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BRIEF COMMUNICATIONS

CONVEX HULLS OF ORBITS OF REPRESENTATIONS OF FINITE GROUPS AND
COMBINATORIAL OPTIMIZATION

A. I. Barvinok and A. M. Vershik unc 517.43+519.11

1. Definitions. Let G be a finite group, and V; the vector R-space of its rational
representation m. We denote by P_=conv {n (g): EEGICHmV =V ® V* the convex, and by K, the
conical hulls of the representation operators. If T is a subrepresentation of a regular
representation of G, then Lin {n (g): g €6)= L, is canonically isomorphic, as a bimodule, to the
corresponding ideal I; of the group algebra RG], and Pp, Ky are the orthogonal projections
on L, respectively, of the simplex Sg = conv {g} and the cone RIGL =(Zh (@) g b (g) > 0. For

applications it is useful to know how to prescribe Py, Ky using linear inequalities, that is,
to know how to describe the dual objects.

LEMMA 1. Let 1 contain the unit representation. Then the dual cone Kﬂ, lying in I,
has the form Ky = RIGl, N1, and is the conical huill of some orbits, and its extremal rays

correspond bijectively to the faces of the higher dimension of Ky and P,.

2. The Symmetric Group &€,. Let An be the natural representation of €, in R". Then
dim L, = (n— )24 #;, 1s the polytope of the histochastic matrices; K,'n =K (% ¢ e 8, _ ko).
The explicit formula of the indicators of the two-sided classes is: Tij = eij+ (U(n — 1)) BV, e
is the matrix unit, (£¥),, = I — 8;46;.. The number of faces of P)\n and K)\n of the higher dimen-
sion is a polynomial in n.

Let us consider the répresentation w(A,) of &,, induced with the unit representation of

the subgroup €,., corresponding to the diagram ., =(n—khy ... 4 Nri=k>1. The absence of
=3

twofold transitivity of the action of &, on €./€, allows one to construct an exponential fam-
ily of sets for which there exists a unique element K;(A) with given support and which belongs
to the algebra of sets generated by the two-sided classes 1,8 by, Therefore, we have

THEOREM 1. If k > 1, then the number of faces of the higher dimension of the polytope
Pr(p) grows no slower than 20,

3. T-Assignment Problem. Let ce (HomQV)*, where V is the space of the representation
7 of the finite group G. Let us set UP & mass 7 assignment problem (for short - problem 1):

find max {cc, n (g)y; £ € G} = max {(c, z3; z&Ps}. 1In the case of a natural representation — this
is the assignment problem [1], and is polynomially decidable. The problem of the validity of
the assignment (for short — problem 2: as regards the terminology see [2]) consists in the :
following: to determine whether there exists g =g, for which <, n (g) Sa. Let us consider the i

Sequence of diagrams A, = (n — ki hy . oin) and the corresponding irreducible representations €,
in Vp, e e (Hovan)*-

THEOREM 2. For k > 1 problem 1 jis NP-hard, and problem 2 is NP-complete.
The proof is obtained from the following lemmas.

LEMMA 2. Let An=(n—2%+1,,. whs—1), n>2k. Then the NP-completeness of problem 2 for
the representations Ap follows from the NP-completeness of problem 2 for the representations X,.
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LEM@A 3. Problem 2 for A = (n - 2, 2), Ap = (n -2, 1, 1) is NP-com
4s cf.'w1Fh the problem considered in [2] concerning the faces of the conve
of admissible points of an NP-complete problem)

Plete (see also Sec.
X hull of the set

_ 4. Further Examples. Problem 1 for m(n - 2, 1, 1) is the quadratic assignment problem
[1]. If Ay = (n = 2, 2), then for a special choice of Cn We obtain the symmetric traveling
salesman problem [1], and for Ay = (n - 2, 1, 1), the problem of searching for a Hamiltonian

contour in an oriented graph. These problems are NP-hard. However, for another choice of
the functional in the (n — 2, 2)-assignment problem we obtain the polynomially decidable
matching problem [1]. The problem of searching for the minimal-weight independent set of a
canonical simple matroid over a finite field F is the T-assignment problem for G = PGL(n - 1,

THEOREM 3. Let A be a Young diagram with n Squares. For any diagram R<gA with
squares there exists an algorithm polynomial in dimw(p), yielding ¢, such that

(dim A)/(z (u): ) > cles = 1,

where c; is the true value of the objective function, and (M(W):2) %0 is the multiplicity of
the irreducible representation A in w(p) (see (3]1).

The proof is based on the replacement of the cone A, - ,; by a simpler cone K dual to
R*=0 {Eg; I &= a@“b} N IA@M].

5. Remarks. Let us consider the polytope P_ (z) = cony {n(g)z); P (id) = Py Ifz=z®y, then
P, (z)= conv {n (g) z}. Elucidating the dependence of the combinatoriail structure and, in particu-
lar, the f-vector Pr(z) on z is an interesting problem. There is some information [4] on the
combinatorial structure of these polytopes for the natural representation €n. Not eliminatad
is the fact that for other series of representations {m} there is a description Pr(z) poly-
nomial in dimw. The approach outlined in [5] is useful for describing the structure of ex-
ponentially complex polytopes.
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