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1. N o t a t i o n .  Let ( . , . )  be the s tandard  scalar product  in R n or C " ,  and let Z n be the s tandard 
integral latt ice in R '~ . By ex(P)  we denote the set of vertices of a convex n-dimensional  polytope 
P C R '~ . For v E e x ( P ) ,  define K .  as the smallest convex cone containing P and having its vertex at 
v.  Finally, let dx be the Lebesgue measure on R~.  

2. Main results. 

Theorem 1. Let P C R n be a convex polytope, d i m P  = n and let p: Rn __~ C be a polynomial. 
Then there exist meromorphic functions sv(c) = exp{(c ,  v)}qv(c),  where qv(c) are rational functions, 
v E e x ( P ) ,  c E C  '~, such that 

/p e×p{(c, x))p(x) x = sv(c) (1) 
vEex(P) 

for all c E C n that are regular points for all functions sv(c) . Here 

s (c) = / . .  exp{(c, x>}p(x)d  (2) 
v 

if the function (c, .) decreases along the extreme rays of K ,  (and therefore the integral in (2) exists). 

Theorem 2. Suppose that under the conditions of Theorem 1 p(x)  :- 0 for all x E OP.  Then there 
exist analytic functions ~ ( c ) ,  v E e x ( P )  defined in the region 

u = c \ U Hi + 2 ik, (3) 
jEJ, kEZ n 

where {H i : j E J}  is a finite set of hyperplanes in C n , such that 

xEPNZ n vGex(P) 

for all c E U .  Here 

(4) 
x EK, nZ '~ 

if the function (c, . } decreases along the extreme rays of K ,  (and therefore the series in (4) converges). 

Theorem 1 was proved independent ly  by M. Brion [1] (only for rational polytopes P )  by means of 
toric varieties, by A. G. Khovanskii and A. V. Pukhlikov (an e lementary proof was presented by A. G. 
Khovanskii at V. I. Arnol~d's seminar (1989), his lectures at Harvard University and at the Moscow State 
University s tudents '  conference (1990)), and later by the author  [2]. These proofs are essentially different. 
Below we present the author 's  proof, based on a simple geometric idea. Theorem 2 is apparent ly  a new 
one. We sketch its proof. 
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3. Proofs .  

L e m m a  1. Let {F/}, i = 1, . . .  , m ,  be the set of all facets of a polytope P and let #i be the Lebesgue 
measure on the aj~ine hull of Fi induced from dx in R n . Denote by ni the unit outer normal to Fi • 
Then 

exp{(e, x)}dx - {,~, c)~-"()~, n~) exp{(e, z)}dm 
i=1 i 

for ~ll c e c" and ~ e R" such that (~, 4 # o . 

Proof .  Without loss of generality, we may assume that (A, $) = 1. Put  w(x)  -- exp{{c, x)}ul A 
• . - h u , ~ _ l , w h e r e  (A,u / /  = 0  for i = 1 , . . . , n - I ,  and A A u l A . - . A u , _ I  = d x l A " ' A d x n  is the 
standard exterior form of the oriented volume on R n (here we identify the cotangent space R"* with 
l~n). Applying Stokes formula to P and w, we obtain the desired result. 

P r o o f  o f  T h e o r e m  1. Consider the case p _= 1, since for an arbitrary polynomial density it suffices 
to apply the differential operator Dp = p ( O / O c l , . . . ,  O/Oc~) to (1) and (2). Let us choose A e R" ,  

# 0, so that )~ is not orthogonal to any edge of P .  Consecutively applying Lemma 1 to P ,  then to 
its facets and so on, we finally obtain the decomposition (1), where qv(tc) = t-nq~(c) for all v E e x ( P ) ,  
c E C =, t E lI~. To prove (2), let us choose for each v e ex(P)  an open set U~ C IR n such that 
w # v '.- (c, w) < (c, v) for all c • Uv, w • e x ( P ) ,  and Uv contains no singular points of s~(c).  
Then, for all c • U~, we have 

lim t n e x p { - t ( c  v)} /exp{t(~, x>}az = lim t n e x p { - t ( c  v)} / ;c  exp{i(c,  z)}dx 
t---*+oo ' _ _  t---*+oo ' _ .  

= / exp { (c, x> } dx. 
3 K  v--I )  

The first equation holds since the integral of exp {t(c, x)} outside an arbitrary small neighborhood of the 
vertex v is O(exp{t({c,  v) - e)}) for some e > 0 as t --* +oo.  The second equation is obvious. On the 
other hand, 

lJm tnexp{-- t{c,v>} E Sw(tc)=qv(C) 
t---~+oo 

w E e x ( P )  

for all c • U,. Therefore qv(c)= f~o_~ exp{/~, x)} dx, and the proof fonows. 
P r o o f  of  T h e o r e m  2. Let us sum (1) and (2) over the points c + 2~rik, k • Z n . We will prove that 

the series 

E S v ( C q - 2 7 r i k ) ,  c = ( e l ,  . . .  , Cn) • C n ,  ( 5 )  

kEZ"  

converges uniformly on any compact set in a region of the form (3).' First, suppose that K~ = {x • R ~ : 
n 

