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SHORT RATIONAL GENERATING FUNCTIONS

FOR LATTICE POINT PROBLEMS

Alexander Barvinok and Kevin Woods
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Abstract. We prove that for any fixed d the generating function of the projection
of the set of integer points in a rational d-dimensional polytope can be computed in

polynomial time. As a corollary, we deduce that various interesting sets of lattice

points, notably integer semigroups and (minimal) Hilbert bases of rational cones,
have short rational generating functions provided certain parameters (the dimension

and the number of generators) are fixed. It follows then that many computational
problems for such sets (for example, finding the number of positive integers not

representable as a non-negative integer combination of given coprime positive integers

a1, . . . , ad) admit polynomial time algorithms. We also discuss a related problem of
computing the Hilbert series of a ring generated by monomials.

1. Introduction and Main Results

Our main motivation is the following question which goes back to Frobenius and
Sylvester.

(1.1) The Frobenius Problem. Let a1, . . . , ad be positive coprime integers and
let

S =
{

µ1a1 + . . . + µdad : µ1, . . . , µd ∈ Z+

}

be the set of all non-negative integer combinations of a1, . . . , ad, or, in other words,
the semigroup S ⊂ Z+ of non-negative integers generated by a1, . . . , ad. What does
S look like? In particular, what is the largest integer not in S? (It is well known
and easy to see that all sufficiently large integers are in S). How many positive
integers are not in S? How many positive integers within a particular interval or a
particular arithmetic progression are not in S?
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One of the results of our paper is that for any fixed d “many” of these and
similar questions have “easy” solutions. For some of these questions, notably, how
to find the largest integer not in S, an efficient solution is already known [K92].
For others, for example, how to find the number of positive integers not in S, an
efficient solution was not previously known.

With a subset S ⊂ Z+ we associate the generating function

f(S; x) =
∑

m∈S

xm.

Clearly, the series converges for all x such that |x| < 1. We are interested in finding
a “simple” formula for f(S; x).

(1.2) Examples: d = 2 and d = 3. Suppose that d = 2, that is, S is generated
by two coprime positive integers a1 and a2. It is not hard to show that

f(S; x) =
1 − xa1a2

(1 − xa1)(1 − xa2)
.

Suppose that d = 3, that is, S is generated by three coprime positive integers
a1, a2 and a3. Then there exist (not necessarily distinct) non-negative integers
p1, p2, p3, p4 and p5, which can be computed efficiently from a1, a2 and a3, such
that

f(S; x) =
1 − xp1 − xp2 − xp3 + xp4 + xp5

(1 − xa1)(1 − xa2)(1 − xa3)
.

This interesting fact is, apparently, due to G. Denham [D96]. For example, if
a = 23, b = 29 and c = 44, then (thanks to a MAPLE program written by J.
Stembridge), p1 = 161, p2 = 203, p3 = 220, p4 = 249 and p5 = 335.

The idea of Denham’s proof is to interpret f(S; x) as the Hilbert series of a graded
ring M = C[ta1 , ta2 , ta3 ]. This ring M can be considered as a graded module over
the polynomial ring R = C[x1, x2, x3] graded by deg xi = ai and acting on M
by xit

aj = tai+aj . Since the projective dimension of M is 2, the Hilbert-Burch
Theorem allows us to construct explicitly a projective resolution of M and then to
compute the Hilbert series from it, cf. Section 20.4 of [E95].

We also note that a slightly weaker form of this result is obtained by elementary
methods in [SW86].

What happens for d = 4 (or larger)? Clearly, since S contains all sufficiently
large numbers, f(S; x) is a rational function of the type

(1.3) f(S; x) = pN (x) +
xN+1

1 − x
,

where N is the largest integer not in S and pN (x) is a polynomial of degree N .
Can we find a shorter formula for f(S; x)?

We need some standard definitions from computational complexity theory (see,
for example, [P94]).
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(1.4) Definitions. We define the input size of an integer a as the number of bits
needed to write a, that is, roughly, 1+log2 |a|. Hence the input size of the sequence

a1, . . . , ad will be roughly d +
∑d

i=1 log2 ai. We are interested in the complexity of
an algorithm which computes f(S; x) from the input a1, . . . , ad. The algorithm is
called polynomial time provided its running time is bounded by a certain polynomial
in the input size.

We show that for any fixed d there is a much shorter formula for f(S; x) than
that given by (1.3).

(1.5) Theorem. Let us fix d. Then there exists a positive integer s = s(d) and a
polynomial time algorithm, which, given the input a1, . . . , ad, computes f(S; x) in
the form

f(S; x) =
∑

i∈I

αi

xpi

(1 − xbi1) · · · (1 − xbis)
,

where I is a set of indices, αi are rational numbers, pi and bij are integers and
bij 6= 0 for all i, j

In particular, the number |I| of fractions is bounded by a certain polynomial poly

in the input size, that is, in d +
∑d

i=1 log2 ai. The degree of poly and the number

s = s(d) both grow fast with d, roughly as dO(d). However, for any fixed d, the
formula of Theorem 1.5 is much shorter than that of (1.3), in fact, exponentially
shorter. Indeed, by [EG72] it follows that for any fixed d, the integer N in (1.3)
can be as large as O(t2), where t = max{a1, . . . , ad}. Thus the length of formula
(1.3) is quadratic in t, that is, exponential in the input size. For d = 4, there
are examples (see [SW86]) showing that if the denominator of f(S; x) is chosen
in the form (1 − xa1)(1 − xa2)(1 − xa3)(1 − xa4) then the number of monomials
in the numerator can grow as fast as

√
t for t = min{a1, a2, a3, a4}, which is still

exponential in the input size.
Theorem 1.5 is a special case of a more general result. Let S ⊂ Zd be a (finite) set

of integer points. For an integer vector m = (µ1, . . . , µd) and (complex) variables
x = (x1, . . . , xd), x ∈ Cd, let

xm = xµ1

1 · · ·xµd

d

denote the corresponding monomial. We let x0
i = 1. Let us consider the Laurent

polynomial

f(S;x) =
∑

m∈S

xm.

This a priori “long” polynomial can sometimes be written as a “short” rational
function

f(S;x) =
∑

i∈I

αi

xpi

(1 − xbi1) . . . (1 − xbik)
,

3



where αi ∈ Q, pi, bij ∈ Zd and bij 6= 0 for all i, j. The motivating example is the
set S =

{

0, 1, 2, . . . , n}, for which we have

f(S; x) =

n
∑

k=0

xn =
1 − xn+1

1 − x
.

Thus, for this particular S, the long polynomial f(S; x) can be written as a short
rational function in x. Indeed, writing f(S; x) as a polynomial requires, roughly,
Ω(n logn) bits whereas writing f(S; x) as a rational function requires only O(log n)
bits. A more general example is given by the set of integer points in a rational
polyhedron.

