The Geometry of Convex Sets
1. The Algebraic Aspects of Convexity

Definition 1.1: Aset S in E? is convex iff given any two distinct points x and y in

S, the segment joining x and y isin S.

Definition 1.2: Aset S in E" is affine iff given any two distinct points x and y in S,

the line through x and y isin S.

There 1s a nice algebraic way of expressing segments and lines determined by two points x

and y. Think of x and y as vectors and consider the sum ox + By, where o+ =1.

ox+By

By N

It is easy to see that this sum is a vector on the line through x and y by showing that
x-y and x - (ox + Py) are parallel vectors. To do this we simply show that one is a
multiple of the other. This holds because x - (ax + By) = (1-a)x - By = Bx - By

= B(x-y). Notethatif o and [ are positive, as shown in the figure, we will be getting

the points between a and y.

As a result of these observations we can reformulate our first two definitions:



Definition 1.3: A set S in E" is affine (convex) iff for every x and y in S, and for all
o and B suchthat o+ =1 (>0and B >0, with o+ =1), the point ox + By isin
S.

If we take a combination ox + By without any restrictions on o and B we have what is
known as a linear combination of x and vy, thus we shall make the following definition.

Definition 1.4: Aset S in E" is linear iff for each x and y in S and each o and B
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the point ax + By isin S.

There is one other type of set whose definition is similar to these.
Definition 1.5 A set S in E" is positive iff for each x and yin S and for each

a>0 and B>0, thepoint ax + By isin S.

Note that linear, positive and affine sets are convex.

We shall examine some of the basic algebraic properties of these sets.

Theorem 1.1: Aset S is linear iff it is affine and contains 0 ( 0 will be our symbol for

the origin, or the zero vector.)

Proof: Clearly, from Definitions 1.3 and 1.4, a linear set is affine. Setting o and B
equal to O in Definition 1.4 shows that 0 is in any linear set. To show the converse,
suppose that S is affine and contains 0. Let x and y bein S andlet o and B be
two real numbers. We shall show that ox + By € S.

Casel. a+f#0. Let z = (a/(a+B))x + (B(e+P))y. Since S isaffine, z € S. Now,
ox + By = (a+B)z + (1-a—p)0, thus ax + Py e S.

CaseIl. o+ =0. We shall assume without loss of generality that = —1. Now let

z = (B/(1+B))y + (1/(14B))0. The sum of the coefficients is 1, thus z € S. Now

ax + By = ax + (1+f)z. The sum of the coefficients on the right hand side is 1, thus



ax +fBy e S

Theorem 1.2: A set is linear iff' it is affine and positive.

Proof’ It follows from the definition of linear that a linear set is affine and positive.
Conversely, suppose that S is affine and positive. Let x € S. Since S is positive,
2x € S. Now, 0 € S because -1(2x)+ 2(x) =0 (note that the sum of the coefficients

is 1). Now, S is affine and contains 0 thus S is linear.

Recall that a translate of a set S is a set S + x which is defined to be {s+x| s €S}

Theorem 1.3: A set is affine iff'it js a translate of a linear set.

Theorem 1.4: A set S is positive iff'it is convex and for each pointin S the open ray

from the origin th int 1

Exercises
I. Prove that the properties of being affine or convex are preserved by translations (ie.
prove that a set is convex iff every translate of it is convex, and do the same for affine
sets.) Does the same hold for linear and positive sets?
2. Prove Theorem 1.3.
3. Prove Theorem 1.4.

4. Prove that if two translates of an affine set intersect then the two translates are the

same set.

Many of the following definitions and theorems about convex sets are also true for affine

positive and linear sets. When this is so there will be a star on the word "convex" meaning

b

that each starred occurrence of "convex" may be replaced by "affine", "positive", or

"linear", and the theorem remains true.
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Proof: Let x and y bein the intersection of a family of convex sets. Then x and y
are in each convex set. Thus forany a>0and f>0 with o+ =1, ax+ Byisin
each convex set, and thus ax + By is in the intersection. The intersection therefore

satisfies the definition of convex.

Definition 1.6: The convex* hull of a set is the intersection of all convex* sets

containing it.

The convex hull, affine hull, positive hull and linear hull of a set S are denoted by con S,

aff S, pos S, and lin S, respectively.

Theorem 1.6: The convex hull of S_is the smallest (with respect to containment) convex
ning S

Proof: By Theorem 1.5 con S is convex. Suppose that there is a convex set C

containing S and properly contained in con S. Then C is one of the convex sets in the

family that is intersected to form con S, thus con S — C, which contradicts the strict

containment of C in con S.

Definition 1.7: let xy,...,x, be points. Consider a sum of the form I at;x;
(1) The sum is called a linear combination iff the ay's are real numbers.
(2) The sum is an affine combination iff Za; =1

(3) The sum is a positive combination iff o; >0 forall i and T oy >0.
(4) The sum is a convex combination iff X oy =1 and o; >0 forall i.

Definition 1.8: Let S be a set of points. The set of all convex* combinations of points

of S involving n points is called con, S.

Theorem 1.7: The set of all convex* combinations of points of a set S is a convex* set.



Theorem 1.7: The set of all convex* combinations of points of a set S is a convex™* set.
Proof: Let X be the set of all convex combinations of points in S, and suppose that x
and y arein X. We can write

XZEG,iXi, XiGS, Eoci=1, (X.iZO.

y=2By;, ¥i€S, LB;=1, B;=0.
Now consider the combination ax + By, oo+ =1, >0, B> 0. This is the combination

X oaix; + X BByy; which is a sum whose coefficients sum to 1 and are non-negative,

thus this combination is in X. We have shown that X satisfies the definition of convex.

Theorem 1.8:_Forevery n con*, S  con* S.

Proof: The proof'is by induction on n. For n= 1, the statement becomes S — con S.

For n= 2, the statement becomes, foreach x and y in S the segment from x to y is
in S. Suppose that the statement is true for n=k-1 and let x € cony S. Then
R
x: E,‘aixi, o >0, z o; =1, xj € S. We may assume that oy # 1.
-1
Let y= 2 (o;/(1-04))x;. the point y is now an element of cony_1 S, and by induction is
L=t

an element of con S. But x; is an element of S, so X+ (1-oq)y = x isin con S.

Thus cony S < con S, and the inductive step is completed.

Theorem 1.9: The convex* hull of S equals the set of all convex* combinations of points
m S

Proof: Let X be the set of all convex combinations of points of S. Theorem 1.8 implies
that X < con S. Theorem 1.7 gives us that X is convex, but by Theorem 1.6, any

convex set containing S and lying in con S must be con S.

In linear algebra the idea of linear independence was introduced. The following definitions

and theorems show that there are analogous ideas for "affine", "positive" and "convex".



Definition 1.8: A point x is convexly* dependent ona set S iffitisin con §,
otherwise it is called convexly* independent of S.

Definition 1.9: A set S is convexly* independent iff each point is convexly* independent
of the other points of S. If S is not convexly* independent it is called convexly*
dependent.

In linear algebra there were certain linearly independent sets that were called bases for the
space. With sets that are affine, positive or convex we have the analogous ideas of bases.

Definition 1.10: A set B is a convex* basis foraset S iff B is convexly* independent

and con* B=S.

Recall from linear algebra that every basis for n-space has exactly n points, and in fact,
for any given space, every basis has the same number of points. (Here we would call these
bases "linear bases"). For convex and positive, the behavior is somewhat different.

For any integer n, there are sets in the plane with a convex basis of n points. There are
sets in the plane with infinite convex bases. Strangely, the plane itself has no convex basis.

An affine basis for n-space always has n+1 points. There are positive bases for n-space

with anywhere between n+1 and 2n points.

Affine bases share similar properties with linear bases. In particular:

Theorem 1.10: Aset B in E" is affinely independent iff every point has a unique
representation n mbinati f points of

The coefficients in the affine combination are called the affine coordinates of the point.
Theorem 1.11: A set of nt+2 or more points in E is affinely dependent.

Since every point in E" is a linear combination of basis elements, it follows that every

point x in EM isin fin, E™ In the plane there are sets with convex bases containing



arbitrarily many points. Nonetheless, if x is in a convex set in the plane, x can be
expressed as a convex combination of three or fewer convex basis elements. For example,
if S were a convex 10-gon then the ten vertices would be a convex basis for S. If x is
in S we can draw chords from one vertex to the others, breaking S up into triangles.
The point x must be in one of the triangles, thus it is in the convex hull of three of the
vertices. This property has the following generalization:

Theorem 1.12: (Caratheodory's Theorem) ILLE_C_QD_S_C_EH,_ﬂ]Qn_Xﬁ_Can_,_l S.
Proof: First we show that x is in the convex hull of some finite subset of S and then
show that if the finite subset has more than n+1 points we can reduce the number of

points in the set and still have x in its convex hull.

By Theorem 1.9, con § is the set of convex combinations of points in S. thus x isa
convex combination of some finite set K of points of S. But again by Theorem 1.9 this

puts x in con K. Thus x isin the convex hull of a finite subset K of S. Suppose that

K has more than n + 1 points. Call them X1,--»Xf- Since K has more than n+1 points

it is affinely independent, thus we can write

Xi ='Z_ Bix;» 2 B; = 1. Now let us define Bj = -1 (note that Bj has not appeared
=3

in the above sum). Now we have

2Bx=0. SP;=0.

Since x € {xl,...,xk} we can also write

X:ZO(iXi, EOLi =1, Oti>0.

Now we shall look at all §;'s that are negative and examine the numbers -o./B; . These

are all positive numbers. We shall let © be the smallest of these numbers. Now we look

at the sum

¥ (OLi + TBI)XI =X (liX' + 1 lel =3 (liX

; -+ 0 = x

1

The coefficients are positive when B; is positive, but when . is negative B < -0y,

so even In this case the coefficients are positive. The sum of the coefficients is



Zoy+ tZB; = 1 + 0. Thus this sum expresses x as a convex combination of the
points X1,--Xy However, note that one of the coefficients ( the one for which

t=-0y/B;) is 0, thus x is now in the convex hull of a smaller set.