( a i , x - v )  < 0, i = 1 , . . . , n }  is as impl ic ia lcone.  Put  ~(x)  = I - I i = l ( a i , x - v ) .  If p = ~ , t h e n  
sv (c )=la lA"  Aa,~l_Xexp{(c,v}} n . , "" I-[i=l(ai c) -2 where (a~ aj) = 50 ,  and the desired convergence of 
(5) follows easily. The case of t he density p (x) = q0 (x) ¢ (x) reduces t o the application of the differential 
operator De  = ¢ ( 0 / 0 c l ,  . . . ,  O/OCn) to each term of (5), which preserves uniform convergence on 
compact sets. Finally, if K .  is not simplicial, then it can be represented as a linear combination of 
simplicial cones bounded by supporting hyperplanes of facets of K .  (see [3, Theorem 17]). Denote the 
sum of (5)by a,,(e). Now Theorem 2 follows from the Poisson summation formula. 

R e m a r k .  If ex(P) C Z " ,  then the condition p(x) = 0 for all x • OP can be omitted. In this case 
the functions a~(c), c = (Cl, . . .  , c , ) ,  are rational in exp{cl},  . . .  , exp{cn}. This result was proved 
by M. Brion by means of toric varieties. An elementary proof was given by A. G. Khovanskii and A. V. 
Pukhlikov. 

Another elementary proof can be obtained on the same lines as the above proof of Theorem 1. Namely, 
let Ym E 1%I, m P =  {rex : x E P } .  The classical results on the integer points in polytopes (see, for 
example, [4, Chap. 4]) imply that 

E exp{(c,x}} = E exp{m(c ,v )}Qv(m;  c), 
xErn PnZ n x E e x ( P )  

128 



for all m 6 N, where Qv(m; c) is a polynomial in rn whose coefficients are rational functions in 
exp{c~}, . . . ,  exp{c ,} .  To complete the proof it remains to consider the asymptot ic  behavior of the 
above sums as m -+ + o c .  

The author is grateful to A. M. Vershik for many helpful discussions, and to A. G. Khovanskii for his 
advice. 
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Translated by A. I. Barvinok 

On the U n i q u e n e s s  of  the  Solut ion  of  the  Inverse  
Exact  In terpo la t ion  P r o b l e m  

L. V.  Vese lova  and O. E. T i k h o n o v  UDC 517.982.27 

In the present paper we study the following problem [1]: is a Banach couple uniquely determined by 
the collection of all interpolation spaces generated by it? The authors are familiar with only two results 
concerning this question. There are a rather special result due to Aronszajn and Gagliardo, cited in 
the survey [1], and a theorem by V. G. Zobina [4] asserting that  the couple of finite-dimensional spaces 
(l~, l~)  is uniquely determined by the collection of its exact interpolation spaces. 

We say that two pairs (X1, X2) and (Y1, ]I2) of normed spaces are homothetic if, possibly after 
interchanging Y1 with Y2, Xi coincides with Y/ as a linear space and the norm in Xi is a multiple 
of the norm in Y/, i = 1 , 2 .  The same notat ion will be used for the norm in a normed space and the 
corresponding norm for linear operators in this space. 

T h e o r e m  1. Let ]l " I]i , i = 1 , 2 ,  3 , 4 ,  be norm~ in a finite-dimensional space E ,  and let E~ = 
(E, II-II,). Suppose t at 

max {IITIII ~ [[Tlb} -- max {iJTI[3, [[Zh} 

for any linear operator T in E .  Then the couples ( E l ,  E2) and (Ea , E4) are homothetic. 

Outl ine  of  p roo f .  For each of the norms [[-[[, on E ,  denote by H" [1" the dual norm on the dual 
space E'  of linear functionals on E .  By considering operators of rank 1, we find that  for any x G E 
and ~ G E' we have 

max {[]x$lall~]lT, [txli2itvll;} : ma× {[[x[$3[l~I[;, [[xll4I[~l[: }, 

Denote the left and the right sides of the last equation by M ( x ,  ~?) and N ( x ,  ¢?), respectively. Set 

~ik=max{I]xI]dHxllkixcE\{O}}, ~ik -- max{ll~Ii*/[l~I]Z I ~ c E'  \ {0}}, i , k = 1 , 2 , 3 , 4 .  

Let x12 be an element of E realizing the maximum in the definition of a12 • Then we have M(x12, ~) = 
][x12[[l[[~P[[; for any ~ 6 E ' .  Next we prove that  [[x12[[a/][x12[Ja = a13 and J[x12[[1/][xl~[[4 = oQ4. 
From now on, denote x12 by xl • Interchanging E with E t , we find an element q01 6 E' realizing the 
maxima in the definitions of /~2,  /~3,  and ~]4- Let N(x~,  ~ ) =  [[XlH3[[~[[~ ; then []x~[[x/[[x~I[3 = 
!1  11;/11 1ll7 -- 1/f l13 , s o  that f131f113 = 1 and there exists a c > 0 such that I1" 117 =  ll" I I ; .  I t  is now 
not hard to conclude that  the couples (E~, E2) and (E3, E4) are homothetic.  
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