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Combinatorial Complexity of Orbits
in Representations of the Symmetric Group

A. I. BARVINOK

ABSTRACT. A special class of convex polytopes is considered, whose elements
are convex hulls of orbits of a vector in some real representations of a finite
group. It is shown that quite a few problems of combinatorial optimization
may be posed as linear programming problems on such polytopes in the case
of the symmetric group. Generally, these polytopes correspond to NP-hard
problems, so a system of approximations is constructed for them, thus pro-
viding an approximation algorithm with estimates of errors and complexity.
All the orbits and special functions on them that correspond to polynomial-
time problems known at present to the author are listed. They turn out to
be selected by certain algebraic conditions: the statistical sum constructed
in a special way using the orbit is a relative invariant of the general linear
group and may therefore be computed in polynomial time.

§1. Introduction

Let »: G — GL (V) be a representation of a finite group ( in a real vector
space V endowed with a G-invariant scalar product { , ). The following
two polytopes are the main object considered in this paper:

The convex hull of the orbit of a fixed vector v € I,

P v) =convi{x(gjv: g€ G} C}. {1.1)

The convex hull of the operators of the representation » considered as
points of the space V' ® I (one may identify V" and V', End(}) = 1"V
and V ® V' via the scalar product),

P =conv{x(g): geG}CVal (1.2)

It is easy to see that P = ﬂ,iu_v , where ¢ = x®id,. (here id,. denotes the
trivial representation of G in V ) and E is the identity operator in End(}').
The polytope P _(v) is the image of the polytope P, under the projection

pr: End(}V) — V', pr(d) = Av, VA€ End(}).
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We are interested in the “complexity” of the combinatorial structure of
the polytopes (1.1), (1.2). One of the possible approaches to define the com-
plexity of a polytope P is as follows (see [1], [2]). Let us assign to each P
the family of optimization problems

given ¢ € V', find max{(c, x): x € P}. (1.3)

The complexity of P is understood as the complexity of the problem (1.3)
for a generic ¢ € V. By the complexity of an algorithm we mean the num-
ber of operations from a given list that it performs. In §§1-5, this list will
include arithmetic operations over real numbers (addition, subtraction, mul-
tiplication, and division) as well as the comparison of real numbers. In §6,
where the statistical sums on a polytope are computed, the list is naturally
expanded by including the operation of taking the exponential function for
real and complex numbers. The corresponding complexity model is widely
used in computational geometry (see [3], [4]).
Note that

max{(c, x): x € P,(v)} =max{(c®v, x): x €P},

so that the structure of the polytope (1.1) is not more “complex” than that
of the polytope (1.2). .

In fact, we shall never deal with individual polytopes P . Instead, we
consider a certain natural series of polytopes { P, }, n € N, of the form (1.1}
or (1.2) corresponding to a series { x,} of representations of groups {G,}
in the spaces { ¥, }. In any case we shall have the inequality dim V, < t(n),
where ¢ 1s some Uo_vﬁo::mr and the functional (c,, -) will be %83::&
by its values on the elements of some natural basis of the space V,. Of
particular interest for us are series of “simple” polytopes { F, } for which an
algorithm solving the problem (1.3) with polynomially bounded complexity
in n exists. Such (nontrivial) series being rare, we consider approximate
solutions of the problem (1.3) as well. This approach yields a finer partition
of the set of all polytopes (1.1), (1.2) into complexity classes.

The main example is the case G, =S, , where M is the symmetric group
(i.e., the group of all permutations oﬁ 30 set {1.2.....n}). The represen-
tation x, is either an irreducible representation or a sum of a fixed number of
:noaco_c_o representations corresponding to Young diagrams whose first row
increases with n. The necessary notions concerning representation theory
may be found in [5}, [6], [7].

The question of solving the problem (1.3) for polytopes of the form (1.1),
(1.2) has been considered previously by the author and A. M. Vershik in
the context of combinatorial optimization problems [8], [9]. In particular,
it is shown in [9], [10] that almost all combinatorial optimization problems
may be put in the following form: find the maximum of a given linear form
on the orbit of a vector in a representation of the symmetric group. It was
A. M. Vershik who gave the impetus to begin the study of algebraic methods in
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optimization, and this study is continued in the present paper. In particular,
he has posed the optimization problem for a linear form on an orbit in a
representation of a finite group.

§2. Examples

In the examples below we omit the index 7 € N unless this might lead to
misunderstandings.

