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Abstract. We prove that computation of any fixed number of highest coeflicients
of the Ehrhart polynomial of an integral polytope can be reduced in polynomial time
to computation of the volumes of faces.

1. Introduction

counted in polynomia| time. In this paper we apply the technique of [2] further
to deal with polytopes of varying dimension.

Let 2? = R be the standard integral lattjce and let P c R? pe 4 polytope. We
assume that p jg integral, namely, its vertjces belong to 74 For meN we put
m-P={m-x: x € P}. Then the number of integral points in m- P is a polynomig]
inme N, called the Ehrhart polynomiq] (see, for example, Chapter 4 of [12]). So

#{m-Pnzy - M e(P)-m.

i=0

* This research Was supported by the United States Army Research Office through the Army Center
of Excellence for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematica] Sciences
Institute of Cornel] C:..<n_,w:$ Contract U>>r8.c_.m,.oo~.\.
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These coefficients naturally appear in many 33.:._8 of 2.:::2»:5 ooEw__gnm-
torices (see, for example, [12]), therefore .: might be interesting to Mow.ﬁ,m”.n :M“
efficiently. It is well known that e,(P) is aawm_ to the a.\oEBn of P. The
coefficient e, _,(P) is half of the “surface area” of P, that is

e;_4(P)= WM vol,_((G),
G

where G ranges over all facets of P and the volume o_.. a facet is Myommcmnm
intrinsically with respect to the lattice Z¢ N \*.9 where A is :..n affine _Mm 0 H
[9]. These observations show that computation of the two highest no.amﬂo: s
reduces to computation of the volumes of faces. w.noB the 82.__8 wm {11] it follows
that computation of ¢,_,(P) can also be reduced in .vo_vﬁoB_m_ ﬂ.::o to ooBvcwm-
tion of the volumes of faces ([11] does not deal i.:r computational complexity
but it contains an explicit expression of e;_,(P) in terms of .z.n volumes and
Dedekind sums; these sums, however, are known to be polynomially owaviwza.
We also know that eo(P) = 1 for an arbitrary wo_ﬁovn.w [9]. In Emm paper we
prove that computation of any fixed number of the E.mwom.ﬂ oo&mﬂni.m ob.. the
Ehrhart polynomial can be reduced to volume computation in mo._wz.wB_m_ time.

Let us assume that a d-dimensional integral polytope P < R? is given by the
set of linear inequalities

(1.1 P={xeR:(,x)<a,i= L...,m},

where ;e Z* and g, Z for all i. Here -, denotes the standard inner product
in R4, e.<a use the standard notion of input size (see, for example, [6]). Thus for
the polytope P given by (1.1) we have

m

size P=0{d- ) (1+log(llll + 1) + log(la;] + 1)) ),

i=1
where || denotes the L norm in R?. Let us introduce the

Volume Computation Oracle.
Input: a polytope P given as in (1.1); o

a set of indices I < {1, ..., m} of cardinality s.
Output:

vol,_,F iftheset F = {xe P:{I;, x> = a;,iel}
isa(d — s)-dimensional face of P,
0 otherwise.

Again, we measure the volume of a face F intrinsically. Namely, let }q. be the
affine hull of F. Choosing a point from Z¢ ~ Ap as the origin, let us consider A,
as a linear space. Then 7’ n Ay is a lattice and we scale the volume so that the

Computing the Ehrhart Polynomial of a Convex Lattice Polytope 37

parallelopiped spanned by a basis of this lattice has volume 1. Our main result is
the following:

(1.2) Theorem. Ler us fix keN. Then, for any integral polytope P given by (1.1),
the coefficient e,_,(P) can be computed using O(m*) calls Jfor the Volume Computa-
tion Oracle and a number of arithmetic operations which is polynomial in size P,
The size of each number involped in the algorithm is bounded by a polynomial in
size P.

The problem of volume computation is 3 P-hard [4]. Moreover, the size
of the volume is not necessarily bounded by a polynomial in the size of the polytope
[8]. However, if we restrict ourselves to a class of integral polytopes, then the size

of the Volume Computation Oracle which could solve # P-complete problems
seems to be too strong an assumption, it is unavoidable. Already computation of
the highest coefficient of the Ehrhart polynomial reduces to volume computation.

