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We present a polynomial time algorithm to compute any fixed number of the highest

coefficients of the Ehrhart quasi-polynomial of a rational simplex. Previously such
algorithms were known for integer simplices and for rational polytopes of a fixed

dimension. The algorithm is based on the formula relating the kth coefficient of

the Ehrhart quasi-polynomial of a rational polytope to volumes of sections of the
polytope by affine lattice subspaces parallel to k-dimensional faces of the polytope.

We discuss possible extensions and open questions.

1. Introduction and main results

Let P ⊂ Rd be a rational polytope, that is, the convex hull of a finite set of
points with rational coordinates. Let t ∈ N be a positive integer such that the
vertices of the dilated polytope

tP =
{
tx : x ∈ P

}
are integer vectors. As is known, see, for example, Section 4.6 of [St97], there exist
functions ei(P ; ·) : N −→ Q, i = 0, . . . , d, such that

ei(P ;n+ t) = ei(P ;n) for all n ∈ N

and

|nP ∩ Zd| =
d∑

i=0

ei(P ;n)ni for all n ∈ N.

The function on the right hand side is called the Ehrhart quasi-polynomial of P . It
is clear that if dimP = d then ed(P ;n) = volP . In this paper, we are interested in
the computational complexity of the coefficients ei(P ;n).
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If the dimension d is fixed in advance, the values of ei(P ;n) for any given P , n,
and i can be computed in polynomial time by interpolation, as implied by a poly-
nomial time algorithm to count integer points in a polyhedron of a fixed dimension
[B94a], [BP99].

If the dimension d is allowed to vary, it is an NP-hard problem to check whether
P ∩ Zd 6= ∅, let alone to count integer points in P . This is true even when P is a
rational simplex, as exemplified by the knapsack problem see, for example, Section
16.6 of [Sc86]. If the polytope P is integral then the coefficients ei(P ;n) = ei(P )
do not depend on n. In that case, for any k fixed in advance, computation of
the Ehrhart coefficient ed−k(P ) reduces in polynomial time to computation of the
volumes of the (d − k)-dimensional faces of P [B94b]. The algorithm is based
on efficient formulas relating ed−k(P ), volumes of the (d − k)-dimensional faces,
and cones of feasible directions at those faces, see [Mo93], [BP99], and [PT04]. In
particular, if P = ∆ is an integer simplex, there is a polynomial time algorithm for
computing ed−k(∆) as long as k fixed in advance.

In this paper, we extend the last result to rational simplices (a d-dimensional
rational simplex is the convex hull in Rd of (d+1) affinely independent points with
rational coordinates).

• Let us fix an integer k ≥ 0. The paper presents a polynomial time algorithm,
which, given an integer d ≥ k, a rational simplex ∆ ⊂ Rd, and a positive integer n,
computes the value of ed−k(∆;n).

We present the algorithm in Section 7 and discuss its possible extensions in
Section 8.

In contrast to the case of an integral polytope, for a general rational polytope P
computation of ei(P ;n) cannot be reduced to computation of the volumes of faces
and some functionals of the “angles” (cones of feasible direction) at the faces. A
general result of McMullen [Mc78], see also [MS83] and [Mc93], asserts that the
contribution of the i-dimensional face F of a rational polytope P to the coefficient
ei(P ;n) is a function of the volume of F , the cone of feasible directions of P at F ,
and the translation class of the affine hull aff(F ) of F modulo Zd.

Our algorithm is based on a new structural result, Theorem 1.3 below, relating
the coefficient ed−k(P ;n) to volumes of sections of P by affine lattice subspaces
parallel to faces F of P with dimF ≥ d− k. Theorem 1.3 may be of interest in its
own right.

(1.1) Valuations and polytopes. Let V be a d-dimensional real vector space
and let Λ ⊂ V be a lattice, that is, a discrete additive subgroup which spans V .
A polytope P ⊂ V is called a Λ-polytope or a lattice polytope if the vertices of P
belong to Λ. A polytope P ⊂ V is called Λ-rational or just rational if tP is a lattice
polytope for some positive integer t.
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For a set A ⊂ V , let [A] : V −→ R be the indicator of A:

[A](x) =
{

1 if x ∈ A
0 if x /∈ A.

A complex-valued function ν on rational polytopes P ⊂ V is called a valuation if
it preserves linear relations among indicators of rational polytopes:∑

i∈I

αi[Pi] = 0 =⇒
∑
i∈I

αiν(Pi) = 0,

where Pi ⊂ V is a finite family of rational polytopes and αi are rational numbers.
We consider only Λ-valuations or lattice valuations ν that satisfy

ν(P + u) = ν(P ) for all u ∈ Λ,

see [MS83] and [Mc93].
A general result of McMullen [Mc78] states that if ν is a lattice valuation, P ⊂ V

is a rational polytope, and t ∈ N is a number such that tP is a lattice polytope
then there exist functions νi(P ; ·) : N −→ C, i = 0, . . . , d, such that

ν(nP ) =
d∑

i=0

νi(P ;n)ni for all n ∈ N

and
νi(P ;n+ t) = νi(P ;n) for all n ∈ N.

Clearly, if we compute ν(mP ) for m = n, n + t, n + 2t, . . . , n + dt, we can obtain
νi(P ;n) by interpolation.

We are interested in the counting valuation E, where V = Rd, Λ = Zd, and

E(P ) = |P ∩ Zd|

is the number of lattice points in P .
The idea of the algorithm is to replace valuation E by some other valuation, so

that the coefficients ed(P ;n), . . . , ed−k(P ;n) remain intact, but the new valuation
can be computed in polynomial time on any given rational simplex ∆, so that the
desired coefficient ed−k(∆;n) can be obtained by interpolation.