(2.1) EXAMPLE. Let v, = R", and let the group S, act in the space v,
by coordinate co:dﬁw:o:m A::m representation is amsoaa by p below),

AEQVXVNHRQLQT X=(X,...,x) eV, ges,.
(2.1.1) Let v = (vys ..., v,). The combinatorial structure of the polytope
P,(v) = conv{ Aei:, s Up) 1O ES,

has been .::oum?m_w studied (see [11, Russian pp. 181-186]). One may
assume without loss of generality that

@_W@NW...W\Q

=.
In this case the problem (1.3) for the vector ¢ = (¢y,...,c,) is none other
than the ordering problem for the components of the <mom_3 ¢, since the
maximum in (1.3) is equal to MTﬁ Co(» Where o € S, is such :zz C_ iy =
Coy 27 2 € Coimy - The complexity Om this problem is O(nlnn). If Eom_wﬂn
M: _nﬂwﬂ two different numbers among V..., v,, we have dim w\kev =
n-1).
(2.1.2) Consider the polytope (1.2)

P,CR", dimP, =(n-1)

By the Birkhoff-von Neumann theorem (see [12]) the polytope w is de-
scribed by the system of equations

n
Vi, dox =1, v Y =1
i=1 i1
and inequalities
Vi,j, x.=20

The problem (1.3) is called ::w assignment problem and admits an algo-
rithm whose complexity is Q? v (see [12]).

(2.2) ExaMPLE. Let V. =R" . The space i, will be interpreted as the
space of n x n matrices. H:@ group S, acts in « by simultaneous permu-
tations of rows and columns of the matrices. We ao:oa this representation

by 7, 1= p%*,

AﬂAQvXVC. = RQ ::Q::\t ’ S rwx ’ x= A.wﬂ



164 A. L. BARVINOK

(2.2.1) Let n be even, v € V.,
A_ if i =2k — 1, j = 2k for some k,
0 otherwise.

vy =

The problem (1.3) with the functional ¢ = Am:v on the polytope (1.1)
may be interpreted as the weighted matching problem: find the maximal total
weight of the partition of the set {1,2,...,n} into n/2 disjoint ordered
pairs {(,J), k=1,...,n/2} provided that the weight of an ordered
pair (i, j) is considered to be equal to ¢;;- There is an QA:J algorithm
to solve this problem (see [12]). The combinatorial structure of the polytope
P (w), where w =v + v, corresponding to the weighted matching problem
for unordered pairs has been thoroughly studied in the literature. Note that

dim P_(w) = (n° = 3n)/2,

since the vector w lies in a component of the sum of the irreducible rep-
resentation of the group S, with Young diagram (n — 2, 2) and the trivial
representation. See [6, p. 77]; [7, pp. 56-57] for the formula giving the
dimension of an irreducible representation of the symmetric group.

(222) Let veV,,

GQ =

A mmm\,mA:.CABoa:vv
0 otherwise.

The polytope P (v) is called the polytope of the nonsymmetric travelling
salesman problem, and the problem (1.3) itself is known as the nonsymmetric
travelling salesman problem. With the functional ¢ given by its matrix (¢ L ,
(1.3) is formulated as the problem of finding the Hamiltonian path of max-
imal weight in the complete digraph with n vertices and given edge weight
matrix Q:V. This is an NP-hard problem, an algorithm with complexity

OQNNJ being nevertheless known for it. The element v € V lies in the
component of the sum of irreducible representations with Young diagrams
(n=2,2), (n=2,1,1), (n). Therefore, dim P,(v) = n* —=3n+ 1.

Set w=v+v'. The polytope P (w) is called the polytope of the symmet-
ric travelling salesman problem. Note that dim P(w) = (n® - 3n)/2, since
the element w lies in the component of the sum of the irreducible represen-
tation with Young diagram (n — 2, 2) and the trivial representation. The
combinatorial structure of the polytopes P (v), P (w) has been studied in
quite a few papers (see, e.g., [13], [14]).

(2.2.3) The problem (1.3) for the polytope P_ (see (1.2)) is one of the most
complicated problems of combinatorial optimization known as the quadratic
assignment problem. The author knows no algorithms for this problem more
effective than exhaustive search in the set of the vertices of the polytope P_.

Using the decomposition of the representation 7 into a sum of irreducible
representations, we obtain (the irreducible representations are denoted bv the
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corresponding Young diagrams):

t=n-2,1,)ae(n-2,2)®3n-1, 1) & 2(n),

2 2 2 2
n° —3n n"—3n 2
—_— ] +(n—-1

3 +1] + 5 ( )
(by the Frobenius and Schur theorems, see [5, Chapter 4, WN\JV.
n .
(2.3) ExaMmpLE. Let us fix / € N, and let ¥V, = (R")” . Consider the

. ! .
representation v = b@ of the group S, in ¥V,

dim P, =

x = (x )e ®)®, oes,

qut_ T P

wla)x); ..., (i))r o (i)
In particular, v = p for [ =1 (Example 2.1), and v =t for [ =2 (Example
2.2). Suppose that n =Im, m € N. Let us fix a tensor v €V, ,

A | if3dkeNO0<k<m-1Vj,i=lk+],

V. .=
Fpowendy

0 otherwise.