, the volume of a simplex can be computed
by the explicit formula in the straightforward way whereas integral points counting
is far less obvious. Theorem 1.2, however, implies the following result.

(1.3) Corollary. Ler ys fix keN. For any given integral simplex A = R? the
coefficient e,_,(A) can be computed in polynomial time.

Theorem 1.2 implies, in particular, that integral points in an integral polytope
can be counted in polynomial time if the dimension d is fixed. This result

than (size A)°® from [2].

In the first version of this paper [1] a weaker result was obtained by using a
sort of “harmonic analysis on polytopes.” The present paper uses a completely
different approach based on some identities from [10]. We describe Morelli’s
identities in Section 2. To show that these identities lead to efficient algorithms
we apply a technique of “cone decompositions” developed earlier in [2]. We
describe this technique in Section 3. A new ingredient is an effective construction
of a “generic subspace” required for Morelli’s identities. This construction is
described in Section 4. In Section 5 we prove Theorem 1.2 and give some estimates
for the complexity of counting integral points in a simplex.

(1.4) Definitions and Notation. By co § we denote the conic hull of the set § = R
Thus

COS=qx=3 A-5:4 20, s;eSfor all i
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By #S we denote the cardinality of the set S. A polyhedral cone is a conic hull of
finitely many integral vectors from R% If K = co{u,, ..., u,} = R?, where u; e R?
for i = 1,..., m, then we say that the cone K is generated by u,, ..., u, and call
the vectors u,, ..., u,, generators of K. In what follows we consider only rational
cones, that is, the cones generated by integral vectors. Similarly, a subspace is
called rational if it is generated by integral vectors. We assume that the cone is
given by its generators. A cone K = cof{u,, ..., u,,} is simple if uy, ..., u,, are linearly
independent. By Lin S we denote the linear hull of S = R%. A discrete additive
subgroup A = R? is called a lattice. Each lattice A has a basis, that is, a set of
linearly independent vectors u,, ..., u,, € A such that

A=3x=Y A-u:AeZ,

i=1

Then m is called the rank of A. The volume of the parallelopiped spanned by a
basis of A is called the determinant of the lattice A. Thus

detA=ju, A - A u

ml-

A simple cone K = co{u,, ..., u,} is called primitive if u,, ..., u,, is a basis of the
lattice A = Lin K n Z%. Then u,, ..., u,, are called primitive generators of K.

As a general reference to lattice algorithms we use [6].

2. Morelli’s Formulas

In this section we briefly describe some results of [ 10]. Morelli’s formulas provide
an expression

e-P) = M vol,(F) - w(P, F),
F

where F ranges over the set of all (4 — k)-dimensional faces of P and (P, F) is a
certain function which is determined by the supporting cone of P at F. Actually,
u is an additive measure on rational polyhedral cones in RY. We describe this
measure in detail.

Let us consider the set €, of all k-dimensional rational polyhedral cones K in
R¢. Morelli defines a measure u on %,. For K € %,, the value of #(K) is a rational
real-valued function on the Grassmanian G,_,,,(R%) of all (d — k + 1)-dimen-
sional subspaces in R?. If Ge G,_,,(R? is a regular point of the function u(K),
then by pug(K) we denote the real number that is the value of the function u(K) at
the point G. Before we describe this measure we recall one useful notion.
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(2.1) Todd Polynomial. Todd polynomial td,(x,, ..., x,) is defined as the coefficient
of t* in the following expansion:

d . +
2.1.1 — o Ftdi(xy, .o, X
( ) ..m I —exp{—t-x;} wMo o *

So, td,(x, ..., x,) is a symmetric homogeneous polynomial with rational coeffi-
cients of degree k. In Section 5 we need the following simple result.

