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Methods of Representations Theory in Combinatorial Optimization
Problems*

AL BARVINOK AND A.M. VERSHIK
(Moscow)

An approach to combinatorial optimization problems is developed in this paper from the point
of view of the theory of symmetric group representations. An assignment problem which generalizes
the ordinary assignment problem is tied to each representation of a finite group. For a symmetric group,
this problem includes also the travelling-salesman and other problems. It is proven that, for almost all
representations of a symmetric group, the assignment problem is NP-complex. An approximate
algorithm which yields a guarantced relative error is constructed for solving these problems. The
investigations are based on the analysts of the convex hull of the orbit of a point relative to the group
action in the space of the representation operators.

* * *

INTRODUCTION

Many problems in combinatorial optimization reduce to the problem of finding an extremum of a linear function
on the convex hull of some set of points in Euclidean space. Sometimes, this set has the structure of the orbit of some point
under the action of a finite group. This is preciscly the siwation in the assignment, the travelling-salesman, and other
problems. The usc of representations theory methods cnabics one (o make considerable progress in the study of the
combinatorial typc of similar polyhedra and in the development of approximate algorithms with guaranteed estimates. Many
authors [1] have cxamincd the possibilities of applying group-theoretic methods to a number of discrete programming
problems. Here, the problem has been formulated as that of optimizing a real function on a (symmetric) group. However,
representations theory has not yet been applied to these questions. The basic idea of this paper is to study functions on a

finite group with the aid of representations by which they can be defined. We say that a function f: G— R passes through
the representation T : & — GL (n, R) of the group G if there exists a linear functional ¢ € (F (Hom V_)* on the space V, of the
representation operators tsuch that f(g) = (¢, (g)). Methods of representations theory are applied in this paper systematically

The basic results consist of the following. First, one poses the genéral n-assignments problem which is a natural

genergljzation of a number of combinatorial oplimization problems such as the asSIENMEnt, the tavelling- and
atherproblems: init, wisan arbitrary representation of a symmetric group. Second, itis proven that almost all these problems

are NP-complex. Third, approximate algorithms for solving the x-assignments problem with speed and crror estimates are
constructed on the basis of a more detailed analysis. We emphasize that, from an algebraic-gcometric point of view, all
these problems reduce to a description of all the senior-dimension faces (or to finding one of them) of the convex hull of
the set from a given series of sets, that is, to the description of its polar. If the number of senior-dimension faces increases
polynomially with the set dimension or if there is a polynomial description of the set of faces, then the corresponding
optimization problem belongs to the P class. A closc point of view is found in [2]. This approach will be developed in what
follows for more gencral problems. We will describe briefly the contents of this paper. Notations and basic concepts are
introduced in section 1. [n section 2, the w-assignments problem is formulated and examples of combinatorial optimization
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problems that reduce to m-assignments problems are presented. Section 3 presents the proof of the mutual reducibility of
function optimization problems on a symmetric group which are passed through various representations and, as 2 conge.
quence, a theorem on the NP-complexity of n-assignments problems for some series of symmetric group representationg
is obtained. A series of approximate algorithms for w-assignments problems is constructed, and estimates of the arising
errors are presented in section 4. Concluding remarks and unsolved questions are included in section 5. All the concepts,
assertions, and definitions necessary for understanding the formulations of the theorems are explained in the text. The more
special facts of the theory of representations of finite and especiaily symmetric groups that are used in the proofs can be

found in (3, 4]. One can use (5, 6] as the sources which systematize in detail the information about the optimization problemg
of interest to us.