(1.6) Definition. Let c1, . . . , cn ∈ Zd be integer vectors and let β1, . . . , βn ∈ Z

be integers. The set

P =
{

x ∈ Rd : 〈ci, x〉 ≤ βi for i = 1, . . . , n
}

is called the rational polyhedron defined by {ci, βi}. Again, we define the input size
of P as the number of bits needed to define P . That is, if ci = (γi1, . . . , γid) then
the input size of P is roughly

nd +

n
∑

i=1

log2 |βi| +
n

∑

i=1

d
∑

j=1

log2 |γij|.

A bounded rational polyhedron is called a rational polytope.

In [BP99] it is proved that for any fixed d, if P ⊂ Rd is a rational polyhedron
which contains no straight lines then for S = P ∩ Zd the expression

f(S;x) =
∑

m∈P∩Zd

xm

can be written as a short rational function. We give the precise statement in
Theorem 3.1.

The main result of this paper is that the projection of the set of integer points
in a rational polytope has a short generating function as well. More precisely, let
T : Rd −→ Rk be a linear transformation such that T (Zd) ⊂ Zk. Thus the matrix
of T (which we also denote by T ) with respect to the standard bases of Rd and Rk

is integral. The input size of T is defined similarly as the number of bits needed to
write T . Thus, if T = (tij): i = 1, . . . , k and j = 1, . . . , d then the input size of T

is roughly kd +
∑k

i=1

∑d
j=1 log2 |tij|. Let S = T (P ∩ Zd), S ⊂ Zk, be the image of

the set of integer points in P . We prove the following result.
4



(1.7) Theorem. Let us fix d. There exists a number s = s(d) and a polynomial
time algorithm, which, given a rational polytope P ⊂ Rd and a linear transformation
T : Rd −→ Rk such that T (Zd) ⊂ Zk, computes the function f(S;x) for S =
T (P ∩ Zd), S ⊂ Zk in the form

f(S;x) =
∑

i∈I

αi

xpi

(1 − xai1) · · · (1 − xais)
,

where αi ∈ Q, pi, aij ∈ Zk and aij 6= 0 for all i, j.

In particular, the number |I| of fractions in the representation of f(S;x) is
bounded by a certain polynomial in the input size of P and T . We do not discuss
the exact dependence of s(d) on d but note that a rough estimate suggests that s
can be chosen about dO(d).

We obtain Theorem 1.5 as a simple corollary of Theorem 1.7 (see Section 6). In
Section 7, we discuss other interesting sets which possess short rational generating
functions, such as the (minimal) Hilbert bases of rational cones and “test sets” in
parametric integer programming. We also discuss a related problem of finding a
short formula for the Hilbert series of a ring generated by monomials.

What can we do with rational generating functions? As is discussed in Section 3,
we can efficiently perform Boolean operations on sets given by their short rational
generating functions. In particular, if S1, S2 ⊂ Zd are two sets of integer points
given by their generating functions f(S1;x) and f(S2;x), we can compute the
generating functions f(S1 ∩ S2;x), f(S1 ∪ S2;x) and f(S1 \ S2;x) in polynomial
time (see Theorem 3.6). Also, by specializing at x = (1, . . . , 1), we can count
points in polynomial time in finite sets given by their generating functions (this is
not immediate since x = (1, . . . , 1) is a pole of each fraction in the representation
of f(S;x), cf. Theorem 2.6).

Let f(S; x) be the generating function of Theorem 1.5. Then, for the complement
S = Z+ \S, we compute the generating function f(S; x) = (1− x)−1 − f(S; x) and
then compute the number of non-negative integers not in S by specializing f(S; x)
at x = 1. Given an interval [a, b] ⊂ Z+, for S′ = S∩ [a, b], we can compute f(S′; x),
and, specializing x = 1, we can obtain the number of points in S inside the interval
[a, b].

The proof of Theorem 1.7 combines several methods. First, it uses some tech-
niques of working with short rational generating functions developed by the first
author, see [BP99] and Sections 2 and 3. Second, it uses some “flatness”-type ar-
guments from the geometry of numbers, see, for example, [GLS93] and Section 4.
Finally, it relies on parametric integer programming arguments developed by R.
Kannan, L. Lovász and H. Scarf, see [K92], [KLS90] and Section 5. The crucial
step of bringing the three ideas together and obtaining the proof of Theorem 1.7 is
made by the second author (Section 6).

Remark. When a lemma or a theorem states that “there exists a polynomial time
algorithm”, the actual algorithm is either provided in the proof or a suitable refer-
ence is given.
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2. Rational Functions and Monomial Substitutions

In this section, we develop certain methods of specializing rational functions
f(x), x ∈ Cd of the type

f(x) =
∑

i∈I

αi

xpi

(1 − xai1) · · · (1 − xaik(i))
,

where I is a finite set of indices, αi ∈ Q, pi, aij ∈ Zd and aij 6= 0 for all i, j. We
fix an upper bound k ≥ k(i) on the number of binomials in every denominator but
allow the number of variables d, the number |I| of terms, the coefficients αi and
the vectors pi, aij to vary. Moreover, to simplify the notation somewhat, we will
consider the case of all k(i) being equal to a number k, so

(2.1) f(x) =
∑

i∈I

αi

xpi

(1 − xai1) · · · (1 − xaik)
.

This is a sufficiently general situation since we can always increase the number of
binomials in a fraction by using the identity

xp

(1 − xa1) · · · (1 − xak−1)
=

xp(1 − xak)

(1 − xa1) · · · (1 − xak)

=
xp

(1 − xa1) · · · (1 − xak)
− xp+ak

(1 − xa1) · · · (1 − xak)
.

The procedure may increase the number of terms by a factor of 2k, but since k is
assumed to be fixed, this amounts to a constant factor increase.

As usual, the input size of (2.1) is the number of bits needed to write f(x) down.
Let l1, . . . , ld ∈ Zn be integer vectors, li = (λi1, . . . , λin). The vectors define the

monomial map φ : Cn −→ Cd as follows:

(2.2)
z 7−→ x

(ζ1, . . . , ζn) 7−→ (x1, . . . , xd), where xi = zli .

The input size of this monomial map is the number of bits needed to define it, that

is, roughly, dn +
∑d

i=1 log2 |λij |.
Suppose that the image of φ does not consist entirely of poles of f(x). Then we

can define a rational function g : Cn −→ C by

g(z) = f
(

φ(z)
)

.

The goal of this section is to construct a polynomial time algorithm, which, given
a rational function (2.1) with a fixed number k of binomials in each fraction and
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a monomial substitution (2.2), computes a formula for g(z). Note that we cannot
just substitute x = φ(z) in the formula (2.1) since any z ∈ Cn may turn out to be
a pole for some fraction of (2.1) and yet a regular point of g. For example, if d = 1,
n = 0 and

f(x) =
1

1 − x
− xn+1

1 − x
=

n
∑

m=0

xm,

then x = 1 is the pole of both fractions but is a regular point of f ; we have
f(1) = n + 1.

To this end, let us associate with the rational function (2.1) a meromorphic
function F (c), c ∈ Cd, defined by

(2.3) F (c) =
∑

i∈I

αi

exp〈c, pi〉
(1 − exp〈c, ai1〉) · · · (1 − exp〈c, aik〉)

.