(1.2) Valuations EL. Let L ⊂ Rd be a lattice subspace, that is, a subspace
spanned by the points L∩Zd. Suppose that dimL = k and let pr : Rd −→ L be the
orthogonal projection onto L. Let P ⊂ Rd be a rational polytope, let Q = pr(P ),
Q ⊂ L, be its projection, and let Λ = pr

(
Zd

)
. Since L is a lattice subspace, Λ ⊂ L

is a lattice.
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Let L⊥ be the orthogonal complement of L. Then L⊥ ⊂ Rd is a lattice sub-
space. We introduce the volume form vold−k on L⊥ which differs from the volume
form inherited from Rd by a scaling factor chosen so that the determinant of the
lattice Zd ∩ L⊥ is 1. Consequently, the same volume form vold−k is carried by all
translations x+ L⊥, x ∈ Rd.

We consider the following quantity

EL(P ) =
∑
m∈Λ

vold−k

(
P ∩

(
m+ L⊥

))
=

∑
m∈Q∩Λ

vold−k

(
P ∩

(
m+ L⊥

))
(clearly, for m /∈ Q the corresponding terms are 0).

In words: we take all lattice translates of L⊥, select those that intersect P and
add the volumes of the intersections.

Clearly, EL is a lattice valuation, so

EL(nP ) =
d∑

i=0

ei(P,L;n)ni

for some periodic functions ei(P,L; ·). If tP is an integer polytope for some t ∈ N
then

ei(P,L;n+ t) = ei(P,L;n) for all n ∈ N

and i = 0, . . . , d.
Note that if L = {0} then EL(P ) = volP and if L = Rd then EL(P ) = |P ∩Zd|,

so the valuations EL interpolate between the volume and the number of lattice
points as dimL grows.

We prove that ed−k(P ;n) can be represented as a linear combination of
ed−k(P,L;n) for some lattice subspaces L with dimL ≤ k.

(1.3) Theorem. Let us fix an integer k ≥ 0. Let P ⊂ Rd be a full-dimensional ra-
tional polytope and let t be a positive integer such that tP is an integer polytope. For
a (d− k)-dimensional face F of P let lin(F ) ⊂ Rd be the (d− k)-dimensional sub-
space parallel to the affine hull aff(F ) of F and let LF = (linF )⊥ be its orthogonal
complement, so LF ⊂ Rd is a k-dimensional lattice subspace.

Let L be a finite collection of lattice subspaces which contains the subspaces LF

for all (d − k)-dimensional faces F of P and is closed under intersections. For
L ∈ L let µ(L) be integer numbers such that the identity[ ⋃

L∈L
L

]
=

∑
L∈L

µ(L)[L]

holds for the indicator functions of the subspaces from L.
Let us define

ν(nP ) =
∑
L∈L

µ(L)EL(nP ) for n ∈ N.
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Then there exist functions νi(P ; ·) : N −→ Q, i = 0, . . . , d, such that

(1.3.1) ν(nP ) =
d∑

i=0

νi(P ;n)ni for all n ∈ N,

(1.3.2) νi(P ;n+ t) = νi(P ;n) for all n ∈ N,

and

(1.3.3) ed−i(P ;n) = νd−i(P ;n) for all n ∈ N and i = 0, . . . , k.

We prove Theorem 1.3 in Section 4 after some preparations in Sections 2 and 3.

Remark. Valuation E clearly does not depend on the choice of the scalar product
in Rd. One can observe that valuation ν of Theorem 1.3 admits a dual description
which does not depend on the scalar product. Instead of L, we consider the set
L∨ of subspaces containing the subspaces lin(F ) and closed under taking sums of
subspaces, and for L ∈ L∨ we define E∨L(·) as the sum of the volumes of sections
of the polytope by the lattice affine subspaces parallel to L. Then

ν =
∑

L∈L∨
µ∨(L)E∨L ,

where µ∨ are some integers computed from the set L∨, partially ordered by inclu-
sion.

However, using the explicit scalar product turns out to be more convenient.

The advantage of working with valuations EL is that they are more amenable
to computations.

• Let us fix an integer k ≥ 0. We present a polynomial time algorithm, which,
given an integer d ≥ k, a d-dimensional rational simplex ∆ ⊂ Rd, and a lattice
subspace L ⊂ Rd such that dimL ≤ k, computes EL(∆).

We present the algorithm in Section 6 after some preparations in Section 5.

(1.4) The main ingredient of the algorithm to compute ed−k(∆;n).
Theorem 1.3 allows us to reduce computation of ed−k(∆;n) to that of EL(∆),

where L ⊂ Rd is a lattice subspace and dimL ≤ k. Let us choose a particular
lattice subspace L with dimL = j ≤ k.

If P = ∆ is a simplex, then the description of the orthogonal projection Q =
pr(∆) onto L can be computed in polynomial time. Moreover, one can compute in
polynomial time a decomposition of Q into a union of non-intersecting polyhedral
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pieces Qi, such that vold−j

(
pr−1(x)

)
is a polynomial on each piece Qi. Thus

computing EL(∆) reduces to computing the sum∑
m∈Qi∩Λ

φ(m),

where φ is a polynomial with deg φ = d − j, Qi ⊂ L is a polytope with dimQi =
j ≤ k and Λ ⊂ L is a lattice. The sum is computed by applying the technique of
“short rational functions” for lattice points in polytopes of a fixed dimension, cf.
[BW03], [BP99], and [D+04].