The problem (1.3) for the polytope P, (v) and Eo.?:osozm_ c =
(c c.), 1 <i, < n,isknown as the weighted packing problem: find
ﬁ._ LRI P X 4

the maximal weight of a partition of the set {1,2, ..., n} into m ordered
disjoint /-tuples

:N:.L.E;:.L:v“ j=1,...,m},

assuming the weight of the tuple (i, ..., i;) tobe equal to Cioviy

For [ = 2 one gets the weighted matching problem Am.xman_o 2.2.1). Prob-
lem (1.3) is NP-hard for / > 2, an algorithm of complexity nxg n+O(logn) }
being known for it. The problem (1.3) for the polytope P, 1s called the as-

signment problem of degree [ (see [15]). . .
mﬁ.av ExAMPLE. Let G, = W, be the Weyl group of the irreducible root

system of one of the types 4, , B,.C,D,, and let p be the natural action
of W, in the Cartan subalgebra V, (see [17]). Polytopes A.:; the form :..3
have been considered in the literature. In particular, algorithms for solving
problem (1.3) were studied in [16].
(2.4.1) The 4, series: W, =S, | {see mxmac._a w.‘_:. . .
(2.4.2) The B, , C, series. The group W, actsin R* = V. in the following

way:
(plo,e)x), =€X, 1,
where x = (x,...., X}, geS,, mHAm_.t..,mL. €, MH_ A
(2.4.3) The D, series. The group W, actsin V, = R" just as in the case
(2.4.2), with the only condition £, & - - €, = 1.

We shall consider the polytopes @ \ g:: . where v € V' is a weight.

§3. Constructions in the group algebra

It is shown in [9], [10] that the problem (1.3) on the no_.ﬁocm of the form
(1.2} is NP-hard for most of the irreducible representations of the group
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S, , and consequently the pol i i
L . ytope (1.2) is rather complicat i
formulation of this result is as follows. ° ed. The precise

(3.1) THEOREM [9, 10]. Let a partition A
» 10]. 2t + A =k of a number
Mﬁm MMm MNM \N.p.xm&. ﬂb\ﬁw the problem (1.3) for the polytope A_wwv of the irreducible
ion » of the group S with Young di - ]
NP-hard for k > 1. ! e dagram (k. by, s d) i

It mm. mmm:En.a here that the vector ¢ in (1.3) is defined by the rational
coeflicients of its expansion with respect to the standard basis of the space

ﬁx x Pl a —

F. this section we discuss the possibility of solving the problem (1.3) a
proximately, replacing the polytopes (1.1), (1.2) by simpler ones B >
We shall assume that the field R of real numbers is a splittin .m 1d f
group G . The following notation will be used: gheidiorthe
. RG is the group algebra of a finite group G, i.e., the linear space consist
ing of .mo::m_ linear combinations r = 3 cc T(&) g with the multi :omw.a -
operation (convolution) (r,r,)(g) =3 r %F:NQNNY hohy=g; ° o
%Qmﬁ@f ={reRG:Vg,r(g) > 0} is the nonnegative orthant in the space
A={re(RG), : Muwmm r(g) = 1} is the unit simplex in RG;
e=|G|"" >_¢cc & €A is the barycenter of the simplex A.

Let »: G — GL(V i
. (V') be a representation of the group G,and let v e V.

L(v)=lin{x(g)v: geG}cV
L =lin{x(g): g€G}c VeV
Evidently, P

(v) ¢ L (v), P C L_. It is conveni i

. (V) V), P, - lent to think of the
conjugate spaces L _(v), L, as of subsets of the group aigebra RG . Let us
define the mappings ¢ : L (v), L. — RG by .

o) =G Y (e, x(g) g,

LE€G

9(c) =1G1"" Y (c. () g

geG

(3.2)

mom a _Emma ?:omo:w_ ?.,‘.v € L, (v), L. respectively. Note that the space
L _(v) is a left G-module 1somorphic to L (v), while L’ is a bimodule

) AMWW LEMMA. The wxamhi% ¢ defined by formulas (3.2) is an isomorphism
of the w\N module %x:; (respectively, the bimodule L) onto a left ideal
?m%wm:%@. a two-sided ideal) of the group algebra RG . If = is an irreducible
ME&S:SS: and w # 0. the ideal ¢ (L (v)) is generated by the primitive
tdempotent (v, v)  dimx- @(v*), where v* is the [i ncti

, el ;

o e 1 inear functional (v, -)

"
I
.
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ProofF. The first statement is evident. Let us verify the second one. Set
= (v, SL dimx- p(v").

