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A POLYNOMIAL TIME ALGORITHM FORRGRESTISRARY
INTEGRAL POINTS IN POLYHEDRA WHEN
THE DIMENSION IS FIXED

ALEXANDER I. BARVINOK

We prove that for any dimension d there exists a polynomial time algorithm for counting
integral points in polyhedra in the d-dimensional Euclidean space. Previousty such algo-
rithms were known for dimensions d = 1, 2, 3, and 4 only.

{. Introduction. We present a polynomial time algorithm for counting integral
points in - polyhedra if the dimension of a polyhedron is fixed. Previously such
Aporithms were known  for dimensions 1, 2, 3, and 4 only. Generally, a convex
polyhedron is supposed to be given by linear inequalities or by the coordinates of its
.ortices. However, it can be shown that the problem of counting integral points ina
sational polyhedron can be reduced in polynomial time to counting integral points in
an integral simplex assuming that the dimension is fixed (sec Cook et al. 1992 and
Dver 1991). Let Z¢ < RY denote the standard integral lattice in the d-dimensional
Fuclidean space RY. We consider the following problem:

(1.1) Counting integral points in dimension d. Given k + 1 integral vectors
oo Ugey € Z¢ such that their convex hull A = conv{v,..., U, is a k-dimen-
sional simplex, compute the number of integral points #(A N Z%) in the simplex A.

For d = 1 a polynomial time algorithm in Problem 1.1 obviously exists. The case
J = 2 also is relatively simple. A polynomial time algorithm is given by Pick’s formula.
For the cases d = 3,4 polynomial time algorithms were designed by M. Dyer (1991).
They essentially use some properties of Dedekind Sums. The paper by Dvyer (1991)
also contains a polynomial reduction of the case of even dimension d = 2 - m to the
case of the preceding odd dimension d = 2-m — 1. In the paper by Cook et al.
(1992) for each fixed d an algorithm was designed which for any given € > 0 solves
Problem 1.1 with relative error less than e in time which is polynomial in the size of
the input and e~ !. We also note that for any fixed dimension there is a polynomial
algorithm which checks whether the polyhedron contains any integral point (see
Lenstra 1983 and $6.7 of Grotschel 1988). Here we prove the following result.

(1.2) Tueorem. Ler us fix d € N. Then there exists a polynomial time algorithm
which solves Problem 1.1.

Therefore, by Cook et al (1992) and Dyer (1991) we conclude that for each
dimension d there exists a polynomial algorithm for counting integral points in
d-dimensional polyhedra.

The main idea of the algorithm is to use a remarkable identity discovered by

M. Brion T1992) for exponential sums over polytopes. We discuss these
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identities in §2. In §3 we present a general outline of the algorithm. In §4-5 W

describe important subroutines of the algorithm. Finally, §6 contains a description Ow
the algorithm.

2. Preliminaries. Exponential sums over polyhedra. In this section we summas.
rize some facts about exponential sums over polyhedra. Let &9 e

Euclidean space equipped with the standard inner product { -, - ). The main tool of &
our algorithm is the following expression :

(2.1) 2 expl{{c, x7},

xeprig?

where P < R is a polyhedron and ¢ & B is 4 vector. Such an object usually appears
in literature in a different form (see, for example, Chapter 4 of Stanley 1986),
Namely, for each point x = (xl,...,xd) = 7 the Laurent monomial ¢ = afr .-
ag'in d variables a,,..., a, is assigned. Instead of (2.1) the Laurent series

(2.2) Z a’®

x=pr i

is considered. If in (2.2) we substitute formally ¢, = exp{c} for i =

=1,...,d then we
get the expression (2.1) with ¢ = (c,...,c,). In what follows we translate some

known statements about (2.2) into the corresponding statements about (2.1). We also
note that all the necessary facts in the desired form are contained in the author’s
paper (Barvinok 1993).