1. Notations and Basic Concepts

A homomorphism of a group G into the set of linear mappings of the real space £ into itself, & : G — Hom ") is
called a representation of G in E. Thus, every g € G is interpreted as a linear operator in £ and &t (gh) = nt (g) m (k). A
representation x is called irreducible if there exists no subspace E, < £; E #0,Esuchthatvxe E;:m(g) - xe E,. A
representation «t : G — Hom E is the sum of the representations p : G — Hom E,, t: G — Hom E, if the space E is the
direct sum of the spaces E, and £, and () =p (g) Dt (g) (denoted by £ =1 @ p). [t is well known that any real representation
of a finite group can be decomposed into the sum of ireducible representations (see, for example, [3]). A representation
Pai(Palg) X=Xy Xx=(Xy, ..., x): g €S, is called the natural representation of a symmetric group S, in R*. This
representation is well known and arises in many combinatorial problems (see in what follows). We shall consider other
representations of S, too. It is known that irreducible real representations of S, are parametrized by Young diagrams of A
or by partitions of the number n (written as A = n) (see also [4]). A partition of the number 2 into the addends A, 2 .., 2,
will be denoted by (A, . . ., A,). The imreducible representation of S, which corresponds to partition A will be denoted
identically. The Young subgroup S, of those substitutions which preserve the partition A corresponds to the diagram of A.
In other words, S, = Stag X - ;'3‘7,, -4, +1.....ay - A representation induced from a unit rep Ei?ntation of a Young subgroup

will be denoted by ,’L@ It can be interpreted as an §, action by multiplication on the left in a vector space in which the
left-adjacent classes S, / Sy, are the basis. If G is a finite group, then R [G] is its group algebra, that is, the space of formal
lincar combinations of elements from G equipped with ordinary mﬂffia«féation; R [G]. is the cone of nonnegative linear
combinations, and T (G) is the simplex:(Zr (g) g: 7 (g) 2 0; Ir (g)=1}.A scalar product (5r (g) g, s (8) g)=2r (g) 5 @
exists in R{G]. Wewill alsouse the following notations: ‘convand coare the convex and conic (convex) hull, respectively,
Lin is the linear hull, ext is the set of extremal rays of the cone or the vertices of a polyhedron; | M | is the cardinality of the
set M. Let G be a finite group, and V, be the R-space of its rational (that is, all the representation operators are rational
matrices; for all the cases considered in what follows this requirement is not a restriction) representation r. We denote by
P, =conv{n(g):ge G) cHom V,=V,®V_* the convex, and by K, =co {n(g): g€ G} the conic hull of the representation
“operators. If wisa subrepresentation of a regular representation of the group G (that is, of a representation of G by leftward
shifts in R [G]), then the lincar space L, = Lin(n(g): g e G) is canonically isomorphic as a bimodulus to the corresponding
ideal /, of the group algebra R (G], and 2, and K., are the orthogonal projections of the simplex T; and the cone R [G], on
L,, respectively.

Lemma 1, Let w contain a unit representation. Then the conjugate, in the sense of the scalar product ( , ), cone K,* in
I, has the form K,* = R [G], N /,. The points {r (g) : g € I'} constiwte a face of the polyhedron P, if and only if there
exist positive numbers 7 (g) : g € S,\"such that £r (g) g € 1.

Proof, Since R [G]. * =R [G], and /,* = /,, then K,* =/, ~ R [G].. Any r & [, is uniquely representable in the form
r=2Z(c, 1 (g)) g where c € L.* =/, Since 1t contains a unit representation, there exists ¢ & L*:{c,m(g)=0.geT
(e, m(g)y>0: ge I forany face I" of the polyhedron P,. This proves the lemma.

Remark, The set of functions f: §, — R which are passable through the representation coincides with the ideal /.

Examples, (1) if p is a natural representation in R* = Rle),i=1,. .. .mp(ge=e,thenl, ={ae M, R: al=
a*l=c(@L1=(l,..., )} and dim L, = (n - 1)* + 1. P, is a polyhedron of bistochastic matrices. One can easily see that
K,* is a conic hull of n* elements, namely the indicators of the two-sided adjacency classes A, S, _, h,. Their explicit form
isx;=e, +(1/(n—1))EY, where e, is a unit of the matrix, and (£Y) ,, = 1 - §, §,. ‘