It is clear that u € ¢ (L, (v)). Since ¢(L,(v)) C RG is a simple ideal, it

suffices to verify that u* = u. Indeed,

Wg) =Y u(gh)yuth™)

heG

dim® » -1 i 1
= —" 3w, v) (v, gh)w) (v, V) (v, x(h o).
161" o
Since x is an irreducible representation, the orthogonality relations for
matrix elements (see [5], Chapter 5, §31) imply that the latter sum is equal
to
1G] - (dim ) "', )" (v, 7(g)v).

2 .
Hence u~ = u, and the lemma is proved.

Thus, we shall identify the spaces L. (v), L’ with their images in RG
under the inclusion ¢ .

Now let us describe the objects dual to the polytopes (1.1), (1.2).

Without loss of generality we may assume that ) ¢€G #(g)v = 0 for the
polytope (1.1), and }_ .;#(g) = 0 for (2.2) (one may always achieve this
by shifting the polytopes P, P, (v)). For a polytope P,0ePCL,set

P ={celL :¥xeP,{c,x)>-1}

Then
P (v)={reL,(v): r+eec(RG),}, (3.4)
P ={reL,:r+ec(RG),}. (3.5)

Our immediate aim is to approximate the polytopes (3.4), (3.5) and the
dual polytopes (1.1), (1.2) by polytopes whose structure is less complicated.

(3.6) DEFINITION. A convex closed cone K C (RG), with the vertex at
the origin is said to be invariant if Vg € . ¢K = Kg = K.

In particular, (RG), itself is an invariant cone.

+
Let us consider the following general situation. Let L* ¢ RG be a linear

space satisfying
vreL". MM:,%,VHQ.
gEU
Denote
Pr={rel’ rtee(RG), .
and set
P(Ky={relL :r+e€K}

for any invariant cone K. It is clear that P*(K) C P". In order to min-
imize the complexity of the polvtope P*(K}. we shall choose the concs K
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UOmmm.mmEm as few extremal rays as possible. The following lemma allows ug
to estimate the “gap” between the polytopes P* and PY(K).

(3.7) LEMMA. Let u € RG be an element of the group algebra such that

VreLl', ru=r and eu=e, (3.7.1)
u+keeK forsomek>0. (3.7.2)

Then

P'(K) C P" C (k +1) P"(K).
| PROOF. Let r € P* . Since r+e e (RG), , u+ke € K, and the cone X is
invariant, we have (r+e)(u+ke) € K, so that (k+ :LAITS (u+ke) e K.

Since ru =r, eu=e (by (3.7.1)), re = 0 (in view of 2 r(g) =0), and
ee = e, we have ,

-1
k+1)"(r+e)(u+ke)=(k+ 1) 'r+e.
-1
wEEm.v (k+1)"r+e€K and re (k + 1)P"(K). The inclusion P*(K)cC p*
1s evident.
Let us describe the system of invariant cones to be used in the sequel.

. Au..wv UmEz_dmz. Let H < G be a subgroup of the group . Define the
Invariant cone K (H) by the formula

K (H)=coyg (> h)| g;g,.8€cC
heH

Zoﬁwzzz the number of extremal rays of the cone X "(H) does not exceed
[G:H|" .

If » is m:., irreducible representation, P* is a polytope of the form (3.5)
and K = K"(H), the estimate in Lemma 3.7 may be put in more explicit
form.

Denote _”.J\ 7(H) the representation of the group G induced by the trivial
representation .3, the mcdm_,occ H ; we denote by (a: f) the multiplicity of
.:6 representation f in the representation o . Next, we write simply P*(H)
instead of P*(K), K = K*(H).

(3.9) LEMMA. Let x be an irreducible representation of the group G, H <
QL and Aammv 2x) #0. Let k =dims/(n(H): x)— 1 and P* = P*. Then
P'(H)C P* C (k+ 1) P"(H). il

ProOF. Consider the element

_k+1)
‘e L L8 s ke

gcG heH
of Enmno:c algebra RG'. Evidently, u and & satisfy condition (3.7.2). Let
us verify condition (3.7.1). Denote by

dima
%= TG doxlge

oely
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the central idempotent of a representation a with the character y_  (see
[5], Chapter 5, §33). The element # € RG lies in the center of the group
algebra. Consequently, it may be expanded into a linear combination of
central idempotents of irreducible representations,

k+1
§“|~Q_ MNiva%VINmHNxJTmm.T M \mmmu \mmmw
2€G B#£n e

(here & denotes the trivial representation, e, = e ). Since for irreducible

representations o, B we have e, -e, =, ye,, condition (3.7.1) is also

valid.
(3.10) REMARrk. The estimate given in Lemma 3.9 is not sharp; e.g., for

the polytope P* = P; (see (2.1.2))and H =S, | < S, Lemma 3.9 gives
P'(H)C P, C (n—1)P'(H),

while in fact the equality P*(H) = w\” holds (this is one of the reformulations
of the Birkhoff-von Neumann theorem mentioned above). Nevertheless, the
estimate of Lemma 3.9 is “asymptotically sharp”, since dimx = (n(H) : x)
and k£ = 0 if H is a trivial subgroup. In this case we, of course, have
P*(H)=P,.