First, we introduce some notation. By conv S we denote the convex hull of a set
S < %% By co S we denote the (convex) conic hull of a set Sczdie,

coS=/x= Ayt A 20and_v,ESforalli\/.
\ - i i i ! }

By Lin § we denote the linear hull of a set S — R4 A lartice is a discrete additive

subgroup in Euclidean space. Thus, 7 is a lattice in <. Each lattice A c RY has a

basis. i.e.. a set of linearly independent vectors ..., u, such that

_\={i/\,-Lti:A,EZforlf:1....,k\

i

L2 |

Let us consider first the exponential sum (2.1) over a polyhedral cone.
(2.3) DeFINITION. A convex cone K < RY is called rational if it is the conic hull
of finitely many integral vectors:

Qs
L9 28 e
O S§ K=colu,....;u;}:u, €29 fori=1,... k.
Y
& ) d
@Q Then we say that Uy, ...,u, are the generators of the cone K. 4 cone K is calle .

N~ g - .
D ~—->;imple if it can be generated by linearly independent vectors.
- With each rational cone one can associate a certain meromorphic function.

(2.4) PrROPOSITION (SEE, FOR EXAMPLE, THEOREM 4.6.11 OF STaNLEY 1986 OR
Barvinok 1993).  Ler K < RY be a simple rational cone. Let ¢ € RY be a rector such

e —— i —————
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. . . bl
Juat the linear function {c.- ) decreases along the extreme rays of K. Then the series |

Y. exp{{c, x>}

vekKnz!

Conierses and defines a meromorphic function in ¢ € C4 (we denote this function o
(KW Afug, o € 77 are linearly independent generators of K then for all
e ECY

k
1
o( K:c) = pelexple},...,expicyp) - —_—
) I\( { I} { l}) II:ll l-exp{(c,u,}}
where p is @ Laurent polynomial in d variables. Thus the set of real singular points of
LK) is the union of hyperplanes
Ho={ceRilcu)=0}j=1...k ©

J

(13) Remark., We give the idea of the standard proof which also displays the
dructure of the polynomial py in Proposition 2.4.
Lot us consider the following “semi-open” parallelopiped T1:

k
1= {xc Yoo, cu0<a < 1\.
2 J
It can be checked that for cach point x € KN 74 there exists a unique representa-
tion

k
m; - u

i=1

x=a -+

'
where ¢ € [1 29 and m, are nonnegative integers for i = 1,...,k. Using the
summation formula for a geometric series we conclude that

k

exp{{c. x>}) -T1

i —exp{Ceup)’

o(K;c) = E

xehnz?

Now we consider the exponential sum (2.1) taken over a convex polytope.
(2.6) DEFITION.  Let P € RY be a convex polytope. For a vertex ¢ of P we
define the supporting cone K, of P at ¢ as follows:

K, = {u=s 3% ¢+ 38 ue P forall sufficiently smail 5 > 0}.

Thus, the cone K, is generated by the vectors w — v where w ranges over the set
of all vertices of P such that [¢.w]is an edge of P.

A convex polytope P c RY is called integral if its vertices belong to the lattice 74,
The set of vertices of P we denote by Vert P. The following proposition is crucial for
our considerations.

(2.7) ProrosiTion (Brion 1988, 1992).  Let P be gzn/irigﬂl_gtgﬁt't)pe. Then
Lo oew{(c o) = X

xepn reVert P

exp{{c, D} o (K,:c),

for all ¢ € R which are not singular points of any function (K ;¢). 0O
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For an element
Puhlikov (1992).

Exampie. Let d = 1 and P be an interval, P =1[0,n): n = “. Then Vert P
{0, n}. Thus we have K, = [0, +») and a(Kyie) = 1/(1 — exp{c}) whereas K, =
(==, 0land o(K,;c) = 1 /(1 ~ exp{~c)). Finally we get the formula: ;

ary proof of Proposition 2.7 sec Barvinok (1993) or Khovanskij and &

z oo exple(n+ D)) —1
Xg)exp{c x} = ool =1

il

exp{c - 0} - o (K ¢) + exp{c - n} -o(K,;c).

3. An outline of the algorithm. A straightforward idea for how to solve Problem
L.l would be to substitutc ¢ = 0 in the formula of Proposition 2.7 for P=A.
However, the point ¢ = 0 is singular for all the functions o(K,; c). To overcome this
difficulty, let us introduce a‘parameter £ = B, Let ¢ be a “generic” point in RY so
that ¢ is a regular point for all the functions o(K ;¢), ¢ € Vert A. We want to
compute the constant term of the Taylor cxpansion of the function

2 exp{t - {c, x)}

IV ATaRY

in a ncighborhood of the point ¢ = (). Now by Proposition 2.7 we can reduce our

problem to the computation ofythe constarit terms R (K,,c,c) of the Laurent,
expansions of the functions

&

exp{t - c,t7} o (K 5t ¢)

for all vertices ¢ of A. We define a class of cones for which the |
computed relatively easily.