The algorithm for computing the sum of a polynomial over integer points in a
polytope is discussed in Section 5.

2. The Fourier expansions of E and EL

Let V be a d-dimensional real vector space with the scalar product 〈·, ·〉 and the
corresponding Euclidean norm ‖ · ‖. Let Λ ⊂ V be a lattice and let Λ∗ ⊂ V be the
dual or the reciprocal lattice

Λ∗ =
{
x ∈ V : 〈x, y〉 ∈ Z for all y ∈ Λ

}
.

For τ > 0, we introduce the theta function

θΛ(x, τ) =τd/2
∑
m∈Λ

exp
{
−πτ‖x−m‖2

}
=(detΛ)−1

∑
l∈Λ∗

exp
{
−π‖l‖2/τ + 2πi〈l, x〉

}
, where x ∈ V.

The last inequality is the reciprocity relation for theta series (essentially, the Poisson
summation formula), see, for example, Section 69 of [Be61].

For a polytope P , let intP denote the relative interior of P and let ∂P = P \intP
be the boundary of P .

(2.1) Lemma. Let P ⊂ V be a full-dimensional polytope such that ∂P ∩ Λ = ∅.
Then

|P ∩ Λ| = lim
τ−→+∞

∫
P

θΛ(x, τ) dx

=(detΛ)−1 lim
τ−→+∞

∑
l∈Λ∗

exp
{
−π‖l‖2/τ

} ∫
P

exp{2πi〈l, x〉} dx.

Proof. As is known (cf., for example, Section B.5 of [La02]), as τ −→ +∞, the
function θΛ(x, τ) converges in the sense of distributions to the sum of the delta-
functions concentrated at the points m ∈ Λ. Therefore, for every smooth function
φ : Rd −→ R with a compact support, we have

(2.1.1) lim
τ−→+∞

∫
Rd

φ(x)θΛ(x, τ) dx =
∑
m∈Λ

φ(m).
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Since ∂P ∩Λ = ∅, we can replace φ by the indicator function [P ] in (2.1.1). �

Remark. If ∂P ∩ Λ 6= ∅, the limit still exists but then it counts every lattice point
m ∈ ∂P with the weight equal to the “solid angle” of m at P , since every term
exp

{
−πτ‖x−m‖2

}
is spherically symmetric about m. This connection between

the solid angle valuation and the theta function was described by the author in the
unpublished paper [Ba92] (the paper is very different from paper [B94b] which has
the same title) and independently discovered by Diaz and Robins [DR94]. Diaz and
Robins used a similar approach based on Fourier analysis to express coefficients of
the Ehrhart polynomial of an integer polytope in terms of cotangent sums [DR97].
Banaszczyk [B93a] obtained asymptotically optimal bounds in transference theo-
rems for lattices by using a similar approach with theta functions, with the polytope
P replaced by a Euclidean ball.

The formula of Lemma 2.1 can be considered as the Fourier expansion of the
counting valuation.

We need a similar result for valuation EL defined in Section 1.2.

(2.2) Lemma. Let P ⊂ Rd be a full-dimensional polytope and let L ⊂ Rd be a
lattice subspace with dimL = k. Let pr : Rd −→ L be the orthogonal projection
onto L, let Q = pr(P ), and let Λ = pr(Zd), so Λ ⊂ L is a lattice in L. Suppose
that ∂Q ∩ Λ = ∅.

Then

EL(P ) = lim
τ−→+∞

∑
l∈L∩Zd

exp
{
−π‖l‖2/τ

} ∫
P

exp{2πi〈l, x〉} dx.

Proof. We observe that L∩Zd = Λ∗. For a vector x ∈ Rd, let xL be the orthogonal
projection of x onto L. Applying the reciprocity relation for theta functions in L,
we write ∑

l∈L∩Zd

exp
{
−π‖l‖2/τ + 2πi〈l, x〉

}
=

∑
l∈L∩Zd

exp
{
−π‖l‖2/τ + 2πi〈l, xL〉

}
=(detΛ)τk/2

∑
m∈Λ

exp
{
−πτ‖xL −m‖2

}
.

As is known (cf., for example, Section B.5 of [La02]), as τ −→ +∞, the function

gτ (x) = τk/2
∑
m∈Λ

exp
{
−πτ‖xL −m‖2

}
converges in the sense of distributions to the sum of the delta-functions concentrated
on the subspaces m+ L⊥ (this is the set of points where xL = m) for m ∈ Λ.
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Therefore, for every smooth function φ : Rd −→ R with a compact support, we
have

(2.2.1) lim
τ−→+∞

∫
Rd

φ(x)gτ (x) dx =
∑
m∈Λ

∫
m+L⊥

φ(x) dL⊥x,

where dL⊥x is the Lebesgue measure on m+ L⊥ induced from Rd.
Since ∂Q∩Λ = ∅, each subspace m+L⊥ for m ∈ Λ either intersects the interior

of P or is at least some distance ε = ε(P,L) > 0 away from P . Hence we may
replace φ by the indicator [P ] in (2.2.1).

Recall from Section 1.2 that measuring volumes in m+L⊥, we scale the volume
form in L⊥ induced from Rd so that the determinant of the lattice L⊥ ∩ Zd is 1.
One can observe that detΛ provides the required normalization factor, so

(detΛ)
∫

m+L⊥
[P ](x) dL⊥(x) = vold−k

(
P ∩

(
m+ L⊥

))
.