Theorem 1.13 (Radon's Theorem): If S is a set of n+2 pointsin E® then S canbe
partitioned into two sets of points A and B such that con A ~conB = O.
Proof: Since S has nt+2 points, it is affinely dependent and thus as in the previous

theorem we can write

0=2ax, La; =0.
Now, let A= {x;| a;>0} and B= {x;]oy<0}. Let o = Eai.
We can now write ;S (o/0)x; = é) (—a;/0)x; . One side of the equation is a convex

combination is points in A while the other is a convex combination of points in B. Thus

each sum represents a point in the convex hulls of both A and B.
Exercises

1. Prove thatif X and Y are convex then
con(XuY)={ox+fy| xecX, yeV, ao,=0,and oo+ =1}. (Inother
words, the convex hull of X union Y is the union of all segments from X to Y.) Isa

similar statement true when we replace "convex" by "affine"?
2. Prove that convex and affine independence are invariant under translations. (That is, a

set is convexly independent iff every translate is convexly independent, etc.) Is this also

true for positive and linear independence?

3. Prove that every translate of a linearly independent set is affinely independent.



4. Prove that if X is affinely independent then for each x e X, theset (X-x)- {0} is

linearly independent.

5. Using your knowledge of linear algebra prove that any maximal affinely independent

set in EM has exactly n+1 points.

0. Prove lin S = aff{pos S), while it is not necessarily true that lin S = pos(aff S).

7. Prove that every affinely independent set in E™ can be extended to an affine basis

for EN

8. Prove that aff, S aff S and pos, S < posS.



2. Helly's Theorem
In this chapter we look at a strange intersection property of convex sets. The property is
given in what is known as Helly's theorem. We shall actually have two Helly Theorems,
one for finite families of convex sets and one for infinite families. We shall also see some

applications to geometric problems. We begin with a special case.

Theorem 2.1: If A, B re four con in th. i inter;
f h 1 he i ion of all i
Proof: Let x € BACND, y € ANCAD, z € AnBAD, and w € A~BAC.
By Radon's Theorem, the set {x,y,z,w} can be partitioned into two nonempty sets X

and Y suchthat conX ~conY . Let p € con X nconY. We illustrate the

possible cases:

X J
. w=p X r4
p
[ ]
Z
w
case I case 11

One case (shown as case I) is where one of X or Y is a single point and the other set
forms the vertices of a triangle. In this case we know that w is in A, B, and C by the
choice of w, but since x,y, and z areallin D, and D is convex, w isinD. Thus w

is in the intersection of all four sets.

The other case (shown as case 1I) is where X and Y are both sets of two points. The
convex hulls of these two sets are two segments which intersect at some point p. Now,
since x and z arebothin B and D, and since B and D are convex, we have that p

isin Band D. Since y and w are bothin A and C, and since A and C are both
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convex, p isin A and C. Now p isin all four sets, in other words it is in their

intersection.

Theorem 2.2:; If Al*“‘*An is a family of convex sets in the plane such that the
intersection of each three is nonempty then the intersection of all n sets is nonempty.

Proof: The proof'is by induction on n. The previous theorem starts the induction when

n = 4 (the theorem is trivial for n <4). Suppose that the theorem is true when n=k and

consider convex sets A,...Ay, A4+ - Welook at the following collection of sets:

Al A 1 (Ag N Ayy)- This is a family of k convex sets in the plane. If each three

sets in this family have nonempty intersection then we can apply our inductive hypothesis
and conclude that there is a point lying in all of them. Such a point, however, would also

lie in each of our original k+1 sets. Let us consider the intersection of any three sets in

this family. If we take the three sets from Aq,...Ay_; then, of course, they have

nonempty intersection by hypothesis. If we choose (A ™ A1) and two other sets

then their intersection is just the intersection of four sets of our original family. For these
four sets we know that if each three have nonempty intersection then all four have
nonempty intersection, by Theorem 2.1. Thus our new family has the required
intersection property and by induction we have the point we want that lies in all of the

sets.

Theorem 2.3 (Helly's Theorem, fini rsion): If for a finite family of con i i

cach ntl sets have nonempty intersection then the entire family has nonempty
intersection

In order to understand the next version of Helly's Theorem we need some definitions from

the field of topology.
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Definition 2.1: A point x is a limit point of aset S in E" iff each ball centered at x
contains points of S other than x.

Definition 2.2: A set is closed iff it contaiﬁs all of its limit points.

Definition 2.3: A point x ofaset S in E" is an interior point iff there exists a ball
centered at x lying entirely in S.

Definition 2.4: Aset S in E is open iff each point of S is an interior point of S.
Definition 2.5: A point x ofaset S in E is a boundary point iff each ball centered
at x contains points of S and points not in S.

Definition 2.6: The boundary of aset S in EP is the set of its boundary points.

People often confuse the term "bounded" with the notion of a boundary of a set. One

should note that these are entirely different ideas:

It should be noted that the interior and the boundary of a set depend not only on the set
but also on the space that it is in. A disc in the plane has interior points and it's bopundary
is a circle. A discin E3 has no interior points and every point is a boundary point. Note

also that every point of a set is either an interior point or a boundary point.

Definition 2.7. A point x of aset S in E" is a relative interior point of S iffit is an

interior point of S in the affine hull of S.

For exéample, the center of a disc in E3 is a relative interior point of the disc but not an
interior point.

Definition 2.8: A set S in EM is bounded iff there is a sphere enclosing it (ie. the set is

contained in some ball).

We are now ready to state the second form of Helly's Theorem:

12



Theorem 2.4 (Helly's Theorem, bounded version): If C is a collection of closed bounded

convex sets in EP such that each n+1 sets have nonempty intersection then the
: on of al 0 O

Note that in this version of the theorem we can have infinitely many sets while in the first

version only finitely many were allowed.

Many theorems in convexity are about closed bounded convex sets, thus these sets have a

special name.

Definition 2.9: A closed bounded convex set is called a convex body.

We turn now to an application of Helly's Theorem dealing with diameters of sets.
Definition 2.10: The diameter of aset S in E™ is the maximum distance between points
in S.

Note that a set may not have a diameter. A half plane has no diameter because distances
between points can be arbitrarily large. An open disc (that is a disc without its bounding
circle) Has no diameter because even though there is an upper bound on distances, no

pair of points realizes a maximum distance.

We now consider the following problem: Suppose we have a set S of diameter 1 in the
plane, and suppose that we don't know exactly which set of diameter it is. We would like
to place a disc over the set so that the disc entirely covers the set S. Certainly we can do
this with a disc of radius 1. all we would have to do is place the center of the disc over a
point of the set and then it covers the set S. It would seem, however that one should be
able to use a smaller disc. The question then becomes: What is the smallest radius of a
disc that will cover every set in the plane of diameter 17

Betore we see how Helly's Theorem provides the answer we need a few geometric facts.
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Lemma2.1: If T isani ian

Proof: Let AABC be the triangle with sides AB and AC oflength 1. We construct

the equilateral triangle AABD as shown, and cover it with a disc of radius (1/3)V3.

A

C

Now we note that C lies on an arc centered at A of radius 1. Since this arc has radius
greater than the radius of the circle, the portion joining B and C lies inside the circle,

thus the disc covers AABC.

Lemma 2.2: A triangle a

Proof: We take the two side of a smallest angle of the triangle. Any of these two sides
that has length less than one, we extend to produce a triangle with two sides of length 1.
These sides have been chosen such that they lie on an angle of at most 60°, thus the
triangle we have formed satisfies the hypotheses of Lemma 2.1. We can cover this

triangle with a disc of radius (1/3)V3, and the same disc then covers the original triangle.

Theorem 2.5: Any set of diameter 1 in the plane can be covered by a disc of radius
(13 3.

Proof: Let S be a set a set of diameter 1 in the plane. Consider the collection ¢ of all

discs of radius (1/3)\3 centered at points of S. The centers of any three of them are the
vertices of a triangle of maximum side length 1 (S had diameter 1). By Lemma 2.2, such
a triangle can be covered by a disc D of radius (1/3)V3. This means that the center of D

has distance at most (1/3)N3 form each of the centers of the original three discs. In other

14



words, the center of D in each of the three original discs. The three discs are arbitrary,
thus we have shown that each three discs in the collection ¢ have a point in common. By
Helly's Theorem, the collection of discs has nonempty intersection. Let x be a point in
this intersection. The point x is thus of distance at most (1/3)N3 from every center, in
other words, x is of distance at most (1/3)V3 from each point of S. Now the disc of

radius (1/3)V3 centered at x covers S.

Here is an application dealing with the idea of fitting a line to data where there is a margin
of error in the data. In such cases the data would be represented by segments rather than
points when put into graphical form.

Theorem 2.6: Given a finite collection of vertical segments in the plane, there exists a line
in ing them all if is a line intersecti

Proof: The equation of a nonvertical line m in the plane is y =ax + b. Suppose that we

consider a vertical segment with endpoints (x,y;) and (x;,yp). To seeif the line m
intersects the segment we plug x; into the equation and see what value we get for y. If
y lies between y; and y, the line intersects the segment. Assuming that y, >y, the
line y == ax + b intersects the segment iff y; <ax; +b<y,. Now consider the ab-plane
and the set S; ofall pairs (a,b) such that y = ax + b intersects the segment. The pairs
(a,b) must satisfy the linear inequality ax;+b> y;, and ax; +b <y,. The set of points

in a plane satistying a linear inequality is a half plane, thus S is the intersection of two

half planes and 1s thus a convex set.

Now, we have a convex set associated with each vertical segment. (The vertical segments

are in the xy-plane while the associated convex sets are in a different plane, namely the

ab-plane.) Let the convex sets be S{,....S,. Note that a point (a,b) being in S; means

that the line y = ax +b intersects the i'th segment. Saying that a line intersects three

segments is saying that there is a point (given by the coefficients in the equation of the
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line) in each of the corresponding convex sets. If each three segments can be intersected
by a line then there is a point in each three of the convex sets. By Helly's Theorem, there
is a point that lies in all of the convex sets. the coordinates of that point are the

coeflicients of a line intersecting every segment.