(3.1) DEFINITION. A simple rational cone K is called primitive if

ast value can be

where w,,.... i, 1s a basis of the lattice A = 79 N LinK. The vectors u,
called primitive generators of K.

It turns out that for a primitive cone K, there exists an explicit formula for this
constant term R(K,,t,¢). This formula is based on the observation that for a
primitive cone K the function o (K: ¢) looks very simple, namely the pol
in Proposition 2.4 is identically 1 (see §4.)

Finally. we represent an arbitrary simple rational cone K as a "lincalgg,mp_i_na_tigg’f B
of primiti»ﬁoncs. It turns out that if the dimension d iSTxed, then this can be done
in polynomial time and the number of such primitive cones is bounded by a
polynomial in the input size (§5). Such a decomposition immediately leads to a
polynomial algorithm for the computation of the constant term R(K.r,c) for an
arbitrary simple rational cone K € R and for an arbitrary vector © € 79 when d is
fixed. Thus the decomposition described in §5 constitutes the core of the algorithm.#

We discuss the input size (see, for example, Grétshel et al. 1988) of our algorithms.
For a vector u = (uy,...,u) € 74 we denote u| = max{lu,l: i = 1,..., d}. Thus size
u = 0(d - (log(lul + 1) + 1)). We assume that a simple rational cone K is given by its °

integral linearly independent generators u,...,u,. Thus size K = O(size u, +
© +size u,).

vnomial py
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4. Primitive cones. We start with an explicit formula for the function ¢(K;¢)in

case of a primitive cone K.

(1.1} ProrosiTioN (SEE, FOR EXAMPLE, CoRrOLLARY 4.6.8 v StanLEY 1986 OR

BarvINOK 1993).  Assume that K = B4 is a primitive cone with primitive generators
Wyeree H, € Z¢. Then

k

K. == :
o(K;c) leIl 1 — exp{{c,up}

=]

We note that Proposition 4.1 follows from Remark 2.5 since the parallelopiped II
in the case of a primitive cone K contains exactly one integral point, namely, the
origin.

(42) CoROLLARY. For any k € "1 there exists a polynomial Q(x, ..., X5 y) of
deerce not more than k with rational coefficients such that for any primitive k-
dimensional cone K € R4 with primitive generators uy, ...,y = 74, for any v € 7%,
and for any ¢ &€ R such that ¢ is a regular point of the function o (K; ¢) the constant
werm R (K. v, ¢) of the Laurent expansion of the function

exp{t - ‘c,u)} o (Kit-c)

in u neighbourhood of t =0 is equal to the value of

k
Oux, o xey) TTe €

i=1

fory ={c.oy and x, = leoupn i =10, k.
PrOOE.  Let us consider a function F.in k + 2 variables x,, ..., X, v. I

s
i

i k '
Ve Foix L _ ) r-x,
‘ k(,\|....,.r,\..).z)-exp{t-_»}-H —.
L1 —explr-x}
Then F, is_an analytic function in a neighbourhood of the point x, = ~* =4, =

v = = 0 and there its Taylor expansion exists in this neighbourhood. Moreover. we
observe that the coefficients of this expansion are rational (since the Taylor expansion
of exp contains rational coefficients only.) Let us group together all the terms which
have degree k in . We get the term ke xy, X 1y) where Q isa polynomial

of degree not more than with rational coeflicients. By Proposition 4.1 we conclude

that Q, is the desired polynomial.  ©

(43) Lemma.  Ler us fiv d. There exists a polynomial algorithm, which for any
primitive cone K C RY. given by its primitive generators, for any given integral vector
v e 74, and for any given rational vector ¢ € QY such that ¢ is a regular point of the

function o (K:c) computes the value of the constant term R(K, v, c).

Proor. Our algorithm is the tollowing. Let u,,...,u; be the given primitive
generators of the cone K. We compute y = (e,vy,x; = Ceyuy fori= 1.,k and
substitute these values into the formula of Corollary 4.2. Since d is fixed and k < d
our algorithm has polynomial complexity.