The proof now follows. �

Remark. If ∂Q ∩ Λ 6= ∅ the limit still exists but then for m ∈ ∂Q ∩ Λ the volume
vold−k

(
P ∩

(
m+ L⊥

))
is counted with the weight defined as follows: we find the

minimal (under inclusion) face F of P such that m+L⊥ is contained in aff(F ) and
let the weight equal to the solid angle of P at F .

3. Exponential valuations

Let V be a d-dimensional Euclidean space, let Λ ⊂ V be a lattice and let Λ∗ be
the reciprocal lattice. Let us choose a vector l ∈ Λ∗ and let us consider the integral

Φl(P ) =
∫

P

exp{2πi〈l, x〉} dx,

where dx is the Lebesgue measure in V . Note that for l = 0 we have Φl(P ) =
Φ0(P ) = volP . We have

Φl(P + a) = exp {2πi〈l, a〉}Φl(P ) for all a ∈ V.
It follows that Φl is a Λ-valuation on rational polytopes P ⊂ V .

If l 6= 0 then the following lemma (essentially, Stokes’ formula) shows that Φl

can be expressed as a linear combination of exponential valuations on the facets of
P . The proof can be found, for example, in [B93b].

(3.1) Lemma. Let P ⊂ V be a full-dimensional polytope. For a facet Γ of P , let
dΓx be the Lebesgue measure on aff(Γ), and let pΓ be the unit outer normal to Γ.
Then, for every l ∈ V \ 0, we have∫

P

exp {2πi〈l, x〉} dx =
∑
Γ

〈l, pΓ〉
2πi‖l‖2

∫
Γ

exp {2πi〈l, x〉} dΓx,

where the sum is taken over all facets Γ of P .

Let F ⊂ P be an i-dimensional face of P . Recall that by lin(F ) we denote the
i-dimensional subspace of Rd that is parallel to the affine hull aff(F ) of F . We need
the following result.
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(3.2) Theorem. Let P ⊂ V be a rational full-dimensional polytope and let t be a
positive integer such that tP is a lattice polytope. Let ε ≥ 0 be a rational number
and let a ∈ V be a vector. Let us choose l ∈ Λ∗. Then there exist functions
fi(P, ε, a, l; ·) : N −→ C, i = 0, . . . , d, such that

(3.2.1) Φl

(
(n+ ε)P + a

)
=

d∑
i=0

fi(P, ε, a, l;n)ni for all n ∈ N

and

(3.2.2) fi(P, ε, a, l;n+ t) = fi(P, ε, a, l;n) for all n ∈ N

and i = 0, . . . , d.
Suppose that fd−k(P, ε, a, l;n) 6= 0 for some n. Then there exists a (d − k)-

dimensional face F of P such that l is orthogonal to lin(F ).

Proof. Since
Φl(P + a) = exp {2πi〈l, a〉}Φl(P ),

without loss of generality we assume that a = 0. We will denote fi(P, ε, 0, l;n) just
by fi(P, ε, l;n).

We proceed by induction on d. For d = 0 the statement of the theorem obviously
holds. Suppose that d ≥ 1. If l = 0 then Φl

(
(n + ε)P

)
= (n + ε)d volP and the

statement holds as well.
Suppose that l 6= 0. For a facet Γ of P , let ΛΓ = Λ ∩ lin(Γ) and let lΓ be the

orthogonal projection of l onto lin(Γ). Thus ΛΓ is a lattice in the (d−1)-dimensional
Euclidean space lin(Γ) and lΓ ∈ Λ∗Γ, so we can define valuations ΦlΓ on lin(Γ). Since
tP is a lattice polytope, for every facet Γ there is a vector uΓ ∈ V such that

lin(Γ) = aff(tΓ)− tuΓ and tuΓ ∈ Λ.

Let Γ′ = Γ − uΓ, so Γ′ ⊂ lin(Γ) is a ΛΓ-rational (d − 1)-dimensional polytope
such that tΓ′ is a ΛΓ-polytope. We have

(n+ ε)Γ = (n+ ε)Γ′ + (n+ ε)uΓ.

Applying Lemma 3.1 to (n+ ε)P , we get

Φl

(
(n+ ε)P

)
=

∑
Γ

ψ(Γ, l;n)ΦlΓ

(
(n+ ε)Γ′

)
,

where

ψ(Γ, l;n) =
〈l, pΓ〉
2πi‖l‖2

exp
{
2πi(n+ ε)〈l, uΓ〉

}
and the sum is taken over all facets Γ of P .
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Since tuΓ ∈ Λ and l ∈ Λ∗, we have

ψ(Γ, l;n+ t) = ψ(Γ, l;n) for all n ∈ N.

Hence, applying the induction hypothesis, we may write

fi(P, ε, l;n) =
∑
Γ

ψ(Γ, l;n)fi(Γ′, ε, lΓ;n) for all n ∈ N

and i = 0, . . . , d − 1 and fd(P, ε, l;n) ≡ 0. Hence (3.2.1)-(3.2.2) follows by the
induction hypothesis.

If fd−k(P, ε, l;n) 6= 0 then there is a facet Γ of P such that fd−k(Γ′, ε, lΓ;n) 6= 0.
By the induction hypothesis, there is a face F ′ of Γ′ such that dimF ′ = d− k, and
lΓ is orthogonal to lin(F ′). Then F = F ′ + uΓ is a (d − k)-dimensional face of P ,
lin(F ′) = lin(F ) and l is orthogonal to lin(F ), which completes the proof. �

4. Proof of Theorem 1.3

First, we discuss some ideas relevant to the proof.