Set

P'(H) = T €ERG: S r(g)=0,r+ec a*:i.
gEG
Thus,
P.(H)=P(H)nL,.

Hence the polytope P (H) is a projection of some polytope P(H) dual to
P*(H) onto the space L. Since the polytope P*(H) has at most |G : H _N
vertices, P(H) has at most |G : H _N facets. Let us describe the polytope
P(H) and the projection pr: P(H) — P _(H) explicitly under the assumption
that (m(H): %) > 0.

Let _\iS be the space of the representation n(H) of the group <. We
assume that the orthonormal basis is chosen in Ve indexed by left cosets
in G/H with the natural action of G : y(gH) = (yg)H . Further, let
W = S:: ® YiS be the space of representation operators for n(H) with
the basis { g, H® g,H } ; the nonnegative orthant in this basis will be denoted
by W, . Just as above, we set

Ly =lin{n(H)(g): g € G}

and identify hw:: with an ideal of the group algebra (see (3.2)). Let us

prove now that
K™(H) = Ly, 0 W)
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(3.11) LemMa. We have

K'(H)={ceLy:V¥xeL ,nW,_c,x)>0}

Proor. Consider the linear functional
g Hog,H
We have (.8 1 & y onthe space L

hN:.: D ﬂxw\+ = A.X. m N\HAN: . <%.~u %Nv Aku %.—E@%va W OM.

The element s

—1 X
167" S (n(H) (o), g H® g,H)o =G| > ghg,
cEG heH _

is the image of the linear functional ( . .
gH®gH, - Lo
(3.2). Therefore, 1 & ) under the identification

(LyyNW,)" =co > ehe g, 8 eGy=K(H).
heH

The lemma is proved.

Thus ‘a:.w notation K(H) for the cone hi mNW, is validated.
. To within a shift to the origin, the polytope P(H) C V_, @ V. is th
intersection of the affine hull of i ors O ith
I D ozo rc of the representation operators of n(H) with
v, . i1 : %) > 0, the polytope P _(H) is a projection of th
P(H) onto the space V, @V, . : of the polytope

Let us state the main results of this section in the form of a theorem

(3.12) HmmOWmZ. Let » be a nontrivial irreducible representation of the
group G in a real vector space V, . Let

P =conv{xg): g GtCV, ®V,

be the convex hull of S,m representation operators. For any subgroup H C G
Sm% exists a QQ?.B.E P(H) C ; mn® Ti > where n(H) is a representation
induced by N.\R trivial representation of the subgroup H . such that

(3.12.1) P(H) has at most |G : E_N facets,

(3.12.2) if (n(H) : ) # 0, then the image P (H) of the polytope P(H)
under the projection pr: ﬁ:: @V, V,eoV, satisfies the %:&N.:.c.a

(R(H): »)
“dimy D) P C P (H).

M.w.;v .ch.vrr\yx«, Replacing the polytope P of the form (1.2) by P{H)
and the \:.:QS:& ¢ by pr(c) in the problem (1.3), we come to a linear
E\MQwSSESw problem whose size does not exceed |G+ H _N x|G: H _N and
the upper estimate dimx/(n(H): ») is valid for olati , :

: R or th g g g
e f e relative error due to re-

n(H) "
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In the next section we consider a particular case of the above construction.
Namely, we apply it to the symmetric group.

§4. The case of the symmetric group

The irreducible representation of the symmetric group S, corresponding
to the Young diagram

A=Qys s A), M 2hz24>0 S A=n,
i=l1

will be also denoted by A. Let

Sa =Sy XS Ay X Stnoirt,ny © Sy

be the Young subgroup corresponding to A and consisting of permutations
preserving the row number for each element of the standard tableau of the
form A. We have

1S, =4,14,0 A
By m(A) we shall denote the representation of the group S, induced by the
trivial representation of the subgroup S, . Hence,