Note that we compute the polynomials Q. k=0,...,d before starting the
algorithm. ©

st R - M ¢ . YL 0. 475
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Linltego.ons 1)
() the vector
o) if K = o

5. Decomposition of rational cones. A
(5.1) Dernrrion.  Let K © ®¢ be a rational simple cone, given by linearly inde~@g"
pendent generators uy, ..., U, & 7¢. Let us denote by I1 the “semi-open” Parallelop; ?;Mi

iped (see also Remark 2.5)

() bwl < luy!

k
1= {x= Yo, ul<q < 1}.

i1

pProor.  Let
lattice and Ind
W

The number #(IT N Z9) of integral points in [T will be called the index of the given
cone K and denoted by Ind K.

Thus K is a primitive cone given by its primitive generators if and only if
Ind K = L. Generally, Ind K is a natural number which measures the “deviation” of
the cone K and its generators g, ..., Uy from being primitive. At the same time A
fnd K measures the “complexity” of the polynomial py in Proposition 2.4. As is well
known, the index of the cone K can also be described as follows. Let dim K = k. Let
us define a k-dimensional lattice A = Lin K n 7. The determinant of A is the

iped

So. W is a k-¢

volume of a k-dimensional paralielopiped spanncd by a basis of A. Then ) ah o det AL Th
al. 1988) it -
ind K =lu, A -+ Augl/det A T [T
Here we use the standard notation for the volume of the parallelopiped 1 spanned Ind K,
by ... u,. In other words, Ind K is the index of the subgroup generated by
t,....,u, in the group A. In particular. we conclude that the index of a cone is

polynomially computable and that log (Ind K) is bounded by a polynomial in the
input size (see, for example, §5.4 of Grotschel et al 1988). 1t follows by Definition 5.1
that the index of a face of a simple rational cone given by a subset of the set of
generators does not exceed the index of the cone.

Let S c B¢ be a set. By y, we denote the characteristic function of S. Thus and (b) hold

vectors (a) h

)((v)={1’ if x €e8; Now we st
A 0, otherwise. To do that.
dimension d
For a finite family of cones K. K; C nd. i e I and integral numbers €, € 1 we write Let us cc¢
i=1,...,d
K= Y & K,
iel
if
xelx) = Zei'XI\'r(x) Let us comy
iel than 1/D
o . . . Wk i=1,.
for all x € RY. We are going to design a polynomial time algorithm for decomposing cé)nsider th
a nonprimitive rational cone K into a linear combination of rational cones with Find
smaller indices. lterating this procedure, we finally obtain a decomposition of the Such the
cone into a linear combination of primitive cones. If the dimensigpﬁ_ﬁkjiﬁl\:’c“g.'t{his:}‘?ﬁ' L d
plgorj_thm turns out to have polynomial complexity since the numbper of iterations anc}
‘grows as loglog (Ind K) whereas the number of cones in the decomposition grows *3 For som
siﬁgl&“ékp’gnentially in the number of iterations. The following lemma provides the 74 Since ¢
key argument for such an algorithm. an;l §5.4 0
ming). No-

(5.2) Lemma. Fix d € N Then there exists a polynomial algorithm which for any
., u, € 7% constructs a nonzero vector w €

given k linearly independent vectors uy, ..

condition (*
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Lin{tey, oot 3 N 7% such that
(a) the vectors w,u, ...u, belong to a certuin open halfspace in "2
(0 ifK; =coluy,...,u; _,w,u u,} is a k-dimensional cone then

j-t JELERRE

Ind K; < (Ind K)"“~ "%

) [wh < luy | + -+l

Proor, Let us denote A = Lin{u,,...,u,} N 2% Thus A is a k-dimensional
fattice and Ind K = Ju, A -+ 7 ul/det AL Let us consider the following parallelop-
ipcd W

k
=\Ix=§:a, eyl = (lndK) fori=1,...k
i1

RS —

So. W is a k-dimensional centrally symmetric convex body and its volume is equal to
2% . det A. Therefore by Minkowski's Theorem (sce, for example, §5.3 of Groétschel et
al. 1988) it contains a nonzero vector w < A N W. Then for all j such that

Wpewow sty Wyt ..., 1y arce linearly independent we get
Ind K, =lu, 7 = Auy oy Aw AU A Augl/det A
~1/k
<(Ind K) V" luy Ao A W, A A A 7 ougi/det A

(Ind K\)(k*l)/k < (Ind K)(d-l)/d

and (b) holds. Moreover, if w € ¥ N A then —w € ¥ i A and for one of these
vectors (a) holds too. We note that (¢) is obvious.