(4.1) Shifting a valuation by a polytope. Let V be a d-dimensional real vector
space, let Λ ⊂ V be a lattice, and let ν be a Λ-valuation on rational polytopes. Let
us fix a rational polytope R ⊂ V . McMullen [Mc78] observed that the function µ
defined by

µ(P ) = ν(P +R)

is a Λ-valuation on rational polytopes P . Here “+” stands for the Minkowski sum:

P +R =
{
x+ y : x ∈ P, y ∈ R

}
.

This result follows since the transformation P 7−→ P + R preserves linear depen-
dencies among indicators of polyhedra, cf. [MS83].

Let t be a positive integer such that tP is a lattice polytope. McMullen [Mc78]
deduced that there exist functions νi(P,R; ·) : N −→ C, i = 0, . . . , d, such that

ν
(
nP +R

)
=

d∑
i=0

νi(P,R;n)ni for all n ∈ N

and
νi(P,R;n+ t) = νi(P,R;n) for all n ∈ N.
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(4.2) Continuity properties of valuations E and EL. Let R ⊂ Rd be a full-
dimensional rational polytope containing the origin in its interior. Then for every
polytope P ⊂ Rd and every ε > 0 we have P ⊂

(
P + εR

)
. We observe that∣∣(P + εR) ∩ Zd

∣∣ = |P ∩ Zd|,
for all sufficiently small ε > 0. If P is a rational polytope, the supporting affine
hyperplanes of the facets of nP for n ∈ N are split among finitely many translation
classes modulo Zd. Therefore, there exists δ = δ(P,R) > 0 such that∣∣(nP + εR) ∩ Zd

∣∣ = |nP ∩ Zd| for all 0 < ε < δ and all n ∈ N.
We also note that for every rational subspace L ⊂ Rd, we have

lim
ε−→0+

EL

(
P + εR

)
= EL(P ).

We will use the perturbation P 7−→ P + εR to push valuations E and EL into a
sufficiently generic position, so that we can apply Lemmas 2.1–2.2 without having
to deal with various boundary effects. This is somewhat similar in spirit to the idea
of [BS05].

(4.3) Linear identities for quasi-polynomials. Let us fix positive integers t and
d. Suppose that we have a possibly infinite family of quasi-polynomials pl : N −→ C
of the type

pl(n) =
d∑

i=0

pi(l;n)ni for all n ∈ N,

where functions pi(l; ·) : N −→ C, i = 0, . . . , d, satisfy

pi(l;n) = pi(l;n+ t) for all n ∈ N.
Suppose further that p : N −→ C is yet another quasi-polynomial

p(n) =
d∑

i=0

pi(n)ni where pi(n+ t) = pi(n) for all n ∈ N.

Finally, suppose that cl(·) : R+ −→ C is a family of functions and that

p(n) = lim
τ−→+∞

∑
l

cl(τ)pl(n) for all n ∈ N

and that the series converges absolutely for every n ∈ N and every τ > 0.
Then we claim that for i = 0, . . . , d we have

pi(n) = lim
τ−→+∞

∑
l

cl(τ)pi(l;n) for all n ∈ N

and that the series converges absolutely for every n ∈ N and every τ > 0.
This follows since pi(n), respectively pi(l;n), can be expressed as linear combi-

nations of p(m), respectively pl(m), for m = n, n+t, · · · , n+td with the coefficients
depending on m,n, t, and d only.

Now we are ready to prove Theorem 1.3.
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(4.4) Proof of Theorem 1.3. Let us fix a rational polytope P ⊂ Rd as defined in
the statement of the theorem. For L ∈ L let PL ⊂ L be the orthogonal projection
of P onto L and let ΛL ⊂ L be the orthogonal projection of Zd onto L.

Let a ∈ intP be a rational vector and let

R = P − a.

Hence R is a rational polytope containing the origin in its interior. Let RL denote
the orthogonal projection of R onto L.

Since P is a rational polytope and L is a finite set of rational subspaces, there
exists δ = δ(P,R) > 0 such that for all 0 < ε < δ and all n ∈ N, we have

(1)
(
nP + εR

)
∩ Zd = nP ∩ Zd and ∂

(
nP + εR

)
∩ Zd = ∅ for all n ∈ N

and for all L ∈ L, we have

(2)
(
nPL+εRL

)
∩ΛL = nPL∩ΛL and ∂

(
nPL+εRL

)
∩ΛL = ∅ for all n ∈ N,

cf. Section 4.2. Let us choose any rational 0 < ε < δ.
Because of (1), we can write

(3)
∣∣(nP + εR) ∩ Zd

∣∣ =
d∑

i=0

ei(P ;n)ni for all n ∈ N

and by Lemma 2.1 we get

(4)
∣∣(nP + εR) ∩ Zd

∣∣ = lim
τ−→+∞

∑
l∈Zd

exp{−π‖l‖2/τ}Φl

(
nP + εR

)
,

where Φl are the exponential valuations of Section 3. Since Φl is a Zd-valuation,
by Section 4.1 there exist functions fi(P, ε, l; ·) : N −→ C, i = 0, . . . , d, such that

(5) Φl(nP + εR) =
d∑

i=0

fi(P, ε, l;n)ni for n ∈ N

and

(6) fi(P, ε, l;n+ t) = fi(P, ε, l;n) for all n ∈ N.

Moreover, we can write

nP + εR = nP + ε(P − a) = (n+ ε)P − εa.
12



Therefore, by Theorem 3.2, for i ≤ k we have fd−i(P, ε, l;n) = 0 unless l ∈ LF for
some face F of P with dimF = d− k.