(2) Let T, be the representation of S, in R** " =R (e, : | £i =< n} thatis induced from a unit representation of the
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young Subgroup S, 21, =S, ;- Tn (8) e; =€ g0 1 Sizj<n. Inthiscase, dim L, = ((n*=3n)/ 2+ D+ ((n* = 3n)/ 2)
+{n- 1)t + 1. The extremal rays of the cone K.* are by no means exhausted by rays of the form (o« Zg: g€ as, ., by
a20;a. b€ S,). We will construct a family of extremal rays. Let / U J be a partition of the set {1 : n - 2]. Consider the

element

er, = S g+ :; g — E g.
o] -3 -3
fn)=n g(n—1)=n—1 gin)=n
el slneds gtn—1)=n—1

One can easily establish that ae, , : & 2 0 is an extremal ray of the cone K.*. The equation of the corresponding senior-

dimension face P. in the coordinates x;'7 of the space Hom (R** ") is

nt n-11 nn-1
Z Tn: + Z In—[; ~=4n n~y /\// 0-
el =t

Remark. Analogously, one can construct for any representation & (A,), where A, = (n - &, Ao A k>1,020)
senior-dimension faces of the polyhedron P, (A,).

2. The n-Assignments Problem

Examples, Let V, be the space of the representation of a finite group G and ¢ € (Homg V)*. The following question
will be called the w-assignments probiem (for short, Problem 1): Find min (¢, w(g))=min {c,x).
2€G P,

xe Py

The question: Does there existg € G: (¢, &t (2)) € a (a € Q) will be called the ASSIGNMENT SUBSTANTIATION
problem (for short, Problem 2) (for terminology, see 2]). As the following examples demonstrate, many familiar combi-
natorial optimization problems reduce to t-ASSIGNMENTS PROBLEMS.

Examples,
(1) Let p, be a natural representation of S, in R". Problem 1 is the ordinary ASSIGNMENTS PROBLEM [5].

(2) Let 7, be a representation of S, in R™® 2,7, (g) €;= €y 4y - 1 Si#j <n. Problem lisa quadratic ASSIGNMENTS
PROBLEM [6].

(3) We will consider Problem 1 with a special functional ¢c. If c=v @ w*,ve Viwe v*, then Problem 1 is a linear
programming problem with the functional w* on the polyhedron P, (v} = conv (vre(g):ge G} cV.

In particular, we have the following:

(a) If & =7, is the representation of Example 2, then Problem 1 with the functional v ® w* is the so-called quadratic
deployment probiem (6].

(b) Let p be a naturai representation (Example 1). We wilt set A € M, R as the matrix of the Hamiltonian loop, that
18,4, = 8,, | moany € € (M, R)*. The problem P

// L uA &J .vaf (e
min{{c, p () Ap(g ™) g € S} =minf(c ®A,x),x € P, =conv {p(g)®p(g). g€ S

is the travelling-salesman problem {5, p. 12} since p (g) Ap (¢™") passes over a set of Hamiltonian loop matrices as g passes
over S, Because 1,=(n-2,1, )@ (n-2,2)®2(n-1,1)®(n)and A lies in the space of the represcntation (n - 2.1,
1)@ (n-2,2) & n, the travelling-salesman problem is a n-assignments problem, wheret=(n-2,1,1)® (n-2,2) with
the special functional ¢; dim P, (A) =n’ = 3n+ 1.
(c)Ifonesets A =A + A~ where A is the matrix of example (3b), then the 1,-assignments problem with the functional
¢ ® A is a symmetric travelling-salesman problem (see [5] p. 359). Analogously to example (3b), it wrns out t0 be a
T-ASSIGNMENTS problem for nt = (n -2, 2). dim P, (A) = (n* - 3n)/2.
(d) The problem of search for the Hamiltonian loop in an oriented graph can be reduced to the SUBSTANTIATION

problem of an (n - 2, 1, 1)-assignment with a special functional.
Let I be an oriented graph with n vertices. We will set ¢, = 1 if j is an arc of " and ¢;; = 0 otherwise; A=A-A"

3



foran(n-2,1, 1)-assignment.
(e) We will setB e MR, n even, B; =1 if {

Li)= (2, 2%~ 1),k=1,... np, and B; = 0 otherwise. The problem

max{(c, x),x e conv {p (g) Bp (€™ =max{{c ®B,x),xe P.=conv {1(g)}}

is the problem of maximum weighted pairwise matching (see (5, p. 254)), since P (g) Bp(g™) passes over the set of Symmetric
permutation matrices as g passes over S,. Because B Vin-2.® V,,,, we have a special-form (n-2, 2)-ASSIGNMENTS
PROBLEM.