As usual, for c ∈ Cd with c = r + it, where r, t ∈ Rd and a ∈ Rd, we let 〈c, a〉 =
〈r, a〉+i〈t, a〉, where 〈·, ·〉 is the standard scalar product in Rd. The set of poles of the
i-th fraction is the union over 1 ≤ j ≤ k of the hyperplanes

{

c ∈ Cd : 〈c, aij〉 = 0
}

.
However, the set of poles of F (c) may be much smaller because of cancellations of
singularities.

There is a simple relation between (2.1) and (2.3). For c = (γ1, . . . , γd) and
x = (x1, . . . , xd) we write

x = ec provided xi = exp{γi} for i = 1, . . . , d.

Then the functions (2.1) and (2.3) are related by the equation

F (c) = f
(

ec
)

.

Let L ⊂ Cd be a subspace such that a generic c ∈ L is a regular point of F (c).
We want to construct a short formula for F (c) for c ∈ L. We assume that the
subspace L ⊂ Cd is given by its integer basis. Again, we cannot just use (2.3), since
L may be orthogonal to some vectors aij and hence a generic c ∈ L may be a pole
of some fractions in (2.3) while being a regular point of F (c).

(2.4) Definition. Given l, let us consider the function

G(τ ; ξ1, . . . , ξl) =

l
∏

i=1

τξi

1 − exp{−τξi}
in l + 1 (complex) variables τ and ξ1, . . . , ξl. It is easy to see that G is analytic in
a neighborhood of the origin τ = ξ1 = . . . = ξl = 0 and therefore there exists an
expansion

G(τ ; ξ1, . . . , ξl) =

+∞
∑

j=0

τ j tdj(ξ1, . . . , ξl),

where tdj(ξ1, . . . , ξl) is a homogeneous polynomial of degree j, called the j-th Todd
polynomial in ξ1, . . . , ξl. It is easy to check that tdj(ξ1, . . . , ξl) is a symmetric
polynomial with rational coefficients, cf. [BP99].
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(2.5) Lemma. Let us fix k. Then there exists a polynomial time algorithm, which,
given a function (2.3) and a subspace L ⊂ Cd which does not lie entirely in the set
of poles of F computes F (c) for c ∈ L in the form

F (c) =
∑

i∈I′

βi

exp〈c, qi〉
(

1 − exp〈c, bi1〉
)

· · ·
(

1 − exp〈c, bis〉
) ,

where s ≤ k, βi ∈ Q, qi, bij ∈ Zd and bij is not orthogonal to L for any i, j.

Proof. Let us consider the representation (2.3). Let us choose a vector v ∈ Rd such
that 〈v, aij〉 6= 0 for all aij . Such a vector v can be constructed in polynomial time,
see, for example, [BP99]. Let τ be a complex parameter. Then, for any regular
point c of F (c) the function F (c + τv) is an analytic function in a neighborhood of
τ = 0 and the constant term of its expansion at τ = 0 is equal to F (c). Hence our
goal is to compute the constant term (in τ) of every fraction in the representation
(2.3) of F (c + τv) and add them up.

Let us consider a typical fraction

h(τ) =
exp〈c + τv, p〉

(

1 − exp〈c + τv, a1〉
)

· · ·
(

1 − exp〈c + τv, ak〉
) ,

where p, aj ∈ Zd, as a function of τ . Suppose that the vectors ai orthogonal to L
are a1, . . . , al for some l ≤ k. Then

h(τ) =τ−l exp〈c, p〉 exp
{

τ〈v, p〉
}

l
∏

i=1

τ

1 − exp
{

τ〈v, ai〉
}

×
k

∏

i=l+1

1

1 − exp〈c + τv, ai〉
.

Now we observe that τ lh(τ) is an analytic function of τ and that our goal is to
compute the coefficient of τ l in the expansion of τ lh(τ) in the neighborhood of
τ = 0.

First, we observe that

(2.5.1) exp
{

τ〈v, p〉
}

=
+∞
∑

j=0

〈v, p〉j
j!

τ j .

Second, letting ξi = −〈v, ai〉 for i = 1, . . . , l, we observe that

(2.5.2)

l
∏

i=1

τ

1 − exp
{

τ〈v, ai〉
} =

1

ξ1 · · · ξl

+∞
∑

j=0

τ j tdj(ξ1, . . . , ξl)
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Finally,

(2.5.3)

k
∏

i=l+1

1

1 − exp〈c + τv, ai〉
=

+∞
∑

j=0

Hj(c, al+1, . . . , ak, v)τ j

for some functions Hj.
Note that τ = 0 is a regular point of

k
∏

i=l+1

1

1 − exp〈c + τv, ai〉

and so we compute Hj differentiating the product j times and setting τ = 0. By
the repeated application of the chain rule, Hj is a polynomial in exp〈c, ai〉, 〈v, ai〉
and (1− exp〈c, ai〉)−1. Thus, for all j1, j2, j3 such that j1 + j2 + j3 = l, we have to
combine the j1-st term of (2.5.1) , the j2-nd term of (2.5.2) and the j3-rd term of
(2.5.3). Since l ≤ k and k is fixed, we get the desired result. �

Remark. If L = {0} and 0 is a regular point of F (c), the algorithm of Lemma 2.5
computes the number F (0). This procedure is used in [B94] to compute the number
of integer points in a polytope.

Now we can compute the result of the monomial substitution (2.2) into the
rational function (2.1).

(2.6) Theorem. Let us fix k. Then there exists a polynomial time algorithm,
which, given a function (2.1) and a monomial map φ : Cn −→ Cd given by (2.2),
such that the image of φ does not lie entirely in the set of poles of f(x) computes
the function g(z) = f

(

φ(z)
)

as

g(z) =
∑

i∈I′

βi

zqi

(1 − zbi1) · · · (1 − zbis)
,

where s ≤ k, βi ∈ Q, qi, bij ∈ Zn and bij 6= 0 for all i, j.

Proof. Let F (c) be the function (2.3) associated to f(x). With the monomial map
(2.2) we associate a linear transformation Φ : Cn −→ Cd

c 7−→
(

〈c, l1〉, . . . , 〈c, ld〉
)

and the adjoint transformation Φ∗ : Cd −→ Cn,

Φ∗(ξ1, . . . , ξd) = ξ1l1 + . . . + ξdld.

Let us define
G(c) = F

(

Φ(c)
)

for c ∈ Cn.
9



Hence

G(c) = g(ec).

Let L ⊂ Cd be the image of Cn under Φ. Then L does not lie entirely in the set of
poles of F (c). Applying Lemma 2.5, we compute G(c) = F

(

Φ(c)
)

in the form

G(c) =
∑

i∈I′

βi

exp〈Φ(c), ui〉
(1 − exp〈Φ(c), vi1〉) · · · (1 − exp〈Φ(c), vis〉)

,

where for i, j we have 〈Φ(c), vij〉 6= 0 for a generic c ∈ L. Now we let qi = Φ∗(ui)
and bij = Φ∗(vij) so that

g(ec) = G(c) =
∑

i∈I′

βi

exp〈c, qi〉
(1 − exp〈c, bi1〉) · · · (1 − exp〈c, bis〉)

and the result follows. �

Remark. In particular, if x = (1, . . . , 1) is a regular point of (2.1), we can choose
l1 = · · · = ld = 0 in (2.2). In this case, the algorithm of Theorem 2.6 computes the
value of f(1, . . . , 1).