(2.1.2) Lemma. For any given d, ke N and for any rational nonzero numbers

Xy, ..., X4 the value of tdy(x,, ..., x,) can be computed in time which is polynomial
in d, k, and the input size of x,, ..., x,.
Proof. For given x,,...,x,; the value of td,(x,,...,x,) is equal to the kth

coefficient of the Taylor expansion of the univariate function from the left-hand
side of (2.1.1). Replacing exp{—t-x;} by the first k + 1 terms of its Taylor
expansion we compute the desired value in the straightforward way. O

First we define the function u(K) for a primitive cone K.

(2.2) Primitive Cones. Let K = co{u,,..., 4} = R? be a primitive cone with the
primitive generators u,, ..., u, € Z% Let

K*={xeR%: (x,y)> >0 forall ye K} = R¢
be the conjugate cone. The cone K* contains a (d — k)-dimensional subspace
V={xeR:(x,y>=0forall yeK}.
For s = 1,..., k let us define a linear (d — k + 1)-dimensional subspace E, — R’
E,={xeR"{x,up=0forj=1,...,s— 1,5+ 1,..., k}.

Let us choose a basis x,,...,x,_, of V. For each s =1,...,k we construct an
oriented basis B, = (b3, ..., bj_, ) of the (d — k + 1)-dimensional lattice E, n Z*.
We assume that the orientation of B, is the same as that of the basis x,, ..., x,_,, i,
where i, is the orthogonal projection of u, onto E,.

Let us choose vectors g,,...,d;-4x+,€R%. For s=1,...,k we define a

(d —k + 1) x (d — k + 1) matrix M® as follows:
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fori,j=1,....d —k+ 1. Put f, = det M*. Let us put

_ (i )

_____ «(K) is a rational function in 915 -+ Ga-x+ - Formally, u depends also
on the choice of B,. However, since td, is a homogeneous polynomial of degree
k, we observe that the value of Hg.....q{K) actually depends on the linear
subspace G — R? generated bY g1 Ga sy only. Thus for GeG,_, (R we
put ug(K) = Hy,.....q0 .. (K) where g, .. | da-x+1 1s a basis of G. We observe that

a “generic” (d — k + 1)-dimensional subspace G is a regular point of the function
u(K).

Morelli shows that 4 1s an additive measure.

(2.3) Theorem [10]. Let K cR?beq k-dimensional rational cone. Let

K={J K
iely
and
K=U K
iely

be decompositions of the cone K into the union of finitely many primitive k-
dimensional cones K,, ie I 1 (resp. K, i€ 1), with pairwise disjoint interiors. Then

2 uK)=Y uK)

iely iel

as rational functions on the Gassmanian Gy tf(RY of d—k + 1)-dimensional
subspaces in R4,

Since every rational polyhedral K cone can be decomposed into the union of
finitely many primitive cones K; with pairwise disjoint interiors (see, for example,
Section 2.6 of [5]) we can correctly define

HK) =Y uK,).

iel

Thus u(K) is a rational function in G e G,y 1(RY.

(2.4) Definition. Let P « R be a convex d-dimensional polytope. For a (d — k)-
dimensional face F = P of P we define the supporting cone K(F, P) as the cone of
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feasible directions. Let y be an arbitrary p

F. We put K(F,P)={xeR%y+¢&-xeP
K*(F, P) we denote the conjugate cone. Th

(2.5) Theorem [10]. Let P c R? be an inte

es-(P) = Z vol,_ (1
F

where the sum is taken over all (d — k)-dimerzs
side is a constant function in G e G,_, , (RY

3. Decomposition of Rational Cones
In this section we show that any rational

represented in polynomial time as a “linear |
asetS = R?by y5: R? > {0, 1} we denote the

1 if
xs(x) = {0 o

(3.1) Definition. Let K, K, iel bea ﬁni.tc
cones in R? and let g, iel, be a family of in

K=Y ¢g-

iel
if and only if the identity

XK= &

iel

holds for all x e R? except possibly a finite u
subspaces.

Thus, if K = { J;.; K;, where K, i€, ar
pairwise disjoint interors, we have that K =
standard corollary of Theorem 2.3.