(4) Let a canonical simple matroid
Acreal vector ¢ (m); me M is speci

Q c(@=Zc(m:me w We will set G =PGL (n - 1, F) and consider th induced
from the unit representation of a stabilizer of the point 2"~ F fora natural actionof GinP*"' Fi it @ e=e
Letv e R” be the indicator of some basis P -!

2 () ie pr-t F.

F. In this case, xt (g) v Passes over the indicators of all the bases of p*-! F

35 g passes over G. Therefore, the problem of search for the minimal-weight basis of the matroid A is an-ASSIGNMENTS
problem.

p (see, for example, [7, p. 72)).
asis € Q of the matroid M; ¢ (©) > min; we
¢ representation w of the group G in R°

Remark, Polynomial algorithms exist for problems (1), (3e), and (4). Problems (2), (3a), and 3c) are NP-complex,
Problem (3d) is NP-complete.

The list of problems can be cxpanded. For example, many polyhedra of metroids are convex hulls of group orbits.

3. Reducibility in m-Assignments Problems

We will fix a partition of the number £ i X =k, and let A,
i=2

of spaces of the corresponding irreducible re;
k,_,‘=(n——2k+1,kz,...,l,—1)(n>3Ic)‘

Theorem 1, The A, _-ASSIGNMENTS PROBLEM is polynomially in n reducible to the A,-ASSIGNMENTS
PROBLEM.

=(n-kAy...,A) n>2k and V, be the sequence
presentations of the group S, ¢, e (Hom, V)*, a, Q. We will set

The proof of this theorem uses the following lemmas,
Lemma 2. Let n > 2k. We will fix the subgroups S, _, and S, of the group S, that permute the first # ~ & and the last
k numbers, respectively. There exists a set /7 - S

e CH 85, xS, _, such that A, (M) is a face of the polyhedron Py,

Proof. Let ¢ be some table with a Young diag
R.and C, be the row and column stabilizers, rc
We will examine the clemente, =

ram A, the first row of which is filled with the numbers 1,...,n=k
spectively; and ¢,

i be the efement in the i-th row and j-th column.
L(sgng)pge I(A),pe R, q € C, (see [3]) and

=20 Skl = 3 m(g)g.m(q) = 2 sgnqipe Ry
€S, Pas =,

§=Cy s= S,

The element m determines the functional ¢ € Hom,, (Va)* {e. Ay (8)) = m (g). We will show that A = (g:geS,:m(g)=

1} is the required set. Since Vg, Vse S, _, there exists not mare than one pair
8 € S, .. then, by sctting ¢ = [ and p=qgs'eR
Here, if, for some element 4i» the clement g (t,
f1. -4 there do not exist P,
Sa i XS,

Lemmgy i,Lct/\n=(n—k.?\e,...,l,):n>3k. by
3ICe (Hom,, V., )* such that CA@)2

PER,qe Copg=gs' thenm(g)S 1.1
» We have m (g) = 1. Finally, if m g)=1l.theng=p,q,,p e R,q € Cs
) lics below the first row, then m(g,)<lsince, for s € §,_, such thats () =
4: P45 = g. Therefore g, lcaves all the elements of the first row in place and this means that g €

e =(1=2%+ 1, Xy, ... A, -1). Then, Vc e (Homg V)*; Vze Q.
nifge H,(C, A &N ={c,x (py ifg=pge H;pe S, , qe S.
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Hamilt
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Prool. We will examine the contraction of the representation A, to the subgroup §, _, §.and the isotypical component
X, of the representation A,_, init. We have X, =V, ® W, dim W = k. The group S, _, acts in the first factor (representation
Ao and the group S, in the second (natural representation). We will set C = ¢ ® W* + h, where W* is the projector on
the stationary straight line of the representation of S, in W, and h is a functional which singles out the face A, (), h(g) =
0:g€ H: h(g)>z.— 'nliz(c ® W*, A, (g)) when g e H. This proves the lemma.