3. Operations with Generating Functions

Some of the results of this section are stated in [BP99]. Many of the proofs in
[BP99] are only sketched and some non-trivial details are omitted. We give a mostly
independent presentation with complete proofs. The main goal of this section is to
prove that if finite sets S1, S2 ⊂ Zd are given by their generating functions f(S1;x)
and f(S2;x) then the generating function f(S;x) of their intersection S = S1 ∩ S2

can be computed efficiently. Our main tool is the generating function for the integer
points in a rational polyhedron.

Let P ⊂ Rd be a rational polyhedron and let S = P ∩ Zd be the set of integer
points in P . Let

f(S;x) =
∑

m∈P∩Zd

xm.

Thus if P is bounded, f(S;x) is a Laurent polynomial in x. If P (possibly un-
bounded) does not contain straight lines then there is a non-empty open set U ⊂ Cd

such that the series converges absolutely and uniformly on compact subsets of U
to a rational function of x. If P contains a straight line it is convenient to agree
that f(S;x) ≡ 0, see [BP99].

We need the following result from [BP99] which states that f(S;x) can be written
as a short rational function.

10



(3.1) Theorem. Let us fix d. Then there exists a polynomial time algorithm,
which, for any given rational polyhedron P ⊂ Rd computes f(P ∩ Zd;x) as

f(P ∩ Zd;x) =
∑

i∈I

εi

xpi

(1 − xai1) · · · (1 − xaid)
,

where εi ∈ {−1, 1}, pi, aij,∈ Zd and aij 6= 0 for all i, j. In fact, for each i,
ai1, . . . , aid is a basis of Zd.

A (complete) proof can be found in [BP99], Theorem 4.4.
To compute the generating function of the intersection of two sets, we compute

a more general operation, that is, the Hadamard product of two rational generating
functions.

(3.2) Definition. Let g1 and g2 be Laurent power series in x ∈ Cd

g1(x) =
∑

m∈Zd

β1mxm and g2(x) =
∑

m∈Zd

β2mxm.

The Hadamard product g = g1 ? g2 is the power series

g(x) =
∑

m∈Zd

βmxm where βm = β1mβ2m.

First we will show that the Hadamard product of the Laurent expansions of
some particular rational functions can be computed in polynomial time. Namely,
let us choose a non-zero vector l ∈ Zd and suppose that a11, . . . , a1k ∈ Zd and
a21, . . . , a2k ∈ Zd are vectors such that 〈l, aij〉 < 0 for all i, j. Let p1, p2 ∈ Zd and
let

(3.3) g1(x) =
xp1

(1 − xa11) · · · (1 − xa1k)
and g2(x) =

xp2

(1 − xa21) · · · (1 − xa2k)
.

We observe that for all x in a sufficiently small neighborhood U of x0 = el, we have
|xaij | < 1 and so g1 and g2 have Laurent series expansions for x ∈ U . Indeed, if
|xa| < 1, the fraction 1/(1 − xa) expands as a geometric series

1

1 − xa
=

∑

µ∈Z+

xµa,

and to obtain the expansions of g1 and g2 we multiply the corresponding series.
Clearly, the Hadamard product of the expansions converges for all x ∈ U to some
analytic function h, which we also denote g1 ? g2. We prove that once the number
k of binomials in (3.3) is fixed, there is a polynomial time algorithm for computing
the Laurent expansion of h = g1 ? g2 as a short rational function.
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(3.4) Lemma. Let us fix k. Then there exists a polynomial time algorithm, which,
given functions (3.3) such that for some l ∈ Zd we have 〈aij, l〉 < 0 for all i, j,
computes a function h(x) in the form

h(x) =
∑

i∈I

βi

xqi

(1 − xbi1) · · · (1 − xbis)

with qi, bij ∈ Zd, βi ∈ Q and s ≤ 2k such that h has the Laurent expansion in a
neighborhood U of x0 = el and h(x) = g1(x) ? g2(x).

Proof. In the space R2k =
{

(ξ1, . . . , ξ2k)
}

let P be a rational polyhedron defined
by the equations

p1 + ξ1a11 + . . . + ξka1k = p2 + ξk+1a21 + . . . + ξ2ka2k

and the inequalities
ξi ≥ 0 for i = 1, . . . , 2k.

Let z = (z1, . . . , z2k) and let us consider the series

(3.4.1) f(P ∩ Z2k; z) =
∑

m∈P∩Z2k

zm.

Clearly, the series converges absolutely and uniformly on compact sets as long as
|zi| < 1 for i = 1, . . . , 2k. By Theorem 3.1 we compute f(P ∩ Z2k; z) in the form

(3.4.2) f(P ∩ Z2k; z) =
∑

i∈I′

εi

zui

(1 − zvi1) · · · (1 − zvi(2k))
,

for some vectors ui, vij ∈ Z2k and some numbers εi ∈ {−1, 1}, where vij 6= 0 for all
i, j.

On the other hand, expanding g1(x) and g2(x) as products of geometric series,
we obtain

g1(x) = xp1

k
∏

i=1

∑

µi∈Z+

xµiai =
∑

(µ1,... ,µk)∈Z
k
+

xp1+µ1a11+...+µka1k and

g2(x) = xp2

k
∏

i=1

∑

νi∈Z+

xνiai =
∑

(ν1,... ,νk)∈Z
k
+

xp2+ν1a21+...+νka2k .

Since the Hadamard product is bilinear and since

xm1 ? xm2 =

{

xm1 if m1 = m2

0 if m1 6= m2,
12



we conclude that

g1(x) ? g2(x) = xp1

∑

(m,n)∈P∩Z
2k

m=(µ1,... ,µk)
n=(ν1,... ,νk)

xµ1a11+...+µka1k .

Thus h(x) is obtained from the function xp1f(P ∩ Z2k; z) (cf. (3.4.1)–(3.4.2)) by
the monomial substitution

z1 = xa11 , . . . , zk = xa1k , zk+1 = 1, . . . , z2k = 1.

Now we use Theorem 2.6 to compute the result of the monomial substitution in
(3.4.2). �

Now we are ready to prove the main result of this section. Suppose we have two
finite sets S1, S2 ⊂ Zd and let f(S1;x) and f(S2;x) be the corresponding generating
functions

f(S1;x) =
∑

m∈S1

xm and f(S2;x) =
∑

m∈S2

xm.

Suppose further, that f(S1;x) and f(S2;x) can be written as short rational func-
tions

(3.5)

f(S1;x) =
∑

i∈I1

αi

xpi

(1 − xai1) · · · (1 − xaik)
and

f(S2;x) =
∑

i∈I2

βi

xqi

(1 − xbi1) · · · (1 − xbik)

with αi, βi ∈ Q, pi, qi, aij, bij ∈ Zd and aij , bij 6= 0. Now let us consider S1 and S2

as defined by representations (3.5) of f(S1;x) and f(S2;x) as rational functions.
Let S = S1 ∩ S2. Our goal is to compute the representation of

f(S;x) =
∑

m∈S

xm

as a short rational function. Again, we assume the number of k of binomials in each
fraction of (3.5) fixed and allow numbers αi and βi and vectors pi, qi and aij , bij to
vary.