The next application deals with the idea of the existence of a point that serves as a
"center" of a set, in the sense that every line through the point cuts the set into two pieces
that come as close as possible to being the same size. Not every set admits a point such
that every line through it cuts the set in half. In fact the best result that holds for all sets in
the plane is the following:

Theorem 2.7: For any figure F_in the plane, there exists a point p such that every line
through p contains at least 1/3 of the area of F on each side.

Proof: Let ¢ be the collection of closed half planes that contain more than 2/3 of the
area of F. Consider the intersection of any three sets of ¢. We want to show that the
intersection is nonempty. The way to see this is to look at the complement of this
intersection. By a theorem of set theory, the complement of the intersection is the union
of the complements of the three sets. The complement of each of these sets contains less
than 1/3 of the area of F, thus the union of these three complements does not contain all

of F. The intersection of the three sets is therefore nonempty.

By Helly's Theorem, there is a point p that lies in a in all sets of . Consider any line m
through p. Suppose that one side of m contains less than one third of the area of F.

A very small translation of m will give another line n parallel to m still containing less
than 1/3 the area of F on one side, and with p lying on that side. Now, the other side of

n is a halfplane in ¢, yet p does not lie in that halfplane, a contradiction.
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Note: Neither of the Helly's theorems that we have had fits the conditions in the above
theorem. What kind of modification in the problem is needed so that we may really apply

one of these theorems?
For our next application we need to know about hyperplanes and halfspaces.

Definition 2.11: The dimension of an affine set is the number of points in an affine basis
for the set, minus one.

Recall that each affine set is just a translate of a linear set so you can think of the
dimension of the affine set as being the dimension of the corresponding linear set. Thus a

line is of dimension one, a plane is of dimension 2, etc.

Definition 2.11: A hyperplane in E" is an affine set of dimension n-1.
For example, in the line, the hyperplanes are points, in the plane the hyperplanes are lines,

In 4-space the hyperplanes look like 3-space, and so on.

Just as lines in the plane are given by linear equations in two variables, hyperplanes in E"

are given by linear equations in n variables.
Theorem 2.8: H_is a hyperplane in E™ iff H is the set of all points (X15--%p)
satisfying the equation ayx+,...,+a x, = b, for some real numbers a;,...,a, b.

Definition 2.12: If H is a hyperplane given by Xa;x; =b, then the sets of points
satisfying Zaxx; > b, and Xax; <b are called the two open halfspaces of H. An open

halfspace together with the points on the hyperplane form a closed halfspace
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with a point in the other ill inter If;

Here's an application that shows when a hyperplane will separate two finite sets of points.
( for this application we shall say that a hyperplane separates two sets provided the sets lie
in different halfplanes of the hyperplane. In the next chapter we shall give a more formal

definition and distinguish several different types of separation.)

Theorem 2.10: Let X; and X,_be finite sets in E". If for each set of n+2 points

Sc XjuX,, wc_}mxe_ttm_a_mmmlanmmls_thn&m S~X;_and SnX,, then
there exists a hyperplane that separates X;_and Xj.

Proof: Note that the equation of a hyperplane is of the form Za;x; =b, and two points
z=(zy,...z;) and y=(yy,...,y,) Will be separated by the hyperplane provided Za;z; >b
and Zajy; <b (or the reverse inequalities) hold. For each such point z in X, we shall
consider the set of all points (a;,...a,,b) such that Zaz; >b. This is the set of points in
(n+1)-space satisfying a linear inequality, thus it is a halfspace and therefore is convex.

For each point yin X, we associate the set of all (aj,...,a,,b) such that Zay; <b. This
is also a convex set in EAT!. For each set S of n+2 points in X X, we have that a
hyperplane separates the points of S in X; form the points of S in X,. In other words

there are coefficients ay,...,a , b such that the above inequalities hold for the points in S.

This is the same as saying that the sets in EM] associated with the pointsin S havea
point in common (namely the point giving these coefficients.) By Helly's Theorem, there
is a point that lies in all of the sets that we have associated with the points of X{UX,.
The coordinates of that point will be the coefficients that make the required inequalities

hold for all of the points in XWX, thus they are the coefficients for the equation of a

hyperplane separating X; and X,.
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And finally an application sometimes referred to as the "art gallery theorem".

Consider a polygon P in the plane. Suppose that a point p lies inside the polygon. We
shall say that a point q on the polygon is visible from p if the segment from p to q
meets the polygon only at q. (Note that we did not require the polygon to be convex. If
P were convex then every point on P would be visible from every point inside P.)

Theorem 2.11: Let P be a polygon in the plane. If for each three points on P thereisa

. | - : o
Exercises

[. Prove that for any positive integer n there exist n convex sets such that each two
have a point in common but the intersection of the n sets is empty. (Hint: Think thin.)
Prove the analogous theorem in E3.

2. Prove that a set is closed iff it contains its boundary.

3. Prove that Theorem 2.4 is not true if we remove the requirement that the sets be

closed.

4. Let S beaconvex bodyin E™ and let X be a finite set of points. Suppose that each

n+1 points of X can be covered by a translate of S (different translates for different sets

of n+1 points). Prove that some translate of S covers X.

5. Prove that the intersection of closed sets is closed.
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3. Separation, Support, and Extreme Points

The following can be thought of as a generalization of the notion of a tangent line.

Definition 3.1: A hyperplane H supports a set X provided X lies in one closed
halfspace of H and H~X = &.

Definition 3.2: A hyperplane H separates sets X and Y iff X and Y lie in different

closed halfspaces of H. If X and Y lie in different open halfspaces we say that H
strictly separates X and Y.

Theorem 3.1: If S is a convex body with an interior point, then for any given direction
We shall give a sketch of a proof. Since S is a convex body there is a sphere enclosing
S. We can take two hyperplanes perpendicular to the given direction such that the sphere
lies between them. Now imagine moving the hyperplanes toward S, stopping each
hyperplane when it first touches S. This gives the two supporting hyperplanes.

(Note: convexity is not used in this proof, but the set being closed must be used. Imagine
what happens with this "proof" if the set S is an open ball, that is, S is the set of points

inside a sphere.)

In order to get our main separation theorem we shall use the following lemma from

topology. the proof will be omitted.

Lemma 3.1: Given two disjoint closed bounded sets X and Y, there are points x € X

and vy € Y such that the distance from x to y is the minimum distance between points
of Xand Y.
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Theorem 3.2:
strictly separates X and Y.

Proof: Let x €X and y €Y be points realizing the minimum distance between points of

X and Y. Let Z be the midpoint of the segment xy and let H be a hyperplane

perpendicular to xy passing through z. Suppose that a point w of x lies on the same

sideof H as y.

Since the segment xw is not parallel to H, the angle formed by xy and xw is less than
90°. Now by taking a point u on xw close to x we get a triangle Ayxu where /x is
acute and Zu is obtuse. Now it follows that yu is shorter than yx. Now, since X is
convex and x and w arein X, u must bein X. This, however, contradicts the fact
that the distance from x to y was the minimum distance between points of X and Y.

A similar argument works if there is a point of X lying on H.

Now we have all of X lying in the open halfspace of H that doesn't contain y. The

same argument shows that all of Y lies in the other open halfspace. W

Another separation theorem that we won't prove:

Theorem 3.3: Any two disjoint convex sets can be separated by a hyperplane.
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The proof of our second support theorem will depend on the use of the nearest point

function.

Definition 3.3: For any convex body X the nearest point function of X is the function
¢ that takes every point of X onto itself, and every point p notin X onto the point of
X nearest p.

Lemma 3.2: The nearest point function doesn't increase distances.

Proof: Let X be a convex body, and let x and y be two points notin X. Let H and

H' be hyperplanes perpendicular to the segment ¢(x)d(y), with ¢(x)eH and ¢(y)eH"

We note that if we take any point z strictly between H and H', then z, ¢(x), and ¢(y)
form a triangle where the angles at ¢(x) and ¢(y) are less than 90°, thus the foot of the
perpendicular from z to the line through ¢(x) and ¢(y) lies between ¢(x) and ¢(y).
This implies that the foot of the perpendicular (which is in the convex set X) is closer to

z than ¢(x) or ¢(y). Asaresult, z cannot be x or vy, so neither x nory can be in

the region between H and H'

Suppose that x and y were on the opposite side of H from H'. Then vy, ¢(x), and
¢(y) would form a triangle where the angle at ¢(x) was obtuse and the angle at ¢(y)
was acute. It follows that ¢(x) is closer to y than ¢(y)is. (Remember the largest side

of a triangle is opposite the largest angle.) Similarly we can show that x and y cannot be
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on the same side of H'. Now, however x and y are separated by a pair of hyperplanes

whose distance apart as the length of ¢(x)¢(y). Thus the distance from x to y is as least

as great.

The case where one of x and y isin X is handled similarly, and the case where x and

y are bothin X is trivial. ®

Lemma 3.3: The Nearest point function is continuous.
We won't get into £-8 arguments here. We shall just mention that continuity will follow

from Lemma 3 2.

Lemma 3.4: Let X be a convex body and yeX. If ¢(y) is the nearest point of v then
Proof: Let x=1(y). Suppose y' is on the open ray from x through y, and that z #x
is the nearest point of y'.

Casel. y is between y' and x. Let the line parallel to line y'z through the point y

intersect segment zx at w.
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The triangle Ay'zx is similar to Aywx. If the distance from y' to z is less than the
distance from y' to x, then by similar triangles the distance from y to w is less than the
distance from y to x, contradicting the fact that x is the nearest point for y (note that
weX by convexity.

Case II. y' is between y and x. If z is the closest point for y', then the distance from z
to y' plus the distance from y'to y is greater than the distance from y to z, and less

than the distance from y to x. Thus z is closer to y than x, a contradiction.

Theorem 3.4: 1

i int not i
Proof: Let S be a sphere enclosing the convex body X, (suchthat S "X =). Let S'
be a sphere of radius r centered at p. For any point a inside S and notin X there is
a nearest point b in X. By Lemma 3.2, b liesin S'. The open ray from b through a
will intersect S at a point c¢. Now we let the radius r of S' approach 0. As r—>0 b
must approach p, and ¢ will approach some point d on S. Now by continuity of the
nearest point function we have that since ¢(c)—>p as c—d, we must have ¢(d) = p.