N
dim n(A) = a\E Al
i=1
=7 is another Young diagram with # nodes, the multiplicity
(r(A): T') has an evident combinatorial meaning: (n(A): I') is the number
of ways to arrange 4, ORes, A, tWOS, ..., A numbers s in the Young
diagram I in such a way that the numbers be nondecreasing from left to
right in the rows and increasing downwards in the columns. In particular,
J J
((A): D) >0 T>A, ie, Y/, Sonzy A
i=1 i=1
(All these statements may be found in [6], [7}) If H =S5, the cone K*(H)
(see Definition 3.8) will be denoted by K'(A), and the polytopes P(H),
P*(H), P"(H), and P(H) will be denoted by P(A), P'(A), P*(A), and

P(A), respectively.
There exists a more explicit description of the polytope P(A). Namely, it

is easy to write down the equations defining the linear hull
hiZ = lin{n(A)(o): 0 € ML

of the representation operators of m(A) in the space ﬂ:? 2 Vi - Let
0:V, = Via be all possible semistandard homomorphisms (see [6, §13)]

mapping the space ; of the irreducible representation of the group S,
onto the corresponding component of the representation m(A) so that

Veny = @ QN:@_Y

el



Then, by the Frobenius and Schur theorems, the subspace
Lony SV ® Vi
is defined by the simultaneous equations
(0;®0)x=0 if i#,
Sw ® mw - Qw ® Q\JR =0 if the representations U, (4.1)
and u ; are equivalent.
The formulas for semistandard homomorphisms imply that the coefficients
of this system are all equal to 0, +1. Hence the problem
(4.2) Find
max{(pr'(c), x) : x € P(A)}
(see Corollary 3. 13) is a linear programming problem of size

dim® 7(A) x dim® 7(A)

whose matrix consists only of the elements 0 » £1. Consequently, the prob-
lem (4.2) may be solved (e.g., by the ellipsoid method [2]) in time, polynomial
in

dimna(A) = ntfa!-- AL
We have proved the following statement:

(4.3) THEOREM. Let x be an irreducible nontrivial representation of the
symmetric group S, with Young diagram K. For any Young diagram A =
Ay een, A) with n nodes, A < K, there exists an approximate algorithm
Jor the problem (1.3) with the polytope (1.2) whose complexity does not exceed
t(dimn(A)), where t is some polynomial independent of n, A, K. The value
of the objective function c(A) given by this algorithm is related to its optimal
value Copt DV the inequalities

dim » S c(A)
(m(A): K) ™

If Copt = 0, then c(A) =0, and vice versa.

2 L.

(4.4) EXAMPLE. Let » be the irreducible representation of the group S,
with the Young diagram (n—2,2). Thus, s is the first “nonpolynomial”
representation of the group S, ; it corresponds to the symmetric quadratic
assignment problem. Let us take the diagram >\ of the form

A =(n—j. 1, I <) <n,
for A. We have
dimx=(n"=3n)/2,  (n(A): 0= (7 )2

J
Thus, for » = (n—2,2), the following statements concerning the problem
(1.3) for the polytope (1.2} are valid:
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(4.4.1) for any polynomial f(n) =an”, a > 0, there exists a polynomia

ithm whose relative error does not exceed f(n); A .
w_mMMDA 2) for any function f(n) = n*, a > 0, there exists an algorithm of

subexponential complexity O(exp{ n? }), 0 < B <1, whose relative error

does not exceed f(n). .
(4.5) ExampLE. Here we consider the polytope P,(w) of the symmetric

travelling salesman problem (see example 2.2.2) shifted as usual to the origin
by the vector

Thus, we consider the convex hull of the orbit of the element
SHAS:.T 1<i,jgn,

1 -2/(n—-1) if}i—j|=1(modn),
w,; =<¢0 ifi=j,
t} )
—2/(n—-1) otherwise,

i i ing in the space of
in the representation t of the mv\BBo:._o. group S, acting in t p o
square matrices by simultaneous permutations of rows and columns (see

2.2).
NBMMM us vomnzx:o the error appearing when we replace the polytope P M
P (w) of the problem (1.3) by the polytope P A:IN., 2). The <ow8n,mm € _M\o
lies in the component of the irreducible 8@8%5&65 (n-2,2). M,mv
use Lemma 3.7 to estimate the error, choosing the element u € RS, as

follows:
° _dim(n -2, 2)

w0 p(w) +e

u

(see Lemma 3.3). Thus

:H:l_ MUAQS,qulrw Muq

‘ e
4n! gES, Ges,

n

Hsat__ M ML) gl —(n—1e.
n!

Pj=1 g {i. i+t}={j.j+1}

Therefore u+ (n -~ 1)e € K"'(n -2, 2). Let

/ P — /o~ %:;,
n,er;.:CHM MU?JQ;\
‘ aes,

be the average value of the objective function in the mwaamﬁo travelling
salesman problem. Applying Lemma 3.7, we come to the following result.



