multiple edges, every face has at least
threc edges, and we have

3F < 2E

with equality if and only if every face is a triangle. We also have Euler’s incquality,
V — E + F > 0, with equality if each face is a cell.

The sum Y (6 — i)o; equals 6V — 2E. Combining our two inequalitics, we get
6V — 2E > 0, with equality if and only if every face is a triangle. From this the
desired result follows. §

LeMMA 3. There are no simple polyhedral immersions of the torus.

Proof. We add the sum of the two-dimensional angles of the faces of such an
immersion in two different ways and get a contradiction. Since there are exactly
three faces meeting at each vertex, the sum of the angles is less than 2z at each
vertex. Thus the sum of the angles is less than 2zV. The sum of the angles of an
n-sided facc is n(n — 2). Summing these quantitics over all faces gives us

Y m(n — 2) = 2nE — 2xF.

We conclude that 2nV > 2nE — 2rF, which contradicts Euler’s equation for the

torus. |

TuroreM. Toroidal polytopes are 6-colorable.
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Proof. Let T be a toroidal polytope and let G be its dual graph. We shall show
that we can remove vertices from G, one at a time, such that at each step the vertex
to be removed will have valence at most 5 in the graph that we have at that step.

Once this has been shown, the result is immediate because we can remove
vertices one at a time until at most six remain, color them, and then return them one
at a time assigning a color to each as it is returned. Since the returned vertex is at
most 5-valent, there is always a color available for it.

We can choose a vertex of valence at most 5 in G because, by LEMMA 3, T is not
simple; thus, G is not a triangulation of the torus; thus, M 6 — i); > 0, for G, and
so such a vertex cxists in G. What we must show is that as we proceced, we will
always be able to choose such a vertex at later steps.

By LemMMA 2, we know that ) (6 — i)v; > 0, provided there is a face with at least
four edges. Suppose that at some step we have produced a proper subgraph H of G
such that H has no faces with at least four edges. In this case, H is a graph whose
faces are all triangles. If H is planar, then it is well known that there will be a vertex
of valence at most 5 (see, for example, [1, Section 4.1]). If the graph is not planar,
then H is a triangulation of the torus which is a proper subgraph of G.

We shall show that this is impossible.

We do this by showing that it implies the existence of an immersion of a simple
toroidal polytope. Suppose that u, v, and w are three vertices of G that determine a
face of H, but do not determine a face of G. Corresponding to these three vertices
will be three faces U, V, and W, of the polytope T. These three faces will form a
region that is a topological annulus. This annulus encloses a topological cell C
consisting of faces of T that correspond to the vertices of G enclosed by the circuit
determined by u, v, and w. We now modify the polytope. The faces U, V, and W
meet pairwise on three edges. Each of these three edges has one vertex in C. We take
a plane through these three vertices. This plane may cut some of the faces U, V, and
W into two pieces. In each case where a face is cut into two pieces we throw away
the piece that has an edge in common with C. We also throw away all of C, and fill
in the “hole” with the convex hull of the three vertices.

We carry out this procedure for cach triangle in G that is a face of H but not of
G. When we are done we will have faces corresponding to each of the vertices of I
and no other faces. The graph H will be the dual graph of the immersion of the
toroidal polytope that we have constructed. Since H is a triangulation, we have
created a simple polyhedral immersion of the torus, a contradiction. §

4. REMARKS

If we substitute “2-manifold” for “torus” in the definition of toroidal polytope we
get the definition of a polyhedral 2-manifold. The author knows of no polyhedral
manifolds of any genus requiring more than four colors. Recently, McMullen et al.
[4] developed somc new techniques of construction that produce polyhedral 2-
manifolds all of whose faces are hexagons or all octagons. Perhaps among these is
an example requiring five or six colors. The few that the author has tried can be
colored with four colors. The author conjectures that all toroidal polytopes are
4-colorabile.
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In view of the results in [4], there exist polyhedral 2-manifolds whose average
face size is at least 8. Do there exist polyhedral 2-manifolds with arbitrarily large
average face sizes? .

LEMMA 2 is a special case of a theorem of Griinbaum [2, Chapter 11, exercise 7]
that every simple cell complex is the boundary complex of a convex polytope.

To prove the equivalence of the four color problem for maps in the plane and for
convex polytopes, one first reduces the four color conjecture to the case of 3-
connected graphs (a simple argument will do this), then one uses the theorem of
Steinitz [5] which states that the planar 3-connected graphs are the graphs of the
convex three-dimensional polytopes.
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