Thus p is a nearest point to d. H

The most important consequence of all of this is the following theorem.

Theorem 3.5; ]

h ¢ £ h h
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Proof: Let d be a point notin X such that p is the nearest point of X to d. Let H
be a hyperplane through p perpendicular to the segment pd. Let A be one of the two
halfspaces of H, with XcA. An argument similar to that given in Theorem 3.2 shows

that no point of X lies on the other side of H from A. ®

Exercises

1. Let X be a convex body. Prove that the nearest point of any given point X is unique.

(You may assume that a nearest point exists.)

2. Prove that a line through an interior point of a convex body X intersects the boundary

of X in exactly two points.

3. Prove that if a closed bounded set X with an interior point has the property that every

line through an interior point intersects X in a segment, then X is convex.

4. The width of a convex body is defined to be the maximum distance between parallel

supporting hyperplanes. Prove that the width of a convex body equals its diameter.

5. Fill in the details of the proof of Theorem 3.5.

6. Let X be a closed set with interior points. Suppose that through every point on the

boundary there is a supporting hyperplane. Prove that X is convex.
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Extreme points

Definition 3.4. A point x ofaset S is an extreme point of S iff it is not the midpoint

of any segment of S. We shall denote the set of extreme points of S by ext S.

One of the most important theorems about extreme points is the following:

Theorem 3.6: If S is a convex body then S is the convex hull of its extreme points.

Proof: The proof is by (strong) induction on the dimension n of the convex body S
(The dimension of a convex set is the dimension of its affine hull.) If S is 0-dimensional
then S is a point and the theorem is clearly true. Suppose the theorem is true when

n <k and suppose that S is (k+1)-dimensional (We shall now assume that S isin

Ek+1). We will take an arbitrary point x in S and show that x is in the convex hull of

the extreme points of S.

If x is a boundary point, then we take a hyperplane H supporting S at x. The set
S~H 1is a convex body of dimension less than k+1. By induction, x is in the convex hull
of the extreme points of S~H. Since the extreme points of S~H are extreme points of

S (see exercise 1), we have that x is in the convex hull of the extreme points of S.

If x is an interior point, then we can take a line through x which intersects the boundary
of S intwo points p and q. Now by the above argument we have:

{p.qjc conext S, thus con{p,q}c conconextS (see exercise 2)

Thus we have x € con{p,q} < conext S.

Our argument about the arbitrary point x has shown that S < conext S. On the other

hand ext S < S, thus conext S < con S =8, and therefore S = conext S.
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Exercises

1. Prove that if H supports a convex set S, then the extreme points of HNS are

extreme points of S.

2. Prove that if ScT then conS cconT.

3. Prove that a point x of a convex set S is an extreme point of S iff S - {x} is convex.

4. We define a point of a convex set S to be an exposed point provided it is the
intersection of S with a supporting hyperplane. Show that a convex body is not

necessarily the convex hull of its exposed points (there are examples in Ez).

5. Show that neither the set of extreme points nor the set of exposed points of a convex
body is necessarily a closed set. (There are examples in E3 that take care of both

exposed and extreme points.)

6. Let {xy,..x;} be a finite set in E™. Prove that the extreme points of con {X]5 Xy}

are a subset of {xy,...,x}}. Hint: Use induction and exercise 1, page 8.

7. Prove Caratheodory's Theorem by induction on the dimension of the set. Use the
intersection of the set with hyperplanes to reduce the dimension. You may assume that

the convex hull of a finite set is always closed and bounded.

8. Prove that every nonempty convex body has an extreme point.
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4. Sets of Constant Width

Some of the most interesting convex sets are the so-called sets of constant width.

Definition 4.1: A convex body is a set of constant width iff it has the same width in every

direction.

The disc is obviously a set of constant width. These sets become interesting once one
realizes that besides the disc there are many other such sets in the plane, such as the

Reuleaux polygons.

Definition 4.2: A Reuleaux polygon is a set constructed in the following way: We start
with a regular (2n+1)-gon. Using each vertex as a center we join the end points of the
edge opposite the vertex by an arc. The Reuleaux polygon is the simple closed curve

formed by these arcs together with all points inside this curve.

~_

Reauleaux triangle Reuleaux pentagon

We can see that the Reuleaux polygons are sets of constant width because any pair of
parallel supporting lines will pass through a vertex of the original polygon and the
opposite arc. Since the arcs all have the same diameter the distances between the pairs of

supporting lines is the same in all directions.
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If you imagine placing a disc so that it touches the boundary, but otherwise lies outside of
a Reuleaux polygon P, and then rolling the disc around the outside of P, the disc will
sweep out a region that surrounds P. This region together with P will form a set of
constant width. If the width of P is w and the diameter of the disc is d, then we will
have created a set of constant width w + 2d. Such a set is not another Reuleaux polygon.
This can be seen because a Reuleaux polygon has "corners”" while the set we have just

produces will have a completely smooth boundary.

~

Definition 4.3: A convex set S of diameter d is as set of constant diameter iff for every

point x on the boundary of S thereisa point y in S such that the distance from x to

y is d.

Definition 4.4: Aset S of diameter d is complete iff for every point x¢S, the set

Suix} has diameter greater than d.

We shall see that there is a close connection between constant width, constant diameter,

and completeness. We start with the two easiest connections.

Theorem 4.1: Every set of constant width is a set of constant diameter.
Theorem 4.2: Every set of constant width is complete

We shall state a very nontrivial theorem about completeness:
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Theorem 4.3: Every bounded set with a diameter can be completed. (That is, given any

bounded set S of diameter d, there exists a complete set of diameter d containing S.)
Definition 4.5: If S is a set of diameter d and T is a complete set of diameter d

containing S, we call T a completion of S.

The Reuleaux triangle is a completion of an equilateral triangle, (in fact the only
completion). A disc centered at the center of a square is a completion of the square

although there are other completions as well.

The most difficult connection between the above three properties is that complete sets are
sets of constant width. In order to establish this we shall need a series of lemmas.
Lemma 4.1: If S is a complete set of diameter d, then S is the intersection of all balls

of radius d centered at points on the boundary of S.

Proof: Let T = "B, be the intersection of all such balls. Let xeS. If x¢T, then there

is some ball B centered at a point yeS for which y is not in that ball. Thus the

distance from y to x is greater than d, contradicting the fact that d is the diameter of

S.

Suppose that xeT. If x¢S thensince S is complete, Su{x} has diameter greater
than d. Thus thereis a point yeS such that the distance from y to x is greater than
d. It follows that there is a boundary point z of S such that the distance from z to x
is greater than d (See exercise 10 ). Now, however, x is not in the ball of radius d
centered at z, a contradiction. We have shown that SCT and TcS, thus S =T, and

we are done. W

Definition 4.6: An arc of a circle is a minor arc iff it subtends an angle of at most 130°.
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Lemmad4.2: If x and y aretwo pointsinadisc D ofradius d, andif Z is a minor
arc of radius d joining x and y, then ZcD.

Proof. 1f any portion of Z lies outside D then there are two points u and v of Z
where Z intersects the boundary of D. The portion of Z joining u and v, however,

either lies on the boundary of D (because the curves have the same radius) or lies

in DB

Corollary 4.1: If x and y are two points in a complete set S of diameter d, then any
minorarc Z ofradius d joining x and y willliein S.

Proof: S=mB, where the B 's are balls of radius d centered at points on the

boundary of S. The points x and y lie in each of these balls, thus by Lemma 4.2, Z

lies in each of these balls. Thus Z lies in the intersection of these balls whichis S. M

that the nt xy i icularto H H'
Proof: We take a translation in the direction perpendicular to H in the direction from H

to H'. We apply this translation to H, H', and S. '

K

H /
/S K

If S, the image of S under the translation meets S at some point x, then x and the
image under the inverse translation (the translation perpendicular to H the same distance

int he opposite direction) are the two points we are looking for. If S' misses S, then

31



there is a hyperplane K separating S and S'. The image K' of K under the inverse
translation will miss S (because K misses S'). Also, theset S will be between K and
K'. The distance d between K and K' is less than or equal to w, while the distance
between supporting hyperplanes parallel to K will be less than d. This implies that the
width in the direction perpendicular to K is less than w, contradicting the fact that w
was the minimum width. B

Lemma 4.4:If S is a complete set then S is a set of constant diameter.

Proof: The proof really belongs in topology or analysis rather than geometry, but we shall
give a sketch. First, using continuity arguments (similar to those we are about to give)

one proves that a complete set is closed. Now let x be a boundary point of S. For each

positive integer n we let B, be a ball of radius 1/n centered at x. We choose a point
x,, Ineach B, where x, isnotis S. Since we cannot add X, to S without increasing
the diameter , there is a point y, for each x such that the distance from Yy o x

nlS

greater than d. The sequence of points {x,} convergesto x. The sequence {Yn)>
since it lies in a bounded set, has a convergent subsequence, converging to a point y,
which is in the set S because S is closed. The subsequence of the X,'s corresponding to

the convergent subsequence of the y 's will converge to x. Since distance is a

continuous function (of two variables) the distance from x toy is greater than or equal
to d. Thus the distance from x to y is d, and we have satisfied the definition of

constant diameter. B

Now we are ready to prove our theorem.

Theorem 4.4- If S is a complete set then S is a set of constant width.

Proof: Let H and H' be parallel supporting hyperplanes of S of minimum distance
apart, and let the diameter of S be d. Let xeHnS and yeH'~S. By Lemma 4.3,

x and v can be chosen such that segment xy is perpendicular to H and H'. Since the

diameter is the maximum width, we are done if we can show that the distance between H
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and H' is d. We shall assume that the distance from x to y is less than d and reacha

contradiction.

By Lemma 4.4 S is of constant diameter, thus there is a point z in S such that the
distance from z to x is d. The remainder of our argument now takes place in the

intersection of S with the 2-dimensional plane P determined by x,y, and z.

P

_3 .

e

y

For convenience we shall say that the line L = H~P lies above the line L' =H'~P.

Let L" be the line parallel to L, of distance d from y and lying above L. The circle C
of radius d centered at y lies on or below L". The circle of radius d centered at z
passes through a point ﬁhabove L" on aline through z parallel to xy. Thus the arc of
this circle from x to p ofradius d intersects C to the right of line xy at a point q.