Therefore, combining (3)–(6) and Section 4.3, we obtain for all 0 ≤ i ≤ k and
all n ∈ N

ed−i(P ;n) = lim
τ−→+∞

∑
l∈Zd

exp
{
−π‖l‖2/τ

}
fd−i(P, ε, l;n)

= lim
τ−→+∞

∑
l∈

S
L∈L(L∩Zd)

exp
{
−π‖l‖2/τ

}
fd−i(P, ε, l;n),

since vectors l ∈ Zd outside of subspaces L ∈ L contribute 0 to the sum. Therefore,
for 0 ≤ i ≤ k and all n ∈ N

(7) ed−i(P ;n) = lim
τ−→+∞

∑
L∈L

µ(L)
∑

l∈L∩Zd

exp
{
−π‖l‖2/τ

}
fd−i(P, ε, l;n)

On the other hand, because of (2), by Lemma 2.2 we get for all L ∈ L and all n ∈ N

(8) EL

(
nP + εR

)
= lim

τ−→+∞

∑
l∈L∩Zd

exp
{
−π‖l‖2/τ

}
Φl

(
nP + εR

)
.

Since EL are Zd-valuations, by Section 4.1 there exist functions
ei(P, ε, L; ·) : N −→ Q, i = 0, . . . , d, such that

(9) EL

(
nP + εR

)
=

d∑
i=0

ei(P, ε, L;n)ni for all n ∈ N

and

(10) ei(P, ε, L;n+ t) = ei(P, ε, L;n) for all n ∈ N.

Combining (5)-(6) and (8)–(10), by Section 4.3 we conclude

ed−i(P, ε, L;n) = lim
τ−→+∞

∑
l∈L∩Zd

exp
{
−π‖l‖2/τ

}
fd−i(P, ε, l;n) for all n ∈ N.

Therefore, by (7), for 0 ≤ i ≤ k we have

(11) ed−i(P ;n) =
∑
L∈L

µ(L)ed−i(P, ε, L;n) for all n ∈ N.

Since EL is a Zd-valuation, there exist functions ei(P,L; ·) : N −→ Q, i = 0, . . . , d,
such that

(12) EL(nP ) =
d∑

i=0

ei(P,L;n)ni for all n ∈ N

13



and
ei(P,L;n+ t) = ei(P,L;n) for all n ∈ N.

Let us choose an m ∈ N. Substituting n = m,m+ t, . . . ,m+ dt in (12), we obtain
ei(P,L;m) as a linear combination of EL(nP ) with coefficients depending on n, m,
t, and d only. Similarly, substituting n = m,m + t, . . . ,m + dt in (9), we obtain
ei(P, ε, L;m) as the same linear combination of EL

(
nP + εR

)
. Since volumes are

continuous functions, in view of (2) (see also Section 4.2), we get

lim
ε−→0+

EL

(
nP + εR

)
= EL(nP ) for n = m,m+ t, . . . ,m+ dt.

Therefore,
lim

ε−→0+
ei(P, ε, L;m) = ei(P,L;m) for all m ∈ N.

Taking the limit as ε −→ +0 in (11), we obtain for 0 ≤ i ≤ k

ed−i(P ;n) =
∑
L∈L

µ(L)ed−i(P,L;n) for all n ∈ N.

To complete the proof, we note that

νd−i(P,L;n) =
∑
L∈L

µ(L)ed−i(P,L;n).

�

5. Summing up a polynomial over
integer points in a rational polytope

Let us fix a positive integer k and let us consider the following situation. Let
Q ⊂ Rk be a rational polytope, let intQ be the relative interior of Q and let
f : Rk −→ R be a polynomial with rational coefficients. We want to compute the
value

(5.1)
∑

m∈int Q∩Zk

f(m).

We claim that as soon as the dimension k of the polytope Q is fixed, there is a
polynomial time algorithm to do that. We assume that the polytope Q is a given
by the list of its vertices and the polynomial f is given by the list its coefficients.

For an integer point m = (µ1, . . . , µk), let

xm = xµ1
1 · · ·xµk

k for x = (x1, . . . , xk)

be the Laurent monomial in k variables x = (x1, . . . , xk). We use the following
result [BP99].
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(5.2) The short rational function algorithm. Let us fix k. There is a poly-
nomial time algorithm, which, given a rational polytope Q ⊂ Rk computes the
generating function (Laurent polynomial)

S(Q;x) =
∑

m∈int Q∩Zk

xm

in the form
S(Q;x) =

∑
i∈I

εi
xai

(1− xbi1) · · · (1− xbik)
,

where ai ∈ Zk, bij ∈ Zk \ {0} and εi ∈ Q. In particular, the number |I| of fractions
is bounded by a polynomial in the input size of Q.

Our first step is computing the generating function

S(Q, f ;x) =
∑

m∈Q∩Zk

f(m)xm.

Our approach is similar to that of [D+04].

(5.3) The algorithm for computing S(Q, f ;x). We observe that

S(Q, f ;x) = f

(
x1

∂

∂x1
, . . . , xk

∂

∂xk

)
S(Q;x).

We compute S(Q;x) as in Section 5.2.
Let a = (α1, . . . , αk) be an integer vector, let bj = (βj1, . . . , βjk) be non-zero

integer vectors for j = 1, . . . , k and let γ1, . . . , γk be positive integers. Then(
xi

∂

∂xi

)
xa

(1− xb1)γ1 · · · (1− xbk)γk

=αi
xa

(1− xb1)γ1 · · · (1− xbk)γk
+

k∑
j=1

γjβji
xa+bj

(1− xbj )γj+1

∏
s 6=j

1
(1− xbs)γs

.