(3.2) Lemma. Let

K=Y ¢-.

iel
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fori,j=1,....d —k + 1. Put f, = det M*. Let us put

lfis -, f)

Hg,... oK)=
.\.p .. ‘\M

Thus u, ., (K)is a rational function in 91> ---»Ga—y+1- Formally, 4 depends also
on the choice of B,. However, since td, is a homogeneous polynomial of degree
¢, we observe that the value of Hg,.....o{K) actually depends on the linear
ubspace G = R generated by 91>---59a-x+1 only. Thus for Ge G,_, , ,(RY) we
ut ug(K) = py o (K) where 91>---59q-x+y is a basis of G. We observe that

_Avwmvo:nao: (d — k + 1)-dimensional subspace G is a regular point of the function
' .

Morelli shows that g is an additive measure.

2.3) Theorem [10]. Let K < R* be a k-dimensional rational cone. Let

U K;

iely

K

nd

K

U K,

iel;

d &m@iﬁ@&l@:m of the cone K into the union of finitely many primitive k-
mensional cones K, iel, (resp. K;, iel,), with pairwise disjoint interiors. Then

> wK)=Y uK)

ieh iel

' rational functions on the Gassmanian G+ 1(RY) of (d—k + )-dimensional
bspaces in R,

.mm:on every nw:.omm_ polyhedral K cone can be decomposed into the union of
::.w_w many primitive cones K; with pairwise disjoint interiors (see, for example,
ction 2.6 of [5]) we can correctly define

uK) = Y u(K).

iel
us 4(K) is a rational function in Ge G,_,, ,(RY).

4) U.»mi:o:. Let P = R’ be a convex d-dimensional polytope. For a (d — k)-
nensional face F < P of P we define the supporting cone K(F, P) as the cone of
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feasible directions. Let y be an arbitrary point in the relative interior of the face

F. We put K(F,P)={xeR% y+¢-xeP for all sufficiently small ¢ > 0}. By
K*(F, P) we denote the conjigate cone. Thus dim K*(F, P) = k.

(2.5) Theorem [10]. Let P = RY be an integral polytope. Then

e4-W(P) = M voly_(F) - w(K*(F, P)),
F

where the sum is taken over all (d — k)-dimensional faces F of P. Thus the right-hand
side is a constant function in G € Gy_; . (R%) whose value is equal to e;_,(P).

3. Decomposition of Rational Cones

In this section we show that any rational cone of a fixed dimension can be
represented in polynomial time as a “linear combination” of primitive cones. For
asetS — R? by ys: R? — {0, 1} we denote the characteristic function of S, that is,

1 if xe§,

xs(x) = 0 otherwise.

(3.1) Definition. Let K, K;, i€, be a finite family of k-dimensional polyhedral
cones in R? and let ¢;, i e I, be a family of integral numbers. We write

K=Y ¢ K;

iel
if and only if the identity

Ak = M & Xk,

iel

holds for all x € R except possibly a finite union of rational (k — 1)-dimensional
subspaces.

Thus, if K = | J,.; K;, where K, i€, are k-dimensional rational cones with

pairwise disjoint interors, we have that K = ) ,_; K,. The following result is the
standard corollary of Theorem 2.3.

(3.2) Lemma. Let

K=Y &K,

iel
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e a representation of a k-dimensional rational polyhedral cone K = R? into a linear
ombination of primitive k-dimensional cones K, i€ l. Then

wK) = M & (K.

iel

roof. Let T, jeJ, be a finite (possibly empty) union of (k — 1)-dimensional
ubspaces from Definition 3.1. Let us subdivide all possible k-dimensional intersec-
ons (K ") (\ier,Ki, I, = 1, into primitive k-dimensional cones K,, o€ 4, with
airwise disjoint interiors so that I jdoes not intersect the interior of K, for all jand
- Thus each cone can be represented as a union K = Ueea, Ka» Ki = Uses, Kas
o that, for any a€ A,

1 if aed,,
M & = .
irxe A 0 otherwise.

he proof then follows by Theorem 2.3. OdJ

It is well known that a k-dimensional polyhedral cone K c R can be re-
resented as a union of simple cones K, with pairwise disjoint interiors. If k is
xed, then this can be done in polynomial time. Our aim is to show that if k is
xed, then a simple rational k-dimensional cone can be represented as a linear
ombination of primitive cones in polynomial time. Here we basically follow [2],
though we present a somewhat weaker construction since we do not care about
oints in a (k — 1)-dimensional set.