This point of intersection is a center for a minor arc arc Z ofradius d joining z and vy.

Now we look at where the circle C' of radius d centered at q intersects L'. One
point of intersection is 2 Since the center is not on line xy and xy is perpendicular to
L', Z is not tangent at x’g Thus C' intersects L' at another point u. If u is on the
opposite side of line xy from z then Aqxu is an isosceles triangle with equal sides px
and pu, but with y as an obtuse angle (recall xyLL'). This is impossible, thus u lies on
the same side of xy as z. Now u is onthe arc Z. This implies that Z passes below

L', and thus Z does not lie entirely in S. Corollary 4.1, however, tells us that Z must

liein S. W
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So far we have the following: complete <> constant width
J U

constant diameter
To complete the equivalences of these three concepts we have:
Theorem 4.5: Any set S of constant diameter is complete.
Proof: Let x¢S, and let y be the closes{o}' S to x. Let d be the diameter of S and
let z beapointin S of distnace d from y. It is easily shown (Exercise) that the
distance from x to z is greater than d, thus adding x to S increases the diameter, and
thus S is complete. ®

The Circumference of a Set of Constant width.

If you compute the circumference of the disc of width 1 and the Reuleaux triangle of
width 1 you will get the same number. This makes one wonder about the circumferences

of other sets of constant width. To answer this we shall need the following lemma.

Lemma 4.5: Let ABCD be a rthombus, and let MN and PO be two line segments

segments.

Proof: We shall represent the length of segments in the following way: If PQ is the
segment then PQ  will be its length. First we shall show that MN +PQ is a constant.
To see this we take a translate of the rhombus and place it next to the original rhombus as

shown:
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Now we have that MN +PQ =PQ' and this will hold for any choice of the position
of PQ, because this distance is just the length cut off by the parallel lines AD and B'Q'.
Next we show that AM + AP is a constant. We extend the side DA and the segment

MN as shown.

C

The triangle AAM'M can be shown to be isosceles, because the angles at M' and M are
congruent. Now, however we see that AP + AM = AP + AM' which is the length
ofline AP cut off by the parallel lines MN and PQ, and depends only on h.

Similarly, CN + CQ is a constant, and thus the circumference of the hexagon is

constant. i

Theorem 4.6. Every set of constant width w_in the plane has perimeter mw.

Proof: We will let S be a set of constant width w and D be a disc of diameter w. We

begin by circumscribing about S and also about D, a rhombus with angles of 120° and
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60°. This is easily done because these are sets of constant width. The two rhombuses are
congruent and thus have the same perimeter. Next we cut off the two 60° vertices with a
pair of supporting lines. This circumscribes an equiangular hexagon about both S and
D. By the previous lemma, these two hexagons have the same perimeter. Next we cut off
each of the six vertices using pairs of parallel supporting hyperplanes, chosen in directions
that make the resulting 12-gons equiangular. We note that when each cut is made, if we
restrict our attention to the four supporting lines that are being cut, we have the same
result as when we cut off the vertices of the rhombus determined by these four supporting
lines. As the previous lemma shows, the perimeter of the polygon circumscribing the disc
will change by the same amount as the perimeter of the polygon circumscribing the set S.
As we repeat this process we create a sequence of circumscribing equiangular 3-2™-gons
for the disc and for S, and for each n the polygons have the same perimeter. These
polygons will converge to the boundary of the disc ans the boundary of S (We aren't
going to go into the details here, but convergence depends on the polygons being
equiangular.) , and the perimeters will converge to the perimeters of the two sets. Since
the disc has perimeter nw, so does S. W

Borsuk's Theorem
We turn now to the idea of covering a set of diameter 1 with sets of diameter less than 1.
Obviously, it will take more than one set of diameter less than one to cover a set of
diameter 1. It is easy to see that there exist sets of diameter 1 in the plane that cannot be
covered by any two sets of diameter less than one (the equilateral triangle, for example).
If, however, we are allowed to use three sets of diameter less than one to cover a set of
diameter 1, it's not clear that there are sets that can't be covered. (The ground rules of this
"game" are that we are shown the set of diameter 1, then we are free to choose any three
sets of diameter less than one to cover it.). The following theorem, called Borsuk's

theorem shows that in fact we can always succeed, and it is proved using properties of sets

of constant width.
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Theorem 4.6: (Borsuk's Theorem) Any set S of diameter 1 in the plane can be
covered by three sets of diameter less than 1.

Proof: Let T be a completion of S. By Theorem 4.4, T is a set of constant width. We
now circumscribe a 60° - 120° rhombus ABCD about T. Next we cut off the 60°

vertices with parallel supporting lines, m and n, parallel to line AC.

m
A n
P
R
B >D
S
Q
C

Let the intersection of these lines with the rhombus be PQ and RS. What we are trying
to do is to get a regular hexagon circumscribed about T. The hexagon APQCSR is
equiangular, but it won't be regular unless PQ =RS . To see that we can get a regular
hexagon, imagine what happens if we do the same construction but we start with the line
AB rotated a small amount. The lengths of PQ and RS will be changed a small
amount. Now imagine that we look at all constructions obtained for all rotations of AB
through 180° (The set T is not rotated but the supporting lines have different positions
for different amounts or rotation). After rotating 180°, the length of PQ has gone from
its original length to the original length of RS, while the length of RS has gone from its
original length to the original length of PQ. If the two lengths were not the same then
somewhere during the rotation they must have the same length. (For students of calculus,

recall the intermediate value theorem. The differences of the lengths is positive in one

37



position and negative in the other position, thus somewhere in between, the difference is
Zero.)
Now we have a regular hexagon circumscribed about T. The distance between opposite

sides of the hexagon is 1. We now cut this hexagon into three congruent pieces as

shown:

\

The diameter of each of the three pieces is the length of the segment uv, which can be

shown to be (1/2)V3. Thus we have covered T, and therefore S, with three sets of

diameter less than 1. B

Exercises

I. We define a diameter of a convex body to be a segment in the body whose length is

the diameter of the set. Prove that any two diameters of a set of constant width in E2

will intersect.
2. Prove that if two diameters of a set of constant width in the plane intersect at an end

point then the end point lies on the boundary, and that boundary point has more than one

supporting line through it. (Such a point is called a corner of the set.)
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Characterize the centrally symmetric sets of constant width in the plane. (ie. Prove a
statement of the form: A set is a centrally symmetric set of constant width in the plane

iff..)

4. Prove that if a set of constant width in the plane has a corner, then there is an arc of a

circle on the boundary of the set.

5.Let x beacorner ofaset S of constant width in the plane. Suppose that m and n
are supporting lines through x, such that the angle in which S lies is as small as possible.
This angle is called the angle of the corner. Prove that corner angles for sets of constant

width in the plane are always at least 120°.

6.Prove that the only set of constant width in the plane with a corner angle of 120° is the

Reuleaux triangle.

7. Prove that complete sets are closed and bounded.

8. Prove Theorem 4.1

9. Prove Theorem 4.2

10. Fill in the missing detail in the proof of Lemma 4.1, p 30.

I'1. Prove that every set of constant diameter is complete (Therorm 4.5).
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S. Convex Polytopes

Definition 5.1: A convex polytope is a set that is the convex hull of a finite set of points in
ED. (From here on we shall usually say "polytope" rather than "convex polytope".
Sometimes we shall say "d-polytope" when we wish to indicate that it has dimension d.)

It seems obvious that a polytope has finitely many extreme points, but this does need
proof.

Theorem 5.1: If U is a finite set in E%, and if P = con U, then the extreme points of P
Proof: See Exercise 6, Ch. 3.

Polytopes in E! are just the closed segments. The 2-polytopes are the convex polygons.
In E3 their structure becomes more complex. A few 3-polytopes are familiar to most
who have had high school geometry - The tetrahedron, octahedron, cube, icosahedron,
and dodecahedron. As can be seen by the definition, however, these are but a few of the

infinitely many different kinds of 3-polytopes.

There is an alternate way to define a polytope.

Theorem 5.2: If P is a bounded d-dimensional set in E™, n>1, that is the intersection of
a finite collection of closed hal hen P | |

Proof: Our proof'is by induction on the dimension of P. If the dimension of P is 0 or

I, the theorem is clearly true.

Let P be mHi+ where each Hi+ is a closed halfspace bounded by a hyperplane H;

for 1=<i<k Let p be an arbitrary extreme point of P. Since p is in the intersection

of the halfspaces, it is either in the interior of all of the halfspaces or is on one of the
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bounding hyperplanes. If it is in the interior of each halfspace then it is in the interior of P

and is not an extreme point, thus p is on a hyperplane H;. Now we consider the set

P = H; m(mHj+) where Hj #H;

The intersection of the hyperplane H; with any one of the closed halfspaces Hj+ isa
closed halfspace in H;, thus P' is a bounded set that is the intersection of finitely many
closed halfspaces in H;. By induction, P' is a polytope. We also have that p isin P

Since p is an extreme point of P it is an extreme point of P'. By Definition 5.1, P' isa
convex hull of a finite set, and by Theorem 5.1 the extreme points of P' are a subset of
this finite set, thus P' has finitely many extreme points.

We now have that any extreme points of P must lie in one of finitely many finite sets of
extreme points of sets of the form H; ~ ( Hj+), thus there are only finitely many

extreme points of P. Finally we recall from Theorem 3.6 that a convex body is the
convex hull of its extreme points, and this gives us that P is the convex hull of a finite set
and is thus a polytope. W

The converse we shall present without proof:

Theorem 5.2: If P_is a d-polytopein EY then P is the intersection of a finite collection
fcl If .

From these basic properties of polytopes the following can be proved.

Theorem 5.4: Every projection of a polytope is a polytope.

Definition 5.2: A face F of'a d-polytope P is the intersection of P with a supporting
hyperplane. If F is of dimension d-1, then it is called a facet of P. Ifit is of dimension
d-2 it is called a subfacet of P. Ifit is of dimension 1, it is called an edge and if it is of
dimension O it is called a vertex.
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For example, for 3-polytopes the facet are polygons and the subfacets are edges. We
present a list of theorems that give most of the basic properties of faces. We shall omit the

proofs as some of them tend to get rather technical.