Aa.m.:. Ooxo_l.r>z<. A polynomial approximate algorithm exists for the
,QS:.EN:Q travelling salesman problem computing the value ¢y of the objective
function satisfying the inequalities

n>(cy=)f(Cpy—0) > 1,

pt
where ¢ opt @nd C are the optimum and the average values, respectively.

r (4.6) mx\;:whm. Below we give the equations and inequalities describing
the no_ﬁouo 2.: - N,‘ 2) C N%TN,NV ® -\i:rmé used to construct the ap-
on::mﬂo. m_.mo:EBm in the examples (4.4),.(4.5). The basis in the space
-\iTN.é is indexed by the unordered pairs {i, J}, 1 <i# j< n. These
equations are obtained from the formulas (4.1) (see also [10]).

Vk,1<k<n, Vi,j,nzj>i>3,

(g} _ L7y 24} (.2
> Ax;,i x;vi:x;,sirx;,svvvuow

m: m#k
Vk,1<k<n, Vj,nzj>4,
2.7y _{L,j} {2,3} {1,3}
> ?;,i x;,ij;,s?x;,ivuow
m: m#k

Vi,1<i<n, Ym,k,n>m>k>3,
P e B R )
Vi,1<i<n, Ym,n>m3>4,
5 (alty a0

Vm,1<m<n, Vj,1<j<n,

{i.j} _ {i,j}
> e, my =0 — L, _MU Xk oy = (1= 1);

k: k#m i a#)

{i. )} (k)
Vi, s bse#Egsn, Ve, m, 1<k, m<an, XM\MLJWO
b <, m :

The polytope P(K), where K = K*(n~2,2)+K*(n—-1, 1), is described
by the above system together with the additional inequalities

Vi,l<i<n, vk, 1<k<n, Mam,:vw_
Sy 2 L
J.m

%5, The combinatorial structure of the polytope
of the representation operators

Am..: Let us return to the examples (2.1.2), (2.2.3). As we have already
mentioned, the polytope of the natural representation operators is completely

described by the Birkhoff-von Neumann theorem. The facets of the polytope
wu are all the possible tuples of vertices

[ ={cesS,:a()#j}, 1<i,j<n

The polytope P, (Example 2.2.3) is much more complicated. It is easy to
verify that the sets

T = {0 €S, (ai) )V (al) £}, G #h Ji 0 (5.1)

:_u
are facets of the polytope P_, but they do not constitute a complete list of
facets.
(5.2) ExamMPLE. Let us fix a partition
TuJ={1,2,...,n-2}, INJ=0,1+£0, J#O.

Set I', ;={o €S, :r(o) =0}, where

r= MU g+ M g — M ag.
o(n)=

n g(n—1)=n—1 g(n)=n
a(h)el a(l)eJ a(n—1)=n—1

It is easy to verify that for different I, J, the sets 5. , are different facets
of the polytope P, (see [10]). Let us show that the family (5.1) includes the
most degenerate facets of P, .

(5.3) THEOREM. Let P C RS, be the polytope dual to P, defined by the

SJormula (3.5). Then
| l

<~.mNuav <Q.m%=, OM\AQQ.TMMN\‘Q
Proor. The inequality r(o) + 1/n! > 0 follows from (3.5). Since the
polytope wﬂ* is § -invariant, it is sufficient to prove that
1 1
— L Ty
re)+ i S o

where ¢ is the unit element of the group §, . Set

_ | -1
r= g MU hir+e)h .
ges,
The element 7 lies in the center of the group algebra RS, , r € A, and
F(e) = r(e) + 1/n!. Therefore, it is sufficient to prove that r(¢) < 1/(n — 2)!.
One may choose the basis of the center of the group algebra RS, consisting
of elements of the form
| \
(\> = ﬂ M NEZAQV g.
where A is a Young diagram with n nodes, and x_ ., 1s the character of

the induced representation m(A). Since
T=(n-2,1, D®n-2,2)33n-1.1)a

i

2(n),
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we have 7 = 3 a, f,, where A ranges over the diagrams (n — 2,1, 1),
(n—2,2), (n—1,1), (n). Next, >, a, =1 since F€ A and f, € A. Note
that Vo € §,, F(g) 2 0.

Let us consecutively substitute certain elements of the group S, for .
Namely,

c=(12---n=-3)(n-2 n-1)(n),

- 1

AqvnMmESJrQ:L,:+Q§|N,5VWQ,
Le, a,_ 5 1 <1

~ 1
og=(12---n—1)(n), AQVHM_AQEJrQA:lT:VWo,
Le, a5 ST—op 5 s
~ 1
o=(12---n=-2)(n—1n), Aqvnﬂﬁasv+a§|~,svw9

1.€., Q?T.T.: <1l- Q.CTP_“:.
Combining these inequalities with the equation
gt gty gty =1

we obtain

o n n
F(e) = Pl AQE o, )t ANV C_g 9+ 2 ANV Q:TP_,:V
i

<2 ()=

The theorem is proved.