Consecutively applying the above formula and collecting similar fractions, we com-
pute

f

(
x1

∂

∂x1
, · · · , xk

∂

∂xk

)
xa

(1− xb1) · · · (1− xbk)

as an expression of the type

(5.3.1)
∑

j

ρj
xaj

(1− xb1)γj1 · · · (1− xbk)γjk
,
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where ρj ∈ Q, γj1, . . . , γjk are non-negative integers satisfying γj1 + . . . + γjk ≤
k + deg f and aj are vectors of the type

aj = a+ µ1b1 + . . .+ µkbk,

where µi are non-negative integers and µ1 + . . .+µk ≤ deg f . The number of terms
in (5.3.1) is bounded by (deg f)O(k), which shows that for a k fixed in advance, the
algorithm runs in polynomial time.

Consequently, S(Q, f ;x) is computed in polynomial time.

Formally speaking, to compute the sum (5.1), we have to substitute xi = 1 into
the formula for S(Q, f ;x). This, however, cannot be done in a straightforward
way since x = (1, . . . , 1) is a pole of every fraction in the expression for S(Q, f ;x).
Nevertheless, the substitution can be done via efficient computation of the relevant
residue of S(Q, f ;x) as described in [B94a] and [BW03].

(5.4) The algorithm for computing the sum. The output of Algorithm 5.3
represents S(Q, f ;x) in the general form

S(Q, f ;x) =
∑
i∈I

εi
xai

(1− xbi1)γi1 · · · (1− xbik)γik
,

where εi ∈ Q, ai ∈ Zk, bij ∈ Zk\{0}, and γij ∈ N such that γi1+. . .+γik ≤ k+deg f
for all i ∈ I.

Let us choose a vector l ∈ Qk, l = (λ1, . . . , λk) such that 〈l, bij〉 6= 0 for all i, j
(such a vector can be computed in polynomial time, cf. [B94a]). For a complex τ ,
let

x(τ) =
(
eτλ1 , . . . , eτλk

)
.

We want to compute the limit

lim
τ−→0

G(τ) for G(τ) = S
(
Q, f ;x(τ)

)
.

In other words, we want to compute the constant term of the Laurent expansion of
G(τ) around τ = 0.

Let us consider a typical fraction

xa

(1− xb1)γ1 · · · (1− xbk)γk
.

Substituting x(τ), we get the expression

(5.4.1)
eατ

(1− eτβ1)γ1 · · · (1− eτβk)γk
,
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where α = 〈a, l〉 and βi = 〈bi, l〉 for i = 1, . . . , k. The order of the pole at τ = 0
is D = γ1 + . . . + γk ≤ k + deg f . To compute the constant term of the Laurent
expansion of (5.4.1) at τ = 0, we do the following.

We compute the polynomial

q(τ) =
D∑

i=0

αi

i!
τ i

that is the truncation at τD of the Taylor series expansion of eατ . For i = 1, . . . , k
we compute the polynomial pi(τ) with deg pi = D such that

τ

1− eτβi
= pi(τ) + terms of higher order in τ

at τ = 0. Consecutively multiplying polynomials mod τD+1 we compute a poly-
nomial u(τ) with deg u = D such that

q(τ)pγ1
1 (τ) · · · pγk

k (τ) ≡ u(τ) mod τD+1.

The coefficient of τD in u(τ) is the desired constant term of the Laurent expansion.

6. Computing EL(∆)

Let us fix a positive integer k. Let ∆ ⊂ Rd be a rational simplex given by the list
of its vertices and let L ⊂ Rd be a rational subspace given its basis and such that
dimL = k. In this section, we describe a polynomial time algorithm for computing
the value of EL(∆) as defined in Section 1.2.

Let pr : Rd −→ L be the orthogonal projection. We compute the vertices of
the polytope Q = pr(∆) and a basis of the lattice Λ = pr(Zd). For basic lattice
algorithms see [Sc93] and [G+93].

As is known, as x ∈ ∆ varies, the function

φ(x) = vold−k (Px) where Px =
(
∆ ∩

(
x+ L⊥

))
is a piece-wise polynomial on Q. Our first step consists of computing a decompo-
sition

(6.1) Q =
⋃
i

Ci

such that Ci ⊂ Q are rational polytopes (chambers) with pairwise disjoint interiors
and polynomials φi : L −→ R such that φi(x) = φ(x) for x ∈ Ci.

We observe that every vertex of Px is the intersection of x + L⊥ and some k-
dimensional face F of ∆.
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For every face G of ∆ with dimG = k − 1 and such that aff(G) is not parallel
to L⊥, let us compute

AG =
{
x ∈ L : x+ L⊥ ∩ aff(G) 6= ∅

}
.

Then AG is an affine hyperplane in L. Then number of different hyperplanes AG is
dO(k) and hence they cut Q into at most dO(k2) polyhedral chambers Ci, cf. Section
6.1 of [Ma02]. As long as x stays within the relative interior of a chamber Ci, the
strong combinatorial type of Px does not change (the facets of Px move parallel to
themselves) and hence the restriction φi of φ onto Ci is a polynomial, cf. Section
5.1 of [Sc93]. Since in the (d − k)-dimensional space x + L⊥ the polytope Px is
defined by d linear inequalities, φi can be computed in polynomial time, see [GK94]
and [B93b].

The decomposition 6.1 gives rise to the formula

[Q] =
∑

j

[Qj ],

where Qj are open faces of the chambers Ci (the number of such faces is bounded
by a polynomial in d), cf. Section 6.1 of [Ma02]. Hence we have

EL(∆) =
∑

j

∑
m∈Qj∩Λ

φ(m).