Theorem 1 follows from Lemmas 2 and 3 and the polynomiality of the operations of constructing a functional that
scparates a face and of singling out the isotypical component. )

Theorem 2. For k> 1, Problem 1 is NP-complex and Problem 2 is NP-complete.

The NP-completeness of Problem 2 follows from Theorem 1 and from the fact that Problem 2 is NP-complete for
Azln- 2,20 and A, =(n-2,1,1) since the symmetric travelling-salesman problem and the problem of the search for a
Hamiltonian loop in an oriented graph (see section 2, Exampie 3, part d) are reduced in it. The NP-complexity of Problem 1
is derived, as usual (compare with [5)), from the NP-completeness of Problem 2.

4. Approximations

Approximate solution methods for Problem 1 are of interest in connection with Theorem 2. We will fix %= (%, . - -
x,), the irreducible representation of the group S, in R™ Inthis section, we shall denote, for convenience, P = P, =conv {»(g):
g€ G) c Hom (V.). The basic idea of the construction of approximate algorithms in Problem 1 consists of replacing the
polyhedron P by a simpler polyhedron P (X) with the aid of a suitable system S, of invariant cones in R (S.].

Definition, A cone K < R {Gl. is called G-invariant if, Vg € G, gk =Kg =K. Let A= (A, ....A,) be some partition
of the number n. We will set K (A) = co (Tg:geaSibiabe§,). Obviously, the cone K (A) is S.-invariant

lextx K(A)|, dim K(A)< (n!1S:)2.

Consider the polyhedra BO*=K MNT P* (W) =K M N T (@ €) (€ s the unit representation). Obviously,
P* (\) c P*. The polyhedron P (A) c Hom (V,) which is dual to P* (\) is the projection P(A) < Hom (V r (M) of the .
polyhedron dual 10 P*(\) on Hom (V,). Thus, we have pr: A(A) - P(M)y> P.Letce (Hom V)%

We replace Problem 1 min (c, x): x € P by Problem 1 (A):

min (pr*c, . (1(A))

xezP(R)

Since dim P(A) <dimK(A) S (n /18, y* and the number of scnior-dimension facesis f(Py) <lext (K A)I<(n 1SN
Problem 1 is replaced by the linear programming problem of dimension not exceeding (n LIS P X (r ! /1SN

We will describe the polyhedron 7 (A) explicitly. One can casily sce that £ (M) = aff (n A) (g) : g € S.} N Hom X
(V co)s, where aff denotes the affine hull and Hom (V) is the nonnegative orthant in the space Hom (Vo) = Vi ®
V™ oy with the standard basis a* ® a;*, where a; and a; arc (left) adjacent classes S,/ S,. The presence of the scalar product
enables one to identify V%o, with (Vqa). Let B : V, o Vg, be different semistandard homomorphisms (see [4]). Then,
polyhedron P()) is described by the following cquations and inequalitics (0, ® 05*) x = 0 if 6r and O are different
semistandard homomorphisms; (8;* @ 8% ~ 05 ® 85*) x = 0 if 85, 85, :V, =V ay Zix,a*®a*)= dim V, 4 s

Yot

&a*®a*)20. Semistandard homomorphism formulas imply that the coefficients in the equations presented in the
preceding are 0 and * 1. Hence, Problem 1 (A) is solvable in time that is polynomialinn! /1 S, | (see [2]). We will calculate
an estimate of the error that arises when Problem 1 is replaced by Problem 1 (A). Let ¢, be a solution of Problem 1 and ¢ (A)
asolution of Problem 1 (A). Since T {c.x(gN=¢(c. Y #(g)y=0, then ¢, £ 0. Since P (M) o P, thenc (A) £ s 0. If =0,
then the functional ¢ is constant on Hom (V,) and therefore ¢ (\) = 0. Consequently, we shall assume that ¢, < O and ¢ (A)

1
' <0.Weselﬁ=c(k)/c°21;e=FZa:aES".