Now we show that one can construct such a vector w € ¥ N .\ in polynomial time.
To do that, we reduce our problem to a problem of integer programming in
dimension d. o

Let us compute in polvnomial time linearly independent rational vectors u:
i=1,.... d such that

. . AN i’ ;Y
{u, ut) = {8“, 1= ! K DT e
0, otherwise. ooy
-1 ]
et us compute a rational number L which approximates (Ind K) ™ * with error less 0o,
than 1 /D where D is the least common denominator of the coordinates of vectors R
wiioi=1...., d. This can also be done in polynomial time. For m = 1,.. .. d let us °, ap o e
consider the following problem of integer programming in fixed dimension d:
Find w = (wl, coaw) e 74
Such that: ~L < w, u*> L fori=1...., k and {w,uf) =0 for i=k+
1,...,d;
and w, = L

m

For some m the program has a solution which gives us a nonzero vector w € ¥ N
Z“. Since d is fixed. this solution can be found in polynomial time (see Lenstra 1983
and §5.4 of Grotschel et al 1988 for more recent developments of integer program-
ming). Now we can check in polynomial time which vector w or —w satisfies the
condition (a). O
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v

(5.3) Lemma.  Let us fix d € N. Then there exists a polynomial algorithm which for

any given simple rational cone K C RY constructs not more than 2 simple rationgl
cones K, RY: i € [ and computes integral number e, €{=1,1} i €I such that

(a) Ind K, < (Ind K)*"V/4 forall i € I,
(b)

K= Y€ K, and o(K;c)= )€ o(K;c);

i=1 i=f

(¢) size K, < size K + O(d?).

Proor. Let us denote by u,, ..., u, the given generators of K. Then we construct
the vector w as in Lemma 5.2.

Letus put J = {j e {l,..., k}: the vectors w,...,u; _,,w,u;.,,...,u, are lincarly
independent}. For each j € J let us put
Ky=colupy, ..o ou; ,wo, g, u, )

By Lemma 5.2, Ind K; < (Ind K)*7'/,
We are going to represent the cone K as a lincar combination of faces K, of the
cones K,. To do that we follow Lemma 2 from Dyer {1991).

Let us put J_={j e J: the bases (u,....,u,_,w. u _,...,u) and
(uy,.... Wyl U gy ,it, ) have the same orientation} and J_=J\J .. Since the
cones {K;: j € J_} Lonstltute a triangulation of the cone C = colu., ..., u,,w}, using

inclusion-exclusion formula we get a decomposition

(5.3.1) C= Y e K,

il

where K,: i € I, is a common face of some cones K;: j €J_ and ¢, € {—1.1}. Thus
the number of terms in the decomposition (5.3.1) does not exceed 27, where p < d is
the cardinality of J_. Since d is fixed, decomposition {3.3.1) can be computed in
polynomial time. For each j € J_ the intersection [, = K, n K Is the common facet
of K, and K. Let us put K = K;\T,. Since the cones {K,: j €J_} constitute a
trmngulatlon of C\ X, using mdusxon exclusion formula we can compute in polyno-
mial time a decomposmon

(3.3.2) C\K= Y 5, K,.

where 1\ is a common face of some cones K jeJ_ and 5, € {—1,1}. Thus the
number ot terms in the decomposition (5.3.2) does not exceed 2 7'" where m <d — 1
is the cardinality of the set J_. Now we observe that each cone K, can be represented
as a ditference of two faces of some K:

(5.3.3) K, =K, -K,nTj,

where K; is a face of K; for some j € J_. Combining (5.3.1), (5.3.2) and (5.3.3) we
get the ﬁrst decomposmon in (b), where each cone K is a face of a certain cone K;:
j € J (we allow repetitions of cones).

\Me,mte that there exists an open subset W C R¢ such that for all ¢ € W the series
defining the functions a(K;c), o(K; ¢) converge. Therefore, the second identity in
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(@ also holds. Since the index of a face does not exceed the index of the cone, we get

Ind K, < Ind K, < (Ind K)"“""".