Each inner sum is the sum of a polynomial over lattice points in a polytope of
dimension at most k. By a change of the coordinates, it becomes the sum over
integer points in a rational polytope and we compute it as described in Section 5.

7. Computing ed−k(∆;n)

Let us fix a an integer k ≥ 0. We describe our algorithm, which, given a positive
integer d ≥ k, a rational simplex ∆ ⊂ Rd (defined, for example, by the list of its
vertices), and a positive integer n, computes the number ed−k(∆;n).

We use Theorem 1.3.

(7.1) Computing the set L of subspaces. We compute subspaces L and num-
bers µ(L) described in Theorem 1.3. Namely, for each (d−k)-dimensional face F of
∆, we compute a basis of the subspace LF = (linF )⊥. Hence dimLF ≤ k. Clearly,
the number of distinct subspaces LF is dO(k). We let L be the set consisting of the
subspaces LF and all other subspaces obtained as intersections of LF . We compute
L in k (or fewer) steps. Initially, we let

L :=
{
LF : F is a (d− k)-dimensional face of ∆

}
.
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Then, on every step, we consider the previously constructed subspaces L ∈ L,
consider the pairwise intersections L∩LF as F ranges over the (d−k)-dimensional
faces of ∆ and add the obtained subspace L∩LF to the set L if it was not already
there. If no new subspaces are obtained, we stop. Clearly, in the end of this
process, we will obtain all subspaces L that are intersections of different LFi . Since
dimLF = k, each subspace L ∈ L is an intersection of some k subspaces LFi . Hence
the process stops after k steps and the total number |L| of subspaces is dO(k2).

Having computed the subspaces L ∈ L, we compute the numbers µ(L) as follows.
For each pair of subspaces L1, L2 ∈ L such that L1 ⊆ L2, we compute the

number µ(L1, L2) recursively: if L1 = L2 we let µ(L1, L2) = 1. Otherwise, we let

µ(L1, L2) = −
∑
L∈L

L1⊆L(L2

µ(L1, L).

In the end, for each L ∈ L, we let

µ(L) =
∑

L1∈L
L⊆L1

µ(L,L1).

Hence µ(Li, Lj) are the values of the Möbius function on the set L partially ordered
by inclusion, so [ ⋃

L∈L
L

]
=

∑
L∈L

µ(L)[L]

follows from the Möbius inversion formula, cf. Section 3.7 of [St97].

Now, for each L ∈ L and m = n, n + t, . . . , n + td we compute the values of
EL(m∆) as in Section 6, compute

ν(m∆) =
∑
L∈L

µ(L)EL(m∆)

and find νd−k(∆;n) = ed−k(∆, n) by interpolation.

8. Possible extensions and further questions

(8.1) Computing more general expressions. Let P ⊂ Rd be a rational poly-
tope, let α ≥ 0 be a rational number, and let u ∈ Rd be a rational vector. One can
show (cf. Section 4.1) that

∣∣∣((n+ α)P + u
)
∩ Zd

∣∣∣ =
d∑

i=0

ei(P, α, u;n)ni for all n ∈ N,
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where ei(P, α, u; ·) : N −→ Q, i = 0, . . . , d, satisfy

ei(P, α, u;n+ t) = ei(P, α, u;n) for all n ∈ N,

provided t ∈ N is a number such that tP is an integer polytope. As long as k is
fixed in advance, for given α, u, n, and a rational simplex ∆ ⊂ Rd, one can compute
ed−k(∆, α, u;n) in polynomial time. Similarly, Theorem 1.3 and its proof extend
to this more general situation in a straightforward way.

(8.2) Computing the generating function. Let P ⊂ Rd be a rational polytope.
Then, for every 0 ≤ i ≤ d, the series

+∞∑
n=1

ei(P ;n)tn

converges to a rational function fi(P ; t) for |t| < 1.
It is not clear whether fd−k(∆; t) can be efficiently computed as a “closed form

expression” in any meaningful sense, although it seems that by adjusting the meth-
ods of Sections 5–7, for any given t such that |t| < 1 one can compute the value of
fd−k(∆; t) in polynomial time (again, k is assumed to be fixed in advance).

(8.3) Extensions to other classes of polytopes. If k is fixed in advance, the
coefficient ed−k(P ;n) can be computed in polynomial time, if the rational polytope
P ⊂ Rd is given by the list of its d+c vertices or the list of its d+c inequalities, where
c is a constant fixed in advance. Similar result holds for rational parallelepipeds P ,
that is, for Minkowski sums of d rational intervals that do not lie in the same affine
hyperplane in Rd.

(8.4) Possible applications to integer programming and integer point
counting. If P ⊂ Rm is a rational polytope given by the list of its defining linear
inequalities, the problem of testing whether P ∩ Zm = ∅ is a typical problem of
integer programming, see [G+93] and [Sc86]. Moreover, a general construction of
“aggregation” (see Section 16.6 of [Sc86] and Section 2.2 of [Sh97]) establishes a
bijection between the sets P ∩ Zm and ∆ ∩ Zd provided P is defined by d + 1
linear inequalities. Here ∆ ⊂ Rd a rational simplex whose definition is computable
in polynomial time from that of P . It would be interesting to find out whether
approximating valuation E by valuation ν of Theorem 1.3 for some k � d and
applying the algorithm of this paper to compute ν(∆) can be of any practical use
to solve higher-dimensional integer programs and integer point counting problems.
It could complement existing software packages [D+03] and [B+04] based on the
“short rational functions” calculus.
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