Lemma 4. Let k£ 2 0 be a number such that P* + ke K (A). Then, (k+ 1) 2B 2 1.
Proof, Since P* + ke = K (), then (P* — e)/ (k+ 1)+ e < P* (A). For dual polyhedra we have P M/ k+)cPc
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P (}). The required inequality now follows.

Lemma 3, Let u be an element of the group algebra R (S,] such that

DVrel(z®@&)ru=r,

Du+kee KA.

Then P* + ke < K (A).

Proof, We haver + ke=ru+kre=3%r (g)g (u+ke)e K (A\). The following lemma uses some structural thcorems on
the group algebra R IS, as well as the partial order < on partitions of the given number n (see [3, 4]). If some representa-
tion of A is decomposed (uniquely) into a sum of irreducible representations, then the number of times the irreducible
representation y appears as a direct addend in the representation of A is called its multiplicity (A : u).

Lemma 6, Let A be a partition such that A < % (and consequently (1 (R) : ) = 0). We set

dime 3 X g—(—@—"——t)e, k = dim %/ (x (1) %) — 1.

T IR Rt GV IR

Then, u and k satisfy the conditions of Lemma 5.
Proof, The central idempotent of the ring R [S,] which corresponds to an irreducible representation is calculated

from the formula
dim .
Cs = ! L (D),
n: R

where { scans all the distinct conjugacy classes C, in S, x, = 2g : g € C,, and X, (i) is the value of the character of the
representation 1 on the i-th conjugacy class. We rewrite the clement u in the form

dim = . dim %
_——-——-(q()\) x)n! Zln(u(l)li —(—_—(ﬂ (}‘): <) - l)e

Hence it follows that u lies in the center of the group algebra R [S,]. Expanding u into a lincar combination of central
idempotents and noting that

Yron=((A) 1 %)t xet 2 @it Fx, €,

we have u = u, + U + Lo4e, Tt = #, €. Condition (1) is satisficd. The satisfaction of condition (2) is obvious. Thus, we have
proven

Theorem 3, Let = be a Young diagram with n cells. For any diagram A with n cells there exists an approximate
algorithm, polynomial in dim 7 () in the #-ASSIGNMENTS problem such that the value of ¢ (A) yielded by it is connected
with the optimal value ¢, of the objective function by the inequality ¥ Udim %2 ¢ (\) / ¢o 2 1, where v is the multiplicity of
the representation = in %t (A). If ¢, = 0, then ¢ (A) = 0 and vice versa.

Remark. The multiplicity of (i (A) : ) has the following combinatorial meaning. The number of ways in which A,
units, A, pairs, A, triplets, etc. can be arranged in the Young diagram 7 so that the numbers will not decrease (from left 10

right) in the rows and will increase in the columns (from top to bottom) is equal to (1t (\) 1 %). We will apply the obtained .

result to the first of the nonpolynomial representations , = (n - 2, 2). We will use (A,), = (n - j, 1) as an approximating
sequence. Varying j, we obtain

dim wo= (2°=3n)/2, (A {}a) 1 %) =(*—))/ 2. n—1=j=1

Corollary, In Problem 1 with ¢, = (n - 2, 2):

(a) For any second-degree polynomial f (n) = & n*, & > 0, there exists a polynomial algorithm which yields a relative
error which does not exceed f (n). .

(b) For any power function f (n) = n*, & > 0, there exists a subexponential algorithm (of complexity O (n7) 0 < B<
1), which yields a relative error that does not exceed f(n).
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5. Concluding Remarks and Posings of Questions

1. The theorem of section 3 does not exclude the existence of a description, polynomial in dim m,, of the polyhedron
P., for other series of symmetric group representations.

2. Exponentiality of the number of faces of the polyhedron P, (v) = conv {xt (g) v} does notin itself mean the absence
of a polynomial algorithm in the corresponding assignment problem (see section 2, example (3¢) and [5]).

3. The question how a combinatorial type of polyhedron P, (v), in particular, its f-vector, depends on v is of interest.
For a natural representation of a symmetric group, some information is contained in [8]. For other polyhedra, the approach
described in {9] may turn out to be useful.

4. The problem of calculating a dual polyhedron is contained in the more general problem of calculating the polar to
a semialgebraic set.
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