(3.6) Theorem. Let us fix k. Then there exists a polynomial time algorithm,
which, given f1(S1;x) and f2(S2;x) computes f(S;x) for S = S1 ∩ S2 in the form

f(S;x) =
∑

i∈I

γi

xui

(1 − xvi1) · · · (1 − xvis)
,

13



where s ≤ 2k, γi ∈ Q, ui, vij ∈ Zd and vij 6= 0 for all i, j.

Proof. Let us choose a vector l ∈ Zd, such that 〈l, aij〉 6= 0 and 〈l, bij〉 6= 0 for all
i, j. As we remarked before, such a vector l can be constructed in polynomial time.
When 〈l, aij〉 > 0 or when 〈l, bij〉 > 0 we apply the identity

xp

1 − xa
= − xp−a

1 − x−a
,

to reverse the direction of aij or bij , so that we achieve 〈l, aij〉 < 0 and 〈l, bij〉 < 0
for all i, j in the representations (3.5). Then we can write

f(S1;x) =
∑

i∈I1

αig1i(x) and f(S2;x) =
∑

i∈I2

βig2i(x)

for some functions gi1, g2i of type (3.3). There are Laurent series expansions of
f(S1;x) and f(S2;x) in a neighborhood U of the point x0 = el and

f(S;x) = f(S1;x) ? f(S2;x) =
∑

i1∈I1,i2∈I2

αi1βi2g1i(x) ? g2i(x).

We use Lemma 3.4 to compute f(S;x). �

Let S1, . . . , Sm ⊂ Zd be sets. We say that S ⊂ Zd is a Boolean combination of
S1, . . . , Sm provided S is obtained from Si by taking intersections, unions and com-
plements. An immediate corollary of Theorem 3.6 is that the generating function
of a Boolean combination of sets can be computed in polynomial time.

(3.7) Corollary. Let us fix m (the number of sets Si ⊂ Zd) and k (the num-
ber of binomials in each fraction of f(Si;x)). Then there exists an s = s(k, m)
and a polynomial time algorithm, which, for any m (finite) sets S1, . . . , Sm ⊂ Zd

given by their generating functions f(Si;x) and a set S ⊂ Zd defined as a Boolean
combination of S1, . . . , Sm, computes f(S;x) in the form

f(S;x) =
∑

i∈I

γi

xui

(1 − xvi1) · · · (1 − xvis)
,

where γi ∈ Q, ui, vij ∈ Zd and vij 6= 0 for all i, j.

Proof. We note that

f(S1 ∪ S2;x) = f(S1;x) + f(S2;x) − f(S1 ∩ S2;x) and

f(S1 \ S2;x) = f(S1;x) − f(S1 ∩ S2;x)

for any two subsets S1, S2 ⊂ Zd. The proof follows by Theorem 3.6. �

Finally, we discuss how to patch together several generating functions into a
single generating function.

14



(3.8) Definitions. By the interior int P of a polyhedron P ⊂ Rd we always mean
the relative interior, that is, the interior of P with respect to its affine hull.

Let X ⊂ Rd be a set. We denote by [X ] the indicator function [X ] : Rd −→ R,

[X ](x) =

{

1 if x ∈ X

0 if x /∈ X.

We will need a simple formula for the indicator of the relative interior of a polytope:

(3.8.1) [intP ] = (−1)dim P
∑

F

(−1)dim F [F ],

where the sum is taken over all faces of P including P itself. This is a simple
corollary of the Euler-Poincaré formula; see, for example, Section VI.3 of [B02].

From Theorem 3.1 we deduce the following corollary.

(3.9) Corollary. Let us fix d. Then there exists a polynomial time algorithm,
which, for any given rational polytope P ⊂ Rd computes f(S;x) with S =

(

intP
)

∩
Zd in the form

f(S;x) =
∑

i∈I

αi

xpi

(1 − xai1) · · · (1 − xaid)
,

where αi ∈ Q, pi, aij ∈ Zd and aij 6= 0 for all i, j.

Proof. Applying formula (3.8.1), we get

f(S;x) = (−1)dim P
∑

F

(−1)dim F f(F ∩ Zd;x).

Since the dimension d is fixed, there are polynomially many faces F and their
descriptions can be computed in polynomial time from the description of P . We
use Theorem 3.1 to complete the proof. �

Let us consider the following situation. Let S ⊂ Zd be a finite set and let
Q1, . . . , Qn ⊂ Rd be a collection of rational polytopes such that S ⊂ ⋃n

i=1 int Qi

and int Qi ∩ intQj = ∅ for i 6= j. In a typical situation, Q1, . . . , Qn is a polytopal
complex, that is, the intersection of every two polytopes Qi and Qj , if non-empty,
is a common face of Qi and Qj and a face of a polytope Qi from the collection is
also a polytope from the collection (in particular, not all Qi are full-dimensional).
In this case,

⋃n
i=1 Qi =

⋃n
i=1 int Qi and int Qi are pairwise disjoint.

Suppose that we are given the functions

f(S ∩ Qj ;x) =
∑

i∈Ij

αi,j

xpi,j

(1 − xai1,j ) · · · (1 − xaik,j )

and that we want to compute f(S;x). In other words, we want to patch together
several generating functions f(S ∩Qj ;x) into a single generating function f(S;x).
We obtain the following result.
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(3.10) Lemma. Let us fix k and d. Then there exists a polynomial time algorithm,
which, given polytopes Q1, . . . , Qn and functions f(S ∩ Qj;x) computes f(S;x) in
the form

f(S;x) =
∑

i∈I

βi

xqi

(1 − xbi1) · · · (1 − xbis)

for s ≤ 2k.

Proof. We can write

f(S;x) =
n

∑

i=1

f(S ∩ intQi;x).

On the other hand,

S ∩ int Qi = (S ∩ Qi) ∩ (intQi ∩ Zd).

First, using Corollary 3.9 we compute f(intQi ∩ Zd;x), and then using Theorem
3.6 we compute f(S ∩ int Qi;x). �

4. Lattice Width and Small Gaps

In this section, we establish a simple geometric fact which plays a crucial role in
the proof of Theorem 1.7. We start with definitions.

(4.1) Definitions. Let Λ ⊂ Rd be a lattice (that is, a discrete additive subgroup
of Rd of rank d) and let Λ∗ ⊂ Rd be the dual (reciprocal) lattice, that is,

Λ∗ =
{

c ∈ Rd : 〈c, x〉 ∈ Z for all x ∈ Λ
}

,

where 〈·, ·〉 is the standard scalar product in Rd. For a convex body B ⊂ Rd (by
which we mean a convex compact set) and a non-zero vector c ∈ Λ∗ let

width(B, c) = max
x∈B

〈c, x〉 − min
x∈B

〈c, x〉

be the width of B in the direction of c. Let

width(B) = min
c∈Λ∗\{0}

width(B, c)

be the lattice width of B. As is well known, the minimum indeed exists.
It is known that there exists a constant ω(d) with the following property: if

B ∩ Λ = ∅ then width(B) ≤ ω(d). It is conjectured (and proved in many special
cases) that ω(d) = O(d) while the best known value is ω(d) = O(d ln d) [BL+99].