We discuss the input size of our problem. For a simple cone K = co{u,, ..., U},

here u; € Z*, we have size K = 0(d- 4., (1 + log(lu]| + 1)), where || is the L,
orm on R?,

.3) Definition. Let K = co{u,, ..., u,} be a simple k-dimensional cone in R?
ven by its generators uy,..., u, € Z°. Let us put A=Lin KnZ% Thus A is a
dimensional lattice. By Ind K we denote the index of the sublattice generated
/ the vectors uy, ..., u, in the lattice A. In other words,

luy Ao Ay

Ind K = ,
det A

1ere [u; A -0 A | denotes the k-volume of the parallelopiped spanned by
yoees Up.

We conclude that K is primitive with the primitive generators u,, ..., u, if and
ly if Ind K = 1. Besides, Ind K is polynomially computable, and therefore the
lue of log Ind K is bounded by a polynomial in the input size of the cone K.
ir algorithm is based on successive reduction of Ind K.
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(3.4) Lemma (see [2]). Let us fix ke N. Then a polynomial-time a@oﬂ:xi exists
which, for any d e N, for any rational simple k-dimensional cone K = R?, computes
k-dimensional simple cones K;,i€l, %1 < k, and numbers 6, { + 1, — 1} such that

(34.1) K=73%6-K,

iel
(34.2) IndK; <(Ind K)* "V forall iel,
(3.4.3) size K; < size K + Od?)  forall iel

Proof. Let us consider the parallelopiped
i —1/k
(3.4.9) VY=<x=)Y a- u:|o <(Ind K)~ "
i=1

Thus ¥ is a centrally symmetric convex body whose »-&anmmosm_. volume is
equal to 2*-det A, where A = Z~ Lin K. Therefore by Minkowski’s Hr.ﬂuoﬁi
(see, for example, [6]) it contains a nonzero lattice vector weA. Growm_nm. if
necessary, —w instead of w we ensure that w, u,,..., u, belong to certain open
subspace in R?. Let us denote

I = {ie[1:k]: the vectors u,, ..., u;_y, W, ;1 1, ..., , are linearly independent}.

For iel let us put K; =co{uy, ..., u;_ 1, W, ;4 4, ..., ). We are going to prove
that K; satisfy (3.4.1}43.4.3). Let us put

I, ={iel: thebases (uy,...,u;_ |, Wt q,...,w)and (Uy, ..., u_y, U;, Uy, )
have the same orientation}
and
I_=1I,.
Then we put
if iel,,
bi= _L Mm M%
Ociﬂ:m_w we have
K=Y 6K,

iel
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nd (3.4.1) holds. Furthermore, if w = Y'*_, «; - u;, then |o;] < (Ind K)~'* and we
ave that

_,5 AT AU_ G AWAU L AT AU

det A

Ind K,

It

Jogl g A A
det A

< (Ind K)*~ Dk

ind therefore (3.4.2) holds. Finally, (3.4.3) holds since obviously
Iwll < flugll + -+ lugell.

Now we must show that the vector w can be computed in polynomial time.
ndeed, the problem of finding an integral nonzero vector in the parallelopiped
¥ reduces to integer programming in fixed dimension k. Let us construct a basis
b5 .., b of the lattice A. This can be done in polynomial time (see [6]). We
\pproximate the parallelopiped ¥ by a rational parallelopiped I1. To do that, let
1s compute the basis {u# € Lin K:i = 1..... k! of Lin K conjugate to {u,..... 14}
o (uj, ury =0 for i, j=1,...,k Let D be the least common multiple of the
lenominators of coordinates of u¥, i =1, ..., k. We define the parallelopiped II
eplacing (Ind K)™ ! * in (3.4.4) by its rational approximation with error less than
/D. This can be done in polynomial time as well. Then for i = 1,..., k we solve
problem of integer linear programming:

Find y = (y,,..., 7)€ Z*
Such that: }¥_, y,-b,eIl

and y, > 1.
For some i the program has a solution and then the point w =Y, 3, b; is
1e desired nonzero integral vector from . Since k is fixed, a solution of the above
rogram can be found in polynomial time (see [6] and [7]). O

Now we can prove the main result of this section.