Theorem 5.5: Every face of a polytope is a polytope.

Theorem 5.6: If F isafaceof P and G isaface of F, then G isaface of P.

Theorem 5.7: Every point on the boundary of a polytope P lies in a facet of P.

Theorem 5.8: Each subfacet of a polytope P lies in exactly two facets of P.

Theorem 5.9: -

d edges of P.

We shall now give some examples of polytopes.

Definition 5.3: A d-pyramid is the convex hull of a (d-1)-polytope Q and a point not in
the affine hull of Q.

Definition 5.4: A d-prism is the convex hull of two (d-1)- polytopes P and P' where

P' is a translate of P that does not lie in the affine hull of P.
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Definition 5.5: A d-bipyramid is the convex hull of a (d-1)-polytope P and a segment

that intersects the interior of P, with one end point on one side of the affine hull of P (in
Ed) and the other end point on the other side. The polytope P is called the equator of
the bipyramid.

\4

Definition 5.6: A Q-simplex is a point. A d-simplex is a pyramid over a (d-1)simplex.

Definition 5.7: A O-cube is a point. A d-cube is a prism over a (d-1)-cube.

Definition 5.8: A 1-octahedron is a segment. A d-octahedron is a bipyramid with a

(d-1)-octahedron as its equator.

43



All but the simplest of the 3-polytopes are difficult to draw, and 4-polytopes are
impossible to draw. There is, however a simple method of showing the facial structure of

3- and 4-polytopes. It involves the use of Schlegel diagrams.

Definition5.9: Let P bea d-polytope, and let p be a point not in P but close to the
centroid of a facet F of P. If we project the boundary of P onto F by projecting

through the point p, the image of the boundary in F is called a Schlegel diagram of P.

A Schlegel diagram of a triangular prism

The Schlegel diagram shows the combinatorial structure of the polytope, in other words it
shows how the various faces "fit together". The Schlegel diagram does not accurately
represent any metric properties of the polytope, that is, it doesn't show properties that are
measured, such as area, volume, edge length, angle size, etc. So, for example from the

Schlegel diagram of the cube
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we see that there are eight vertices twelve edges and six facets. We see that every facet is
a quadrilateral and that each vertex has exactly three edges meeting it. We cannot,

however, say what the volume of the original cube was.

The Schlegel Diagrams of 3-polytopes are examples of a large class of structures called
graphs.

Definition 5.10: A graph is a configuration consisting of a finite set of points (called the
vertices of the graph) with various pairs of of the points joined by arcs (called the edges
of the graph). The configuration consisting of just the vertices and edges of a polytope (or
of'its Schlegel diagram) is often called the graph of the polytope.

Definition 5.11: If v is a vertex of a graph or of a polytope, the number of edges

meeting v is called the valence of v. If v has valence i we say that v is i-valent.

We shall prove one of the most important properties of 3-polytopes by proving a similar

theorem about a certain class of graphs.

Definition 5.12: A graph is planar provided it can be drawn in the plane without any two

edges crossing each other.

Definition 5.13: A graph is connected iff between any two vertices there is a path of
edges joining them.

Definition 5.14: If a graph is drawn in the plane (without edges crossing) then the graph

breaks the plane into regions. These regions are called the faces of the graph.

For example the first graph below has two faces (one is an unbounded region) the second

has four and the third has just one.
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2 A

The following is a fundamental theorem in graph theory and will establish an important
combinatorial property of 3-polytopes.

Theorem 5.10: ]

F _arethe n f verti 1 f -E+F =
Proof: The proof'is by induction on the number of edges of G. If G has no edges, then
since it is connected it must have exactly one vertex, thus V-E+F = 1-0+1 =2.

Suppose that the theorem is true for planar connected graphs with k edges and suppose

that G has k+1 edges.

We are going to remove an edge from G and apply induction. We must be careful,
however, because removing an edge could leave the remaining graph disconnected and the

induction hypothesis would not apply.

Suppose that we start at a vertex and begin traveling along edges, never backtracking
along an edge. Since there are a finite number of edges, one of two things will happen.
Either we will arrive at a vertex from which we can't leave (and thus the vertex meets just
one edge of the graph) or we return to some vertex that we have visited before, in which

case part of our journey is a simple closed curve.

If we arrive at a vertex v that meets just one edge e of the graph, we remove v and e

producing a graph G'. Clearly the remaining graph is still connected. By induction,
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V-E+F =2 for the graph G'. But G has one more vertex and one more edge than G'

and thus going from G' to G gives a net change of 0 in V-E+F.

If our journey has a simple closed curve C in it, we remove an edge ¢ of C to produce
G'. The graph G' is still connected because given any two vertices in G there is a path
connecting them. If this path used e we can substitute a path along the remainder of C
in place of e. By induction V-E+F =2 for G'. Now G' has one less face than G
because a face inside C was merged with a face outsidle C when e was removed. Thus
G has one more face and one more edge than G'. The net change for V-E+F

is again 0. B

Theorem 5.11(Euler's equation): If V, E, and F are the numbers of vertices, edges,
and facets, respectively of a 3-polytope P, then V-E+F=2
Proof: The theorem follows immediately from the previous theorem since the Schlegel

diagram of P is a planar connected graph. B

The number of vertices of a 3-polytope does not uniquely determine the number of facets
as is shown by the pyramid over a rectangel and a bypyramid with a triangular equator. In
face no one of V, E, or F uniquely determines either of the other two. This leads to
questions about the maximum and minimum numbers of one given the number of another.
Lemma 5.1° For any 3-polytope P, 2E >3V and 2E > 3F.

Proof: Imagine that we place a mark on each edge near each vertex. The number of
marks will then be 2E because we have placed two on each edge, one near each of its
two vertices. Since each vertex meets at least three edges, the number of marks is at least
3V, thus 2E >3V. A similar marking argument yields the second inequality ( See

Exercise). B

Theorem 5.12: For any 3-polytope F > (v+4)/2.
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Proof: By Lemma 5.1 we have E >3V/2. Substituting for E in Euler's equation gives

the inequality. ®

Theorem 5.12 only answers half the question about the minimum number of facets for a
given number of vertices. There is still the question of whether the inequality is sharp.
That is, for a given V is there a 3-polytope with (V+4)/2 facets. Unless we phrase this
question more carefully, the obvious answer is no. There is no such 3-polytope for

V =9, for example. (Do you see the simple reason why?)

We shall introduce some more construction techniques sos that we will have a much richer

family of examples that we can draw from.

Definition 5.15: Suppose v is a vertex of a d-polytope P, suppose that H isa
hyperplane strictly separating v from the other vertices of P, and suppose that HY is
the halfspace of H containing the other vertices of P. The intersection of P with H is

a polytope P'. We say that P' is obtained from P by truncating v.

48



Definition 5.16: Let F be a facet of a polytope P and let v be a point very close to
the centroid of F. If v is close enough to F then taking the convex hull of v and P
consists of erecting a pyramid with F as a base and v as the apex and "gluing" the
pyramid to P. We say that the polytope P'=(con PL{v}) is obtained from P by

capping the facet F.

-
—
Theorem 5.13: For every even integer v > 4, there exists a 3-polytope with v _vertices
and (v+4)/2 facets

Proof: The proof of this theorem is a good example of the technique of strengthening the
induction hypothesis to make induction work. We shall see that we may more easily prove
the following statement:
>4 i - i +

3-valent vertex.
Our proof'is by induction on n. For n=4 the tetrahedron is an example (and the only
example) with four facets and four 3-valent vertices. Suppose that the theorem is true for
n=k. Since we are proving this for even n, our induction step is to show that the
theorem holds for k+2. Let P be a 3-polytope with k vertices, (k+4)/2 facets and a
3-valent vertex v. Let P' be obtained from P by truncation vertex v. Then P' has
k +2 vertices and (k+0)/2 facets. Furthermore, each of the three vertices created by

truncating is 3-valent. M
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Theorem 5.14: For every even v >4, thereisa 3-polytope with v vertices and 2v - 4
facets. (See Exercise)

We are now ready to look at a more general question: Given positive integers v, e, and
f, when will there exist a 3-polytope with v vertices, e edges, and f facets? We have
seen that the three integers must satisfy Euler's equation, thus if we have two of these
numbers the third is uniquely determined. It therefore suffices to ask the question: Given

positive integers v and f, when are there exist polytopes with v vertices and f facets?

We have seen two inequalities that v and f must satisfy. We shall now show that as

long as v and f satisfy these two inequalities the polytopes will exist.

The following figure shows the first quadrant of the vf-plane. The region that satisfies
our two inequalities is outlined. We shall show that there is a polytope corresponding to
each square in the region. The square corresponding to the tetrahedron hasa "t" in it.
We have placed "p's" and "b's" in the squares that correspond to prisms and bipyramids,
respectively. Several squares corresponding to pyramids have been filled with "y's", and

we note that all squares on the diagonal will correspond to pyramids.

Now, note that if polytope P occupies a square and if P' is obtained from P by
truncating a 3-valent vertex, then P' occupies a square one row up and two columns

over from P. If P' is obtained from P by capping a triangular face then P' occupies a

square two rows up and one column over from P.
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Next note that every unfilled square below the diagonal is one row up and two columns
over from a square in the region that is on or below the diagonal. Every polytope
indicated in the figure that is on or below the diagonal has a 3-valent vertex, furthermore

truncating a 3-valent vertex creates a new polytope with a 3-valent vertex.

Every unfilled square above the diagonal is one column over and two rows up from a
square in the region that is on or above the diagonal. All polytopes indicated in the figure
that are on or above the diagonal have triangular facets, and capping a facet creates a new

polytope with a triangular facet.

Thus, with these two operations we can fill out the rest of the region, and we have:

Theorem S.15: For every v and f greater than or equal to 4, there is a 3-polytope with

] facet i 2v-4 < f<(yv+4)/2.
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Exercises

I. Suppose that every vertex of a 3-polytope P is 4-valent. Find an equation for
v interms of e.

2. Suppose that each facet of a 3-polytope P has at least four sides. Find a sharp
inequality for f in terms of e.

3. Describe an infinite family of 3-polytopes all of whose facets are 4-sided.

fN

. Can a 3-polytope have all vertices 4-valent and all facets 4-sided ?