We state some obvious properties of the width:

width(B, c) = width(B + x, c) for any x ∈ Rd and

width(αB, c) = α width(B, c) for all α ≥ 0.

Consequently,

width(B) = width(B + x) for any x ∈ Rd and

width(αB) = α width(B) for all α ≥ 0.
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(4.2) Lemma. Let B ⊂ Rd be a convex body, let c ∈ Rd be a non-zero vector and
let

γmin = min
x∈B

〈c, x〉 and γmax = max
x∈B

〈c, x〉.

Let γmin < γ1 < γ2 < γmax be numbers. Then there exists a point x0 ∈ B and a
number 0 < α < 1 such that for

A = α(B − x0) + x0 = αB + (1 − α)x0

one has A ⊂ B and

min
x∈A

〈c, x〉 = γ1 and max
x∈A

〈c, x〉 = γ2.

Proof. Translating B, if necessary, we can assume that γmin = 0. Dilating B,
if necessary, we can assume that γmax = 1. Then 0 < γ1/(1 − γ2 + γ1) < 1,
and, therefore, we can choose x0 ∈ B such that 〈c, x0〉 = γ1/(1 − γ2 + γ1). Let
α = (γ2 − γ1). Then, for A = α(B − x0) + x0 = αB + (1 − α)x0, we have

min
x∈A

〈c, x〉 =
(1 − α)γ1

1 − γ2 + γ1
= γ1

and

max
x∈A

〈c, x〉 = α +
(1 − α)γ1

1 − γ2 + γ1
= γ2.

Since B is convex, we have A ⊂ B. �

Now we can prove the main result of this section.

(4.3) Theorem. Let B ⊂ Rd be a convex body and let Λ ⊂ Rd be a lattice. Let
c ∈ Λ∗ be a non-zero vector. Let us consider the map:

φ : B ∩ Λ −→ Z, φ(x) = 〈c, x〉

and let Y = φ(B ∩ Λ). Hence Y ⊂ Z is a finite set.
Suppose that

width(B, c) ≤ 2 width(B).

Then for any y1, y2 ∈ Y such that y2 − y1 > 2ω(d) there exists a y ∈ Y such that
y1 < y < y2.

Proof. Suppose that such a point y does not exist. Let us choose any 0 < ε < 1/2
and let γ1 = y1 + ε and γ2 = y2 − ε. By Lemma 4.2 there exists an x0 ∈ B and a
number α > 0 such that for A = α(B − x0) + x0, A ⊂ B, we have

min
x∈A

〈c, x〉 = γ1 and max
x∈A

〈c, x〉 = γ2.
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Then there is no integer in the interval [γ1, γ2] which is a value of 〈c, x〉 for some
x ∈ B ∩ Λ. Hence A ∩ Λ = ∅. Therefore, we must have

width(A) ≤ ω(d).

On the other hand, since A is a homothetic image of B we have

width(A) = α width(B) and width(A, c) = αwidth(B, c).

Therefore,
γ2 − γ1 = width(A, c) ≤ 2 width(A) ≤ 2ω(d).

Hence y2 − y1 − 2ε ≤ 2ω(d) for any ε > 0 and y2 − y1 ≤ 2ω(d), which is a
contradiction. �

In other words, the set Y ⊂ Z does not have “gaps” larger than 2ω(d). We will
use the following corollary of Theorem 4.3.

(4.4) Corollary. Let Y ⊂ Z be the set of Theorem 4.3 and let m = d2ω(d)e. For
a positive integer l, let Y + l =

{

y + l : y ∈ Y
}

denote the translation of Y by l.
If Y 6= ∅ then the set

Z = Y \
m
⋃

l=1

(Y + l)

consists of a single point.

Proof. By Theorem 4.3, we have Z = {z}, where z = min{y : y ∈ Y }. �

5. Projections and Partitions

In this section, we supply the remaining ingredient of the proof of Theorem 1.7.
This ingredient, up to a change of the coordinates, is a weak form of a lemma of
R. Kannan [K92].

We describe it below. Let T : Rd −→ Rk be a linear transformation such that
T (Rd) = Rk and T (Zd) ⊂ Zk. Thus k ≤ d and the matrix of T is integral with
respect to the standard bases of Rd and Rk. Then ker T is a rational (d − k)-
dimensional subspace of Rd (that is, a subspace spanned by integer vectors) and
Λ = Zd ∩ (kerT ) is a lattice in kerT . As is known (see, for example, Chapter 1 of
[C97]), a basis of Λ can be extended to a basis of Zd and hence any linear functional
` : ker T −→ R such that `(Λ) ⊂ Z can be represented in the form `(x) = 〈c, x〉 for
some c ∈ Zd. The representation, of course, is not unique as long as ker T 6= Rd.
For c ∈ (kerT )⊥ (the orthogonal complement of kerT ), the corresponding linear
functional is identically 0.

Let P ⊂ Rd be a rational polytope. For y ∈ Rk let us consider the fiber

Py =
{

x ∈ P : T (x) = y
}
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of x. For c ∈ Zd \ (kerT )⊥ we define the width of Py in the direction of c as

width(Py, c) = max
x∈Py

〈c, x〉 − min
x∈Py

〈c, x〉

and we define the lattice width of Py as

width(Py) = min
c∈Zd\(ker T )⊥

width(Py, c).

We observe that the lattice width of Py so defined coincides with the width (as
defined in Section 4), with respect to Λ of a translation P ′

y ⊂ ker T .
We need the following result, which is a (rephrased) weaker version of Lemma

3.1 from [K92]. It asserts, roughly, that one can dissect the image T (P ) into
polynomially many (in the input size of P and T ) polyhedral pieces Qi and find for
every piece Qi a lattice direction wi such that for all y ∈ Qi the lattice width of Py

is almost attained at wi.

(5.1) Lemma. Let us fix d. Then there exists a polynomial time algorithm, which,
for any rational polytope P ⊂ Rd and any linear transformation T : Rd −→ Rk such
that T (Rd) = Rk and T (Zd) = Zk, constructs rational polytopes Q1, . . . , Qn ⊂ Rk

and vectors w1, . . . , wn ∈ Zd \ (kerT )⊥ such that

(1) For each i = 1, . . . , n and every y ∈ Qi,

either width(Py, wi) ≤ 1 or width(Py, wi) ≤ 2 width(Py);

(2) The interiors int Qi are pairwise disjoint and

n
⋃

i=1

int Qi = T (P ).

Proof. Let us construct a rational subspace V ⊂ Rd such that V ∩ (ker T ) = {0}
and (ker T ) + V = Rd. Then the restriction of T onto V is invertible and we can
compute a matrix L of the linear transformation Rk −→ V which is the right inverse
of T .