3.5) Theorem (see [2]). Let us fix ke N. Then, for any deN, for any simple
ttional k-dimensional cone K = R?, a family of k-dimensional primitive cones K;,
= I, and integral numbers ¢; € {1, —1}, i e, such that

K=Y &K

iel

in be constructed in polynomial time.
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Proof. We iterate the construction of Lemma 3.4. After the mth iteration we get
a decomposition

(3s.1) K=Y &K,

ielm

where 41, < k™, Ind K; < (Ind K} V" g e {1 1}, and size K; <size K +
O(d?- m). Let us choose the smallest integral m such that

—loglog 1.9 + log log(Ind K)
logk — log(k — 1) .

m2=

Then after the mth iteration we will have that Ind K; <19 and therefore
Ind K; =1 for all i in the representation (3.5.1). Now we observe that the
complexity of our algorithm is linear in k™. We have that

k™ < C,(k)- (log(Ind K))®,
where

—loglog 1.9 log k

Cy(k) = ex +1}-logkpy,  Cyk)=——r—rv.
(k) P log k — log(k — 1) °8 (k) log k — log(k — 1)

Thus for a fixed k the value of k™ is bounded by a polynomial in the size
of K. |

4. Constructing a Regular Subspace

In this section we prove the following main result.

(4.1) Lemma. A polynomial-time algorithm exists which, for any given d, k, me N
and any given m primitive k-dimensional cones K; = R%, i=1,..., m, computes a
(d — k + 1)-dimensional subspace G € G,_, , ,(R% which is a regular point for all the
functions wW(K)),i=1,...,m.

We deduce Lemma 4.1 from a more general statement about polynomials
defined by their oracles. Such an object is a multivariate rational polynomial P
given by a “black box” which for any given rational x computes the value P(x).
Besides we assume that an upper bound D of the degree of P is known. This
approach is useful when we deal with various determinants. Indeed, a determinant
can usually be computed rather efficiently whereas its straightforward expansion
contains plenty of monomial terms. The following result shows that we can always
compute in polynomial time a point which is not a root of any polynomial from
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a given family, provided for each polynomial we know at least one point which
is not a root. We note that generally it is an open problem to determine in
polynomial time whether a polynomial given by an oracle is not identically zero.

(4.2) Proposition.  For any finite set {P,: a € A} of rational polynomials P:Q"-Q
given by their oracles such that deg P, < D,, a € A, and for any given x,€ Q", a€ A,
such that P(x,) # O for a€ A a vector x € Q" such that P {x) # 0 Jor all xe A can
be computed in time which is polynomial in n, % A, max{D,: « e A}, and in the
maximum size of x,, o € A.

Proof. Let us put D =max{D,:aeA}. We construct an algebraic curve
y:Q — Q" which passes through all the points x,, xe A. We may think of
the elements of A as the integers 1,..., 4 4. Let us denote by x,(j) the jth
coordinate of x,. Using standard interpolation we construct a polynomial rz),
teQ, j=1,...,n, of degree %A — 1 such that r{a) = x{j) for ae A. Put y(t) =
(ry(6), ..., () €Q". Then y(@) = x, for ac A. We observe that for aec A the
polynomial p,(t) = P(y(t)) is a univariate nonzero polynomial of degree at most
(#4)-D,. Our algorithm is the following: we compute consecutively (1),
t=0,...,(#A4) D, and the corresponding values P,(y(t)), a € A. For at least one
t = Te[0:(#A)* D] all the values of P(y(t)), xe A, must be nonzero. We put
x = y(T). O

Now we can prove Lemma 4.1.