5. Prove that no 3-polytope has exactly seven edges.

6. Prove that for any n>6 and n#7 there exists a 3-polytope with exactly n edges.

~1

. Prove Theorem 5.3,

oo

. Prove Theorem 5.8.

Nej

. Prove theorem 5.9.

10. Prove Theorem 5.10.

11. The triangular prism has two types of Schlegel diagrams. One type is shown in this

chapter Draw the other type.

2. Draw a schlegel diagram for a 3-dimensional octahedron.

13. Draw a picture of the Schlegel diagram of a bypyramid over a tetrahedron.

14. Draw the Schlegel diagram of a the polytope obtained by truncating each vertex of a

tetrahedron.
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15. There are simpler examples than given in the text to show that the inequalities

F<(V+4)/2, and F >2V-4 are sharp. What are they?

16. Let p; be the number of i-sided facets of'a 3-polytope P. For example, for the cube
p3 =0,pg =6, and p;=0 for i>5. For a triangular prism p3 =2, py =3, and

p; =0 for i=5. Consider a Schlegel diagram for P. This diagram consists of f-1

polygons (called the bounded faces of the diagram ) filling out a polygon F (The polygon
F is the facet that the boundary was projected into, and is called the unbounded face of
the diagram.) Suppose we take a bounded face and take the sum of the angles of that

face. In terms of the number of edges of that face, what sum do we get? Suppose we do

this for each bounded face and add the results. Interms of the p;'s what sum do we get?

Suppose now that instead of adding these angles one face at a time, we add the angles by
taking a sum at each vertex and adding the results. What sum do we get? Obtain Euler's

equation by equating the two sums obtained by adding the angles in these two different

ways.

The following useful facts can be established using linear algebra, and are useful in some
of the above problems. You may use them here without proof.
a) If a hyperplane H contains a relative interior point of a k-polytope P in El
and does not contain P then P~H has dimension k-1.
b) If a hyperplane H contains a relative interior point p of a k-face, k<d-1, F
of a polytope P, and if H contains F, then an arbitrarily small movement of H
can be made so that the resulting hyperplane contains p and does not contain F.
¢) Ifa hyperplane H intersects a k-polytope P in E" and misses its vertices,

then H intersects a relative interior point of P.
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6. Eberhard's Theorem

In this chapter we shall look at problems such as these:
I. Is there a 3-polytope with three triangles, one quadrilateral and one hexagon (as
its only facets)?
2. is there a 3-polytope with five pentagons eight hexagons and 17 7-gons?

3. Is there a 3-polytope with 127 triangles 44 quadrilaterals and 11 octagons?

The first question is easily answered without any new theorems (see Exercise 1). After
proving our main theorem of this chapter we shall see that the answer to the second

question is no. As for the third question, I don't know the answer.

The general question would be the following: Let a set of numbers p; be given. Is there
a 3-polytope with p; i-sided facets? For example the third question would be: Is there a

3-polyotpe for which p; =127, py =44, and pg = 11 (and, of course, p: = 0 for all
3 4 8 1

other 1)?

Although this is similar to a question that we answered in Chapter 5, a general method for

answering this question has never been found. We shall examine partial solutions.

We begin with the most basic inequality known for the numbers p;.

Definition 6.1 Let p; be the number if i-sided facets of a 3-polytope P. then the

vector (p3,p4,----Pj.---) 18 called the p-vector of P.

For example the p-vector for a pentagonal prism is (0,5,2). The p-vector for a pyramid
over a 9-gon would be (9,0,0,0,0,0,1)
The above question is the same as asking: Given a vector, when is it the p-vector of some

3-polytope?
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Definition 6.2: A 3-polytope is simple iff each vertex has valence 3.

The tetrahedron, cube, and prisms are examples of simple 3-polytopes.

Theorem 6.1: If (ps. ... .p,) is the p-vector of a 3-polytope, then ¥ (6-i p;_= 12, with
lity i 1 is si
Proof: Let V,E, and F be the numbers of vertices, edges and facets, respectively, for

P. Suppose in each facet we place a mark near the middle of each edge. Then the number

of marks will be Zip;. Since two marks were placed near each edge, the sum is also 2E.

The sum Z6p; will be six times the number of facets, thus Z(6-1)p; = OF - 2E.

Now recall from Chapter 5 that we always have 2E >3V, and observe that in our
derivation of that inequality, we actually had equality if each vertex had valence three.
Recall also Euler's equation V-E+F =2, from which we get 6V-6E+6F = 12. now if we
substitute 4E for 6V, the inequality 2E >3V tells us that we will get 6F - 2E > 12,

with equality if the polytope is simple, thus we have:

2(6-1)p; 2 12, with equality if the polytope is simple. B

We can now see that the answer to question 2 is no, because plugging in to our
inequality we would get 1-5+ 0-8 - 1-17 > 12, which is not true, thus there could not be

such a 3-polytope.

Corollary 6.1: E 3-pol f: ith fi nsi
Corollary 6.2: There is no polytope all of whose facets are hexagons.

Suppose we use our inequality to tackle question 3. Plugging in we get
3-127+ 1-44 - 2-11 > 12, which is a true statement. Unfortunately, this tells us nothing.

Theorem 6.1 does not tell us that a polytope will exist when the inequality is satisfied, in
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fact such a polytope won't always exist (See Exercise 8). There are numerous results
covering special cases, the most famous is Eberhards's Theorem (Incredibly, Eberhard

really was the one who discovered and proved it!).

Theorem 6.2: (Eberhard's Theorem) If X(6-i)p; = 12, then there exists a value for pg
such that (ps, ..., p,) is the p-vector of some 3-polytope.

Note that the coefficient of pg is 0 in the sum, thus the sum is not effected by the

number of hexagons. Eberhard's Theorem tells us that if someone specifies how many
facets there are of all sizes except 6, and if these numbers satisfy the equation, then one

can find a number of hexagons so that the polytope exists.

We regret being unable to furnish the proof of Eberhard's Theorem here. The original
proof filled an entire book. In the 1960's Griinbaum, making use of a powerful theorem
about Schlegel diagrams, which was unavailable to Eberhard, was able to reduce the proof
to about 15 typewritten pages. Suffice it to say that this is a deep result about

3-polytopes.

Exercises
L. Prove without using the inequality developed in this chapter, that (3,1,0,1) is not a

p-vector for a 3-polytope.

2a. Let v; be the number if i-valent vertices of a 3-polytope. Use a marking process to
evaluate Ziv;.

b. What can be said about X(6-i)v; ?
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3. A 3-polytope is called simplicial iff each facet is a triangle. Show that the inequality

that you obtained in problem 2b is an equation when P is simplicial.

e

Prove that for any 3-polytope, Z(4-i)(v; + p;) = 8. Hint: use your knowledge about
Z4v; and Zdp;.

5. Does there exist a 3-polytope whose vertices are all 4-valent and whose facets are all

quadrilaterals?

0. Does there exist a 3-polytope for which each two facets have a different number of

edges?

7. Suppose that every vertex of a 3-polytope is 4-valent. What can be said about
Z(4-i)p; ?

8. Find a vector, (p3, ...,p,) such that E(6-i)p; = 12, but there is no 3-polytope with

that p-vector.
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Chapter 7. Polytopes and Map Coloring

A map is a planar graph (drawn in the plane) such that each vertex has valence at least

three and each region is bounded by a simple closed curve.

- %\VB @
v
-

a map not a map
Note that Schlegel diagrams of 3-polytopes are all maps.
Definition 7.1: The regions of a map are called countries.
Definition7.2: A map is said to be colored with n colors iff' colors are assigned to the
countries such that no two countries meeting on an edge have the same color and at most

n colors have been used. A map colored with n colors is said to be n-colored.

The following is an example of a map that is colored with four colors.
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In 1852 it was conjectured that every map could be colored with four or fewer colors. In
1879 an English barrister named A. B. Kempe published a "proof" of the conjecture. It
was not until eleven years later that an error in Kempe's work was found. Modifying
Kempe's methods, Heawood proved that every map could be colored with five colors.
There were, however no maps known that actually required five colors, thus the original
conjecture was still unproved. As the years passed and no one could prove it, it became
one of the most famous unsolved problems in mathematics. It was not until 1976 that
Kenneth Apel and Wolfgang Haken at the University of Illinois finally produced a proof of
the conjecture. It has remained a very controversial proof for two reasons. First, one
part of the proof depends on generating a set of approximately 2000 maps (a set which we
shall call M) according to certain rules. The set M was generated by hand and required
nearly two years to accomplish. (To my knowledge no one has ever checked that part of
the proof.) Second, another part involves using a computer to verify that the maps in M
have certain properties. This was done using over 1000 hours of computer time. This
part has been independently verified by others who have used their own programs to
check the maps in M, however it has remained a source of discomfort to many
mathematicians that an essential part of the proofis the work done by a computer. As for

the first part of the proof, Apel and Haken have given a probabilistic argument that shows
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that if there were any mistakes in generating M, the probability that it will effect the

validity of their proof is virtually zero!

In this chapter we shall see an unsuccessful attempt at a proof of the 4-color

conjecture,and some of its interesting consequences.

Definition 7.3: A Hamiltonian circuit in a map, or in a polytope, is a simple closed curve,
consisting of edges, passing exactly once through each vertex. The following is an

example of a Hamiltonian circuit in the above map:

Observe that if we have a map with a Hamiltonian circuit, we can color the countries

inside the circuit with colors A and B and the outside countries alternately C and D,

and we have 4-colored the map.
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This suggests that one could prove the 4-color conjecture by proving that every map has a
Hamiltonian circuit. The following map, however, shows that such a statement is not true

(See Exercise 1):

It's a rather unusual coincidence that in the early work on the 4-color problem one of the

theorems that was proved (actually it is a consequence of several theorems) was the

following:

Theorem 7.1; If the four r i i i -

This suggests that one could prove the 4-color theorem by proving:

Conjecture 7.1: The Schlegel diagrams of all 3-polytopes have Hamiltonian circuits.
(Or equivalently: Every 3-polytope has a Hamiltonian circuit.)