Suppose that the polytope P is defined by a system of linear inequalities

P =
{

x ∈ Rd : Ax ≤ b
}

,

where A is an n×d integer matrix and b is an integer n-vector. Then the translation
P ′

y ⊂ kerT of Py is defined by the system of linear inequalities

P ′
y =

{

x ∈ ker T : Ax ≤ b − ALy
}

.

As y ranges over Q = T (P ), vector b′ = b−ALy ranges over the rational polytope
Q′ = b − AL(Q) with dim Q′ ≤ k. Since width(Py, c) = width(P ′

y, c) for all y ∈ Q
and all c and width(Py) = width(P ′

y), the result follows by Part 3 of Lemma 3.1 of
[K92]. �
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6. Proofs

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. Without loss of generality, we assume that T (Rd) = Rk.
Indeed, if im(T ) 6= Rk, we consider the restriction T : Rd −→ im(T ). After a
change of the coordinates, the lattice Λ = Zk∩ im(T ) is identified with the standard
integer lattice.

The proof is by induction on dim(kerT ) = d − k.
Suppose that k = d, so dim(kerT ) = 0 and T : Zd −→ Zk = Zd is an embedding.

Let e1, . . . , ed be the standard basis of Zd and let ti = T (ei). Then f(S;x) is
obtained from f(P ∩ Zd;y) by the monomial substitution yi = xti and we use
Theorems 2.6 and 3.1 to complete the proof.

Suppose that d > k, so dim(kerT ) > 0. Let Q1, . . . , Qn ⊂ Rk be the polytopes
constructed in Lemma 5.1. It suffices to compute the functions f(S ∩ Qi;x) for
i = 1, . . . , n and then, using Lemma 3.10, we can patch them together and obtain
f(S;x).

Let us consider a particular polytope Q = Qi and the corresponding intersection
S ∩ Q. Let w = wi, w ∈ Zd \ (kerT )⊥ be a vector whose existence is claimed by
Lemma 5.1. Let us consider the linear transformation

T̂ : Rd −→ Rk+1 = Rk ⊕ R, T̂ (x) =
(

T (x), 〈w, x〉
)

and the projection

pr : Rk+1 −→ Rk, pr(ξ1, . . . , ξk+1) = (ξ1, . . . , ξk).

Finally, let P ′ =
{

x ∈ P : T (x) ∈ Q
}

and Ŝ = T̂ (P ′ ∩ Zd) ⊂ Rk+1.

Clearly, S∩Q = pr(Ŝ) and dim(ker T̂ ) = d−k−1, so we can apply the induction

hypothesis to T̂ and compute f(Ŝ; z), where z = (x, xk+1), xk+1 ∈ C. Our goal is

to compute f(S∩Q;x) from f(Ŝ; z). To do that, we construct a subset Z ⊂ Ŝ such
that the projection pr : Z −→ S ∩Q is one-to-one, and then we obtain f(S ∩Q;x)
from f(Z; z) by substituting xk+1 = 1.

For a positive integer l, let Ŝ + l denote the translation of Ŝ by l along the last
coordinate,

Ŝ + l =
{

(ξ1, . . . , ξk, ξk+1 + l) : (ξ1, . . . , ξk) ∈ Ŝ
}

.

Clearly,
f(Ŝ + l; z) = xl

k+1f(Ŝ; z).

Let m = d2ω(d − k)e (see Section 4) and let us define

Z = Ŝ \
m
⋃

l=1

(

Ŝ + l
)

.
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Using Corollary 3.7, we compute f(Z; z).
Now we claim that the projection pr : Z −→ S∩Q is one-to-one. Let us consider

the projection pr : Ŝ −→ S ∩ Q. For a y ∈ S let us consider the preimage Ŝy ⊂ Ŝ
of y. We observe that

Ŝy =
{

(

y, 〈w, x〉
)

: x ∈ Py ∩ Zd
}

,

that is, Ŝy consists of all pairs
(

y, 〈w, x〉
)

, where x is an integer point from the
fiber Py of P over y:

Py =
{

x ∈ P : T (x) = y
}

.

By Lemma 5.1, we have either width(Py, w) ≤ 1 or width(Py, w) ≤ 2 width(Py). If
width(Py, w) ≤ 2 width(Py), then, by Corollary 4.4, the set

Zy = Ŝy \
m
⋃

l=1

(

Ŝy + l)

consists of a single point, that is, the point of Ŝy with the smallest last coordinate.

If width(Py, w) ≤ 1 then Ŝy consists of a single point and so Zy consists of a single
point as well. Thus, in any case, for any y ∈ S∩Q the preimage Zy of the projection
pr : Z −→ S ∩ Q consists of a single point, so pr : Z −→ S ∩ Q is indeed one-to-
one. Hence, using Theorem 2.6, we compute f(S ∩ Q;x) by specializing f(Z; z) at
xk+1 = 1 (where z = (x, xk+1)). �

We deduce Theorem 1.5 from Theorem 1.7.

Proof of Theorem 1.5. Let us define a linear transformation T : Rd −→ R by

T (ξ1, . . . , ξd) = a1ξ1 + . . . + adξd.

Thus S = T (Zd
+) is the semigroup generated by a1, . . . , ad. It remains to notice

that there are some explicit bounds for the largest positive integer not in S, so one
can replace the non-negative orthant Zd

+ by a rational polytope to get the initial
interval of S. For example, in [EG72] it is shown that if t ≥ max{a1, . . . , ad} then
all numbers greater than or equal to 2t2/d are in S. Let n = d2t2/de and let

P =
{

(ξ1, . . . , ξd) :

d
∑

i=1

ξiai ≤ n − 1 and ξi ≥ 0 for i = 1, . . . d
}

be the simplex in Rd. Then we can represent S as a disjoint union of T (P ∩ Zd)
and the integer points in the ray [n, +∞) Since the generating function of the set
of integer points in the ray [n, +∞) is just xn+1/(1− x), applying Theorem 1.7 we
complete the proof. �
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7. Further Examples: Hilbert Bases, Test Sets and Hilbert Series

As another application of Theorem 1.7, let us show that certain Hilbert bases are
enumerated by short rational functions.

Let u1, . . . , ud ⊂ Zd be linearly independent vectors and let

Π =
{

d
∑

i=1

αiui : 0 ≤ αi ≤ 1 for i = 1, . . . , d
}

be the parallelepiped spanned by u1, . . . , ud, and let K be the convex cone spanned
by u1, . . . , ud:

K =
{

d
∑

i=1

αiui : αi ≥ 0 for i = 1, . . . , d
}

.

We say that a point v ∈ Π ∩ Zd is indecomposable provided v cannot be written in
the form v = v1 + v2, where v1 and v2 are non-zero integer points from Π. The
set S of all non-decomposable integer vectors in Π is called the (minimal) Hilbert
basis of the semigroup K ∩ Zd, since every integer vector in K can be written as a
non-negative integer combination of points from S, see Section 16.4 of [Sc86]. Let
us show that as long as the dimension d is fixed, the set S has a short rational
generating function.