Proof of Lemma 4.1. We use (2.2) and (4.2). Let us define first the set of indices
A. An index xe 4 is a tuple a =(i,s), where i=1,...,mand s=1,...,k For
a = (i, 5) we construct the polynomial P, as follows. Choose the cone K ;- Construct
an oriented basis B, = (b3, . d—k+1) as described in (2.2). This can be done in
polynomial time (see [6] for lattice algorithms). Then P, will be a polynomial in
the coordinates of gy, ..., g;_; +, € R defined as /s (see (2.2)). We observe that for
any given g¢,,...,g, .+, €R? the value of P, can be computed using O(d°)
arithmetic operations as the value of the (d — k + 1) x (d — k + 1) determinant.
We also note that deg P, <d —k + 1. Our aim is to find a set of vectors
G=1(g,,....9gs_y+) such that P(G) # 0 for all xe 4. To apply Proposition 4.2
we only need to construct a point x, such that P,(x,) # 0. However, we can choose
x, = (b}, . 2 «+ 1) Indeed, the value of P,(x,) is the determinant of the Gramm
matrix of the basis B,, and therefore is nonzero. O

5. Proof of the Main Result
Now we are ready to prove the main result of this paper.
Proof of Theorem 1.2. Our algorithm is the following. For each collection

< [1:m]: %I =k of indices, by applying the Volume Computation Oracle we
check if Fy={xeP:(l,x) =a, iel} is a (d — k)-dimensional face of P and if
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so, we compute its volume. Then for each such a face F, we find a set
Jr = {ie[1:m]: the face F, belongs to the hyperplane <I;, x) = a;}.

This can be done using linear programming or by applying the Oracle. For each
face F; let us put K; = co{l;: i€ J,;}. Thus K, is a rational k-dimensional polyhedral
cone in R, Then, using triangulation and Theorem 3.5, we compute in polynomial
time a decomposition

K;=Y &K,

ac A;

where K,, xe A = | ] 4y, is a primitive k-dimensional cone in R%. Using Lemma
4.1 we compute a (d — k + 1)-dimensional subspace G which is a regular point for
all the functions u(K,), a € A. Then for all xe 4 we compute the value us(K,) as
in (2.2), see also (2.1.2). Now we put

ue(Ky) = M &, te(K,).

aeAd;
Finally, we compute the coefficient e,_,(P) using Theorem 2.5. O

Now we discuss the problem of counting integral points in a d-dimensional
integral simplex. Let A = R? be a d-dimensional integral simplex. Our approach
gives the following complexity for the problem of counting integral points in A.
Obviously, we have

d
#¥ANZY=Y efA)

i=0

To compute e{A) we use our algorithm summarized in Theorem 1.2. We note that
the volume of a face of A can be computed in polynomial time and that we have
29* ! faces, including the empty face. The complexity of the algorithm from Lemma
3.4 is dominated by the term (d-size A)°® for integer programming (see, for
example, [7]). Thus the complexity of the algorithm from Theorem 3.5 is domi-
nated by (d - size A)°? too, because of the estimates on the number of iterations.
Summarizing, we conclude that our algorithm for counting integral points in a
simplex has (d - size A)°® complexity. This is probably the best-known estimate
so far.
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Communicated by Louis Billera

Abstract. Yuzvinsky [7] has shown that free arrangements are formal. In 1
we define a more general class of arrangements which we call k-formal, and «.
that free arrangements are k-formal. We close with an example which disti
k-formal arrangements from formal arrangements.

1. Introduction

Let [ be a field and let V be an I-dimensional vector space over K. A /:
in V is a codimension 1 subspace of V. An arrangement o in V is a {i:
hyperplanes.

Let {x,,..., x,} be a basis for the dual ¥* and let § be the symmet:
of V* which is isomorphic to the polynomial algebra K[x,,..., x,].
hyperplane H in V has a defining form

Oy =a,x; + ' + ax,

with ker(ay) = H, unique up to a constant multiple. Thus an arrangem
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