Unfortunately, this conjecture is not true as the following polytope shows.
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This polytope is called the Rhombic Dodecahedron. Note that each 3-valent vertex is
surrounded by 4-valent vertices, and each 4-valent vertex is surrounded by 3-valent
vertices, thus any circuit will alternate 3- and 4-valent vertices. But, there are six

4-valent and eight 3-valent vertices, thus no circuit can contain all vertices.

This counter example, however, did not end this line of investigation, for the following

had also been proved:

Theorem 7.2: If 3

] re 4- le.

The Rhombic Dodecahedron is not a simple polytope, and thus is not a counter example
to the conjecture that the simple ones all have Hamiltonian circuits. For years
mathematicians searched for a simple 3-polytope with no Hamiltonian circuit, with no
success. They also tried to prove that they all had such circuits, also without success. In
1932 a biologist named Jules Chuard published a "proof" that all simple 3-polytopes had
Hamiltonian circuits (and thus claimed to have solved the 4-color problem). This proof
was shown to be incorrect when in 1946 William Tutte found a simple 3-polytope with no

Hamiltonian circuit. The following is a Schlegel diagram of his polytope.
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The proof that there is no Hamiltonian circuit uses a property of a part of the graph called

a Tutte triangle:

C

As one can check with a few minutes work exhausting cases, no path can enter and leave
this portion of the graph at a and b and pass through every vertex of the Tutte triangle.
This means that if there is a Hamiltonian circuit then the portion passing through each
Tutte triangle must use the edge labeled c. Since there are three of these edges and they
meet at a vertex we have that the circuit uses all three edges at that vertex. Thisisa

contradiction because a circuit uses exactly two edges at a vertex.

Tutte's discovery did not end this way of trying to prove the 4-color conjecture. Note that
if we take Tutte's graph and cut three of the edges meeting a Tutte triangle we will have
disconnected the graph. In fact we will have disconnected it in a way that there will be
two separate pieces each containing a country. When the graph of a simple 3-polytope
has the property that we cannot separate two countries by cutting just three edges we say
that the graph is cyclically 4-connected. Tutte's graph is not cyclically 4-connected.

Examples that are cyclically 4-connected include the graphs of the prisms over polygons of
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at least four sides, and the dodecahedron. The following is another theorem that was

known to researchers working on this problem:

Theorem 7.3: If ically 4-conn: i iagram is 4-
every map 1s 4-colorable.

In 1960 Tutte found a cyclically 4-connected simple Schlegel diagram without a

Hamiltonian circuit. HOWEVER....

It was also known that if all cyclically 5-connected simple Schlegel diagrams were4-

colorable then all maps were 4-colorable.

Definition 7.4: A simple Schlegel diagram of a 3-polytope is cyclically n-connected iff
one can separate two ccountries by cutting edges, but one cannot separate two countries

by cutting fewer than n edges.

For example the graph of the cube is not cyclically 5-connected but the graph of the

dodecahedron is.

Schlegel diagram of the dodecahedron
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Unfortunately, in 1965 Walter found a cyclically 5-connected simple Schlegel diagram
with no Hamiltonian circuit. His example was quite complex, having 82 countries and 160

vertices.

This however was not the end of the line. There is something called strong cyclic

connectivity

Definition 7.5: A simple Schlegel diagram of a 3-polytope is strongly cyclically
n-connected iff is cyclically n-connected, and the only way to separate two countries by

cutting n edges is by cutting the edges meeting an n-sided country.

Theorem 7.4: If the strongly cyclically 5-connected simple Schlegel diagrams of
3-pol re all 4-colorabl 1l -

There was still hope. Perhaps all of these had Hamiltonian circuits. This would imply that

they were all four colorable and thus all maps would be 4-colorable.
About 1970 Kozyrev, Grinberg and Tutte found a strongly cyclically 5-connected simple

Schiegel diagram without a Hamiltonian circuit. To everyone's surprise, it had fewer

vertices than Tutte's first example.
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This finally ends this line of attack on the 4-color problem because there are no planar

cyclically 6-connected graphs (Exercise 10 ).

Although one can't prove the 4-color conjecture with Hamiltonian circuits, the circuits
themselves have become interesting. One problem of interest is to determine the smallest
simple 3-polytope with no Hamiltonian circuit (here, smallest, means lest number of
vertices.) In the middle 1960's three mathematicians independently found the following

non-Hamiltonian example:

This graph has 38 vertices, and no smaller example has ever been found. Since it's

discovery mathematicians have been trying to prove that 38 is the minimum number of
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vertices of a simple 3-polytope with no Hamiltonian circuit. The most recent result is that
all simple 3-polytopes with 34 or fewer vertices have Hamiltonian circuits. Since simple
3-polytopes always have an even number of vertices, the question becomes: Is the

minimum number of vertices for non-Hamiltonian simple 3-polytopes 36 or 387

Exercises
1. Prove that the map given at the top of page 60 has no Hamiltonian circuit.

2. Ifthe path does not return to it's starting point but passes through every vertex, it is
called a Hamiltonian path. Does the rhombic dodecahedron have a Hamiltonian path? If

not, what is the maximum length of any path (that doesn't intersect itself)?

3. Prove that if every map in which every vertex is 3-valent is 4-colorable then every map
is 4-colorable. Hint: Suppose you have a map that has vertices of valence greater than

three. What happens if you replace such vertices with small countries?
4. Prove that every simple 3-polytope has an even number of vertices.

5.Prove that for every integer n there is a map with at least n countries that is colorable

with 3 colors.

0. Prove that for every n there is a map with at least n countries that can be colored

with 2 colors.

7. Let P be the polytope obtained by capping each facet of a tetrahedron. Prove that P

has a Hamiltonian circuit.
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8. Let QO be obtained by capping every facet of an octahedron. Prove that Q does not

have a Hamiltonian circuit.

9 If P i1sa polytope obtained from polytope Q by capping each facet, then P is called
the Kleetope over Q (named after the great geometer Victor L. Klee). In problem 8 you
showed that the Kleetope over an octahedron has no Hamiltonian circuit. Prove that the
Kleetope over any simplicial 3-polytope, other than the tetrahedron, has no Hamiltonian

circuit.

10. Prove that there are no planar cyclically 6-connected 3-polytopes. Hint recall that

there must be a facet with five or fewer edges.
11. Prove that the 38 vertex example on page 63 has no Hamiltonian circuit. Hint:

suppose that there is such a circuit. If the two Tutte triangels are shrunk to vertices what

does this do to the circuit? What edges must the resulting circuit use?
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Duality

Definition: If X < E®, we define the polar dual X" of X by
X"= {(xeE"| <x,y><1,forall ye X}

where <, > is the dot product in Euclidean n-space.

Lemma 1: Forany x € E®, x*_is a closed halfspace whose bounding hyperplane is
perpendicular to the vector x and which intersects the segment 0x at a point p such
that  {jop| [|x|] = 1.

Lemma 2; X* =M x* overall x e X.

the proof is an immediate consequence of the definition of polar dual.

Lemma 3: For any set X, X" is closed, convex, and contains 0.
Proof: By Lemmas 1 and 2, X* is the intersection of closed convex sets and thus is

closed and convex. It is immediate from the definition of dual that 0 is in every dual.

Lemma4: If XY, then Y'ce x*

This follows immediately from the definition or from Lemma 2.

Theorem 1. If X=con S, then X" = S*.

Proof: By Lemma 4, X" s Suppose that x € S*. We need to show that <x,z> <1

for all ze X. Wehave z=% ojx, x;€ S, Soy=1,0;20. Now, by linearity of the

. *®
inner product, <zx>= ¥ <oixj, x> = L oy<xj, x> < Loy = 1. Thus x € X

and pa= S*, and we have X" = S*.



the dual of the set of extreme points of P, This, however, is the
intersection of a finite collection of closed halfspaces, Since the
origin is in the interior of P the dual is bounded and hence is a

polytope,

Corollary 8,5 A polytope is the intersection of a finite collection

of halfspaces,

Proof: ILet :ﬁ be the polytope, We translate P +to the origin

and observe that P = P .. Since P* is a polytope, we have

that P 1is the intersection of a finite collection of halfspaces,
Definition § 6A face of a polytope is the intersection of the polytope

with a supporting hyperplane, A O-dimensional face is called

a vertex. A 1-dimensional face is an edge, a {d-1)~dimensional

face of a d-polytope is a facet, and a (d-2)-dimensional face

is a subfacet,

Theoren 8,7 Every point in the boundary of a polytope lies in a

facet of the polytope.

Definition 8,8 A d-pyramid is the convex hull of a (d-1)-polytope P
and a point p not in the affine hull of P, The polytope P
is called the base of the pyramid and p 1is called the apex,

Definition 8,9 A d-prism is the convex hull of a (d-1)-polytope P
and its image under a translation that takes P +to a polytope
not in the affine hull of P, The polytope P and its image
under the translation are called thebases of the prism,

Definition 8,10 A d-bipyrimid is the convex hull of a (d-1)-
polytope P with a segment xy with x on one side of the
affine hull 66 P and y on the other, and xy intersecting

the interior of P, The polytope P is called the equator of

the bipyramid,
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Theorem 2: If X is closed, convex, and contains O, then X*’k =X

Proof: If p € X then <p,y><1 for all y e X", Thus pE 'S (3 p ¢ X, then there
is a hyperplane H given by <a,x>=b, where a € E", strictly separating p and X
Since 0 € X we have <a,y><bforall y € X, and thus <a,p> >b. Now

<a/b,x> < 1, forall x € X, thus a/b € X" But <a/b,p> > 1, thus p ¢ X**. Thus

Exercises

1. Prove that for any set X < E™, X = d con(X L {0}), where cl stands for the

closure of a set.

2. Can the dual of a convex set be affine, linear, or positive? Is the dual of a convex set
always linear, affine, positive? Is the dual of a positive always positive? is the dual of an

affine set always affine?

3a. Prove that for any family of sets {A,| x € a},

(Y A, xeoc)* = (ﬁAx*, X € Q).
b. Provethat ( M A, , x € oc)* = (Y AX*, X € o) does not always hold.



