CONVEX HULLS OF ORBITS OF REPRESENTATIONS OF FINITE GROUPS AND COMBINATORIAL OPTIMIZATION

A. I. Barvinok and A. M. Vershik

UDC 517.43+519.11

In this paper we address questions concerning the combinatorial structure of the convex hulls of orbits in representations of symmetric groups and show that with a certain exception the convex hull of the orbit of a general point is an exponentially complex polytope. The grounds for considering this question are combinatorial optimization problems, in particular, the π -assignment problem formulated below, including many combinatorial problems. It turns out that almost all of them are NP-hard. However, the questions under study are of interest for the general theory of representations and contemporary combinatorics.

1. Definitions. Let G be a finite group, and V_{π} the vector R-space of its rational representation π . We denote by $P_{\pi} = \operatorname{conv} \left\{ \pi \left(g \right) : g \in G \right\} \subset \operatorname{Hom} V = V \otimes V^*$ the convex, and by K_{π} the conical hulls of the representation operators. If π is a subrepresentation of a regular representation of G, then $\text{Lin}\,\{\pi\,(g)\colon g\in G\}=L_\pi$ is canonically isomorphic, as a bimodule, to the corresponding ideal I_π of the group algebra $R[\mathcal{G}]$, and P_π , K_π are the orthogonal projections on L_{π} , respectively, of the simplex $S_G = \text{conv}\{g\}$ and the cone $R[G]_+ = \{\Sigma\lambda(g) \ g; \ \lambda(g) \geqslant 0\}$. For applications it is useful to know how to prescribe P_{π} , K_{π} using linear inequalities, that is,

LEMMA 1. Let π contain the unit representation. Then the dual cone K_{π}^* , lying in I_{π} , has the form $K_{\pi}^* = \mathbb{R}[G]_+ \cap I_{\pi}$ and is the conical hull of some orbits, and its extremal rays correspond bijectively to the faces of the higher dimension of K_π and $P_\pi.$

2. The Symmetric Group \mathfrak{S}_n . Let λ_n be the natural representation of \mathfrak{S}_n in \mathbb{R}^n . Then $\dim L_{\lambda_n} = (n-1)^2 + 1$, P_{λ_n} is the polytope of the histochastic matrices; $K_{\lambda_n}^* = \mathcal{K}\left\{\Sigma_g, g \in h_1\mathfrak{S}_{n-1}h_2\right\}$. The explicit formula of the indicators of the two-sided classes is: $x_{ij} = \epsilon_{ij} + (1/(n-1)) E^{ij}$; ϵ_{ij} is the matrix unit, $(E^{ij})_{ks}=1-\delta_{ik}\delta_{js}$. The number of faces of P_{λ_n} and K_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} of the higher dimensional states of P_{λ_n} and P_{λ_n} P_{λ_n} sion is a polynomial in n.

Let us consider the representation $\pi(\Lambda_n)$ of \mathfrak{S}_n , induced with the unit representation of the subgroup \mathfrak{S}_{Λ} , corresponding to the diagram $\Lambda_n=(n-k,\lambda_2,\ldots,\lambda_s); \sum_{i=2}^s \lambda_i=k>1$. The absence of

twofold transitivity of the action of \mathfrak{S}_n on $\mathfrak{S}_n/\mathfrak{S}_\Lambda$ allows one to construct an exponential family of sets for which there exists a unique element $K_{\pi}^{\times}(\Lambda)$ with given support and which belongs to the algebra of sets generated by the two-sided classes $h_1\hat{\otimes}_{\Lambda}h_2$. Therefore, we have

THEOREM 1. If k > 1, then the number of faces of the higher dimension of the polytope $P_{\pi}(\Lambda)$ grows no slower than 2^n .

3. π -Assignment Problem. Let $c \in (\operatorname{Hom}_{\mathbb{Q}} V)^*$, where V is the space of the representation π of the finite group G. Let us set up a mass π assignment problem (for short - problem 1):

find max $\{\langle c,\pi\,(g)\rangle;\ g\in G\}=\max{\{\langle c,x\rangle;\ x\in P_\pi\}}$. In the case of a natural representation — this is the assignment problem [1], and is polynomially decidable. The problem of the validity of the assignment (for short - problem 2: as regards the terminology see [2]) consists in the following: to determine whether there exists $g \in G$, for which $\langle c, \pi(g) \rangle \leqslant a$. Let us consider the sequence of diagrams $\Lambda_n=(n-k,\,\lambda_2,\,\ldots,\,\lambda_s)$ and the corresponding irreducible representations \mathfrak{S}_n

THEOREM 2. For k > 1 problem 1 is NP-hard, and problem 2 is NP-complete.