(7.1) Theorem. Let us fix d. Then there exists a number s = s(d) and a poly-
nomial time algorithm, which, given linearly independent vectors u1, . . . , ud ∈ Zd

computes the generating function f(S;x) of the (minimal) Hilbert basis S of the
semigroup of integer points in the cone spanned by u1, . . . , ud in the form:

f(S; x) =
∑

i∈I

αi

xpi

(1 − xbi1) · · · (1 − xbis)
,

where I is a set of indices, αi are rational numbers, pi, bij ∈ Zd and bij 6= 0 for all
i, j.

Proof. Let us construct a rational polyhedron Q ⊂ Π which contains all integer
points in Π except 0. This can be done, for example, as follows: we construct vectors
l1, . . . , ld ∈ Zd such that 〈li, uj〉 = 0 for i 6= j and 〈li, ui〉 > 0, let l = l1 + . . . + ld
and intersect Π with the halfspace 〈l, x〉 ≥ 1.

Let P = Q × Q ⊂ Rd ⊕ Rd = R2d and let T : P −→ Rd be the transformation,
T (x, y) = x + y. Let S1 = T (P ∩ Z2d) and let S2 = Q ∩ Zd. Then the minimal
Hilbert base S can be written as S = S2 \S1. The proof now follows from Theorem
1.7 and Corollary 3.7. �

Yet another interesting class of sets having short rational generating functions
is that of “test sets” with respect to a given integer matrix.
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(7.2) Test Sets. Let us choose a n×d integer matrix A such that for any b ∈ Rn,
the polyhedron

Pb =
{

x ∈ Rd : Ax ≤ b
}

,

is bounded. A point a ∈ Zd is called a neighbor of 0 with respect to A provided
there is a polytope Pb containing 0 and a and not containing any other integer
point in its interior. The set S(A) of all neighbors of the origin is often called a
test set. Test sets S(A) play an important role in parametric integer programming
[S97]. The set S(A) is finite, and it has some interesting (for d ≥ 2) and not quite
understood (for d ≥ 3) structure. One can show that for any fixed d and n, given A,
the generating function f(S;x) for S = S(A) can be computed in polynomial time
as a short rational function. The proof follows from Theorem 7.1 and Corollary 3.7
in a similar way as above, since S can be expressed as a Boolean combination of
projections of sets of integer points in some rational polytopes.

We note that other types of test sets studied in the literature, such as Schrijver’s
universal test set and Graver’s test set (see [T95] and [St96]), also admit a short
rational generating function.

Finally, we describe one related problem of computational commutative algebra.

(7.3) Hilbert series of rings generated by monomials. Let us consider integer
vectors a1, . . . , ad ∈ Zk

+ with non-negative coordinates and let S be the semigroup
generated by a1, . . . , ad:

S =
{

d
∑

i=1

µiai : µi ∈ Z+

}

.

Thus S can be represented as the image T (Zd
+) under the linear transformation

T : Rd −→ Rk, T (ξ1, . . . , ξd) = ξ1a1 + . . . + ξdad.

The generating function f(S;x) can be interpreted as the Hilbert series of the Zk-
graded ring R = C[xa1 , . . . ,xad ], cf. [BS98] and Chapter 10 of [St96]. The set S is
infinite and Theorem 1.7 is not directly applicable (although it allows us to claim
the intersection of S with any given polytopal region has a short rational generating
function). However, one can still compute the whole function f(S;x) in polynomial
time as a short rational function provided the dimension k and the number d of
generators are fixed. We also note that by applying a monomial specialization of
f(S;x) we can obtain the Hilbert series of R under a coarser grading.

We sketch an algorithm for computing f(S;x) below.
Without loss of generality we assume that ai 6= 0 for i = 1, . . . , d. Let us consider

the product

g(S;x) = f(S;x)(1− xa1) · · · (1 − xad).
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It is not hard to prove that g(S;x) is, in fact, a polynomial in x. This follows, for
example, from the interpretation of f(S;x) as a Hilbert series, cf. Section I.9 of
[E95].

We need to compute a bound L with the property that that if the coefficient of
xm, m = (µ1, . . . , µk), in g(S;x) is non-zero then µ1 + . . . + µk ≤ L. Suppose for
a moment that we can find such an L. Let us consider the integer cube

C ⊂ Zd
+, C =

{

(ξ1, . . . , ξd) : 0 ≤ ξi ≤ L for i = 1, . . . , d
}

and the integer simplex

∆ ⊂ Zk
+ : ∆ =

{

(µ1, . . . , µk) : µ1 + . . . + µk ≤ L
}

.

Let S′ = T (C), so ∆ ∩ S ⊂ S′. Applying Theorem 1.7, we compute f(S′;x) as a
short rational function. Let

g(S′;x) = f(S′;x)(1 − xa1) · · · (1 − xad).

We note that
g(S;x) = g(S′;x) ? f(∆;x)

and use Theorem 3.1 and Lemma 3.4 to compute the Hadamard product g(S;x)
as a short rational function. Finally, we let

f(S;x) = g(S;x)

k
∏

i=1

1

1 − xai
.

It remains, therefore, to compute the bound L on the total degree of a monomial
xm which may appear with a non-zero coefficient in the expansion of g(S;x).

Let us consider the rational cone K ⊂ Rd ⊕ Rd,

K =
{

(x, y) : x, y ∈ Rd
+ and T (x) = T (y)

}

.

The lattice semigroup K ∩ Z2d is finitely generated and using some standard tech-
niques (see Chapter 17 of [Sc86] and Chapter 4 of [St96]) one can compute in poly-
nomial time an upper bound M on the coordinates of generators (xi, yi) of K∩Z2d.
Let A be the sum of the coordinates of a1, . . . , ad. We claim that L = A(M + 1) is
the desired upper bound.

Indeed, for every generator (xi, yi) with xi 6= yi, let zi = xi − yi or zi = yi − xi,
whichever is lexicographically positive. Thus each coordinate of zi does not exceed
M . Let

Z = Zd
+ \

⋃

i

(

Zd
+ + zi

)

.
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One can observe that the restriction T : Z −→ S is one-to-one. In fact, for every
x ∈ S the vector z ∈ Z such that T (z) = x is the lexicographic minimum among
all y ∈ Zd

+ such that T (y) = x.

For I ⊂ {1, . . . , d} let ZI
+ ⊂ Zd

+ be the coordinate semigroup consisting of the
points (ξ1, . . . , ξd) such that ξi = 0 for i /∈ I. As is proved in [Kh95], the set Z can

be represented as a finite disjoint union of sets Zj of the type vj + Z
Ij

+ so that the
coordinates of vj do not exceed M . Let Sj = T (Zj). Then S is the disjoint union
of Sj and

f(Sj;x) = xT (vj)
∏

i∈Ij

1

1 − xai
.

The sum of the coordinates of T (vj) does not exceed MA. Therefore, if xm, m =
(µ1, . . . , µk) appears with a non-zero coefficient in the product

f(Sj ;x)(1 − xa1) · · · (1 − xak),

we must have µ1 + . . . + µd ≤ MA + A = L, which completes the proof.
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