Finally, (¢) follows by the inequality (c) of Lemma 5.2.
Now we can prove the main theorem of this section.

(5.4) THeoreM. Let us fix d € N. Then there exists a polynomial algorithm which
for any given simple rational cone K constructs a family K, C RY: i €I of rational
primitive cones and computes integral numbers €2 i € I such that

K= Ye€ K, and o(K:ic)= Y e o(K;c)

izl il
forall c € B which are regular points for the functions o(K:c),o(K;c) i =

Proor.  Let us choose the smallest intcgm* T such that
e

—loglog 1.9 + loglog(Ind K)
logd — log(d — 1)

T =

We apply the algorithm from Lemma 5.3 inductively, first to the cone K. then to the
cones K, and so on, altogether T iterations. Finally we get not more than (24)" cones
K, such that Ind K, < 1.9. Since Ind K, is always an integer. we get that Ind K, = 1.
We apply the algorithm from Lemma 5.3 not more than (24)7 times. By Lemma 5.3 it
follows now that the complexity of the resulting algorithm is polynomial in the input
size and lincar in (2¢9)7. Now we see that the last number is bounded by a polynomial
in the input size. Indeed. let us denote

) [ —loglog 1.9 N

— i S . a4y -

C,(d) expl‘ Togd — log(d — 1) +1’ log(2 )}.
log(29)

logd — log{d — 1)~

C.(d) =

Thus C, and C, are constants for a fixed d. Then
(24 < C,(d) - (log(Ind K)) ",

Since the value log(Ind K) is bounded by a polynomial in the input size. the last value
(for a fixed d) is bounded by a polynomial as well. O

6. The Algorithm. In this section we describe our algorithm for Problem 1.1.
First, we need a simple result which states that a “generic™ vector can be constructed
in polynomial time.

(6.1) LEmMmA. There exists a polynomial time algorithm which for any given d € N,
for any given m € N, and for any rational vectors u,,...,u, € QY constructs a
rational vector ¢ € QY such that {c,u,y # 0 fori=1,....m.

Proor. We look for a vector ¢ of the form

c(r)y =(1,t,...,t9 )1 e Q.
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Thus p(t) = (c(Dup: i=1...,m is a family of nonzero polynomials of degree
d — 1. Therefore for some t € (0,1,...,m - (d — 1)} the vector c(t) satisfies our
condition. O

PrOOF Of THEOREM 1.2.  Our algorithm is the following. For each vertex v of the
simplex A let us compute integral generators uv),...,u,lv)of the supporting cone
K, of A at v. This can be done in polynomial time. Using theorem 54 let us
represent each cone K, as a linear combination of primitive cones K;:

K, = Z € K.

iel,

Using Lemma 6.1 let us construct a vector ¢ which is not orthogonal to any of the
gencrators of the cones K,,i € U [, Finally, using Lemma 4.3 fet us compute for all
v and i € [, the constant term R(K,, v, c) of the function

exp{{t-c,0)} o(K;t-c)

as t — 0. By Proposition 2.7 we conclude that

#ANZH = Y. Y € R(K,v,c).

revert Aiel,
Thus we compute the sum in the right-hand side. ©

7 Some remarks. Our approach allows one to design a polynomial time algo-
rithm for the computation of the sums

Y e(x).

reanz¢

where ¢ RY — R is a given polynomial. To do that, we should use a version of
Brion’s identity with a polynomial density (see Barvinok 1993). .

The complexity of our algorithm for solving Problem 1.1 is 97, where # is the
size of the input. There is a modification of the algorithm which allows us to achieve
/0 complexity. Instead of Brion's identity (Brion 1988, 1992) we should use_then
Morelli’s identities (Morelli 1993) which express the number of itegral points in an
integral potytope i terms of the_volumes of faces and certain additive measures on
.the supporting cones at these faces. Our algorithm implics polynomial computability
of the Ehrhart polynomial, that is, of the polynomial

d
#(m-A) =Y e(d) -mfim e N
k=0

(see, for example, Chapter 4 of Stanley 1986) of a given integral simplex A of the
fixed dimension d. Morelii’s identities, however, allow one to compute in polynomial
time any fixed number of the highest coefficients of the Ehrhart polynomial of a given
simplex even if the dimension varies. These results will be described elsewhere.
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