The proof is obtained from the following lemmas.

LEMMA 2. Let $\lambda_n = (n-2k+1, \ldots, \lambda_s-1), n > 2k$. Then the NP-completeness of problem 2 for the representations Λ_n follows from the NP-completeness of problem 2 for the representations λ_n

A. A. Zhdanov Leningrad State University. Translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 22, No. 3, pp. 66-67, July-September, 1988. Original article submitted

The lollowing lemma serves as the basis of the reduction.

LEMMA 3. Problem 2 for $\Lambda_n = (n-2, 2)$, $\Lambda_n = (n-2, 1, 1)$ is NP-complete (see also Sec. 4; cf. with the problem considered in [2] concerning the faces of the convex hull of the set

4. Further Examples. Problem 1 for $\pi(n-2, 1, 1)$ is the quadratic assignment problem [1]. If $\Lambda_n = (n-2, 2)$, then for a special choice of c_n we obtain the symmetric traveling salesman problem [1], and for $\Lambda_{\underline{n}} = (n-2, 1, 1)$, the problem of searching for a Hamiltonian contour in an oriented graph. These problems are NP-hard. However, for another choice of the functional in the (n-2, 2)-assignment problem we obtain the polynomially decidable matching problem [1]. The problem of searching for the minimal-weight independent set of a canonical simple matroid over a finite field F is the π -assignment problem for G = PGL(n-1,F), and π is the natural representation, corresponding to the action of G on $P^{n-1}F$.

The possibilities of an approximate solution of problem 1 are of interest. The following result was obtained by the first author $(G = \mathfrak{S}_n)$.

THEOREM 3. Let λ be a Young diagram with n squares. For any diagram $\mu \leqslant \lambda$ with n squares there exists an algorithm polynomial in $\dim \pi(\mu)$, yielding c_{μ} such that

$$(\dim \lambda)/(\pi (\mu): \lambda) \geqslant c_{\mu}/c_0 \geqslant 1,$$

where c_0 is the true value of the objective function, and $(\pi \; (\mu) : \lambda) \neq 0$ is the multiplicity of the irreducible representation λ in $\pi(\mu)$ (see [3]).

The proof is based on the replacement of the cone $K_{\lambda \in [n]}$ by a simpler cone \widetilde{K} dual to $\mathit{K}^{*} = \mathcal{K}\left\{ \Sigma_{\mathit{g}}; \; \mathit{g} \in \mathit{a}\mathfrak{S}_{\mu}\mathit{b} \right\} \, \cap \, \mathit{I}_{\lambda \oplus \, [n]}.$

5. Remarks. Let us consider the polytope $P_{\pi}(z) = \operatorname{conv}\{\pi(g)|z\}; P_{\pi}(id) = P_{\pi}$. If $z = x \otimes y$, then $P_{\pi}(z) = \operatorname{conv} \{\pi(g) x\}$. Elucidating the dependence of the combinatorial structure and, in particular, the f-vector $P_{\pi}(z)$ on z is an interesting problem. There is some information [4] on the combinatorial structure of these polytopes for the natural representation \mathfrak{S}_n . Not eliminated is the fact that for other series of representations $\{\pi\}$ there is a description $P_{\pi}(z)$ polynomial in $\dim \pi$. The approach outlined in [5] is useful for describing the structure of exponentially complex polytopes.

LITERATURE CITED

- C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Com-1. plexity, Prentice-Hall, Englewood Cliffs (1982). 2.
- L. Lovasz, An Algorithmic Theory of Numbers, Graphs and Convexity, SIAM, Philadelphia 3.
- G. D. James, The Representation Theory of the Symmetric Group, Springer-Verlag, Berlin
- V. V. Emelichev, M. M. Kovalev, and M. K. Kravtsov, Polytopes, Graphs, and Optimization, 4.
- 5. M. B. Gromova, The Analysis of Operations and Statistical Modeling, Leningrad State