(5.4) COROLLARY.

(5.4.1) Every face of the polytope P_ contains at most n!—(n—2)! vertices.
The faces defined by the formulas (5.1) contain n!— (n —2)! vertices exactly.

(5.4.2) One may inscribe a ball into the polytope P so that the supporting
hyperplanes of the facets (5.1) are tangent to it.

PrOOF. The statement (5.4.1) follows, by duality, from the fact that at
most n' — (n — 2)! facets intersect at any point of the polytope ww . te.,

<xmwwu nmaﬁoﬁlqv.rl_iﬂowm:_iﬁzlmz.
n! ,
The statement (5.4.2) is valid since
* 2 2 _ ~
<\. m w N - ol 2 M ———
s S

and the equality is achieved for the elements

I
(n - 2)! MU_ g-e

corresponding to the facets (5.1).
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§6. Computation of the statistical sums

The problem (1.3) may be solved in polynomial time in n for the poly-
topes (2.1), (2.2.1), (2.4). While this phenomenon may be partially explained
for the polytopes (2.1) from the viewpoint of approximations (cf. Remark
3.10), the polytope (2.2.1) corresponding to the matching problem is in no
aspect distinguished from the viewpoint of the methods developped in §3. In
this section we develop an alternative approach, requiring computation of a
certain functional (statistical sum) on the group G .

(6.1) DEFINITION. Let P C V be a polytope with the set of vertices
Vert(P). An arbitrary complex-valued function p: Vert(P) — C will be re-

ferred to as a charge. Given an affine function f(x) = (c, x) + b,
ceV, beR, let us define the statistical sums
S,(f30) = S exp{t f(x)} u(x), teR, (6.1.1)
x€Vert(P)
o f;m= 3 [x)wux), meN (6.1.2)
xeVert(P)

The following evident result is valid.

(6.2) PROPOSITION. Let P be a polytope and u be a charge such that
vx € Vert(P) u(x) #0 and ¥x,y € Vert(P)x #y = f(x)# f(y). Then
lim ¢ 'log|S,(f; £)| = max{ f(x): x € P}. (6.2.1)

t—+00

(6.2.2) Suppose additionally that ¥x, f(x) > 0. Then
lim |o, (f; E::s =max{ f(x): x € P}.
m—+oo H
(6.3) ReMarks. The injectivity condition is evidently the general posi-
tion condition for the function f. It may be omitted if one supposes that
¥x, u(x) > 0. Due to the evident identities

S(f+at)= exp{tat S, (f, 1),

atA\JrQWSVHMsUAMNVQ»SQWEI»Y aeR,

k=0

is suffices to be able to compute the sums (6.1) for a linear function
f(x) = (c, x);

they will be denoted by %\;q. ) and Q:Aq, m) , respectively.

We do not dwell here on the purely technical questions concerning the
estimates of the convergence rate in Proposition 6.2. As for the development
and applications of the statistical sum method, see [18], [19]. In particular,
it is shown in these papers that the design of effective algorithms for the
problem (1.3) requires only the ability to compute sums of the form (6.1.1),
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(6.1.2) for an appropriate charge 4. It will be shown below how to construct
a owwamo M Vx, u(x) # 0 for the polytopes (2.1.2), (2.2.1), and (2.4) in
such a way that the sum (6.1.1) can be evaluated effectively for any linear

functional f = (c, x).

, Case (2.1.2). Let us define the charge x4 on the vertices of the polytope
, by E.o formula 4 (p(c)) = sgno, where sgng = 1 if ¢ is an even
permutation, and sgno = ~1 if ¢ is an odd permutation. Let a linear

functional be given by its matrix ¢ — Anc.v, I1<i,j<n. Set

¢, = @xv?m:.v , C= (C)-

Then S, (c, 1) = detC. The determinant of a matrix of size n x n is well-

. 3 . .
known to be computable in O(n”) arithmetic operations. Consequently
the sum S,(c, 1) may be computed in Q?J arithmetic operations and

applications of the exponential functions.

.;meo A.N”N.:. Let is define a charge u by the formula u(t(o)v) =sgno.
:.m stabilizer of the element v being formed by even permutations only
this formula defines the charge on the polytope’s vertices correctly. Set v

Q:. = exp{ te;; }
for a linear functional with the matrix ¢ — (¢;.,), 1 <1i,j< n We have
-~ if » ~ b ~ .
S,(c, t) = Pf(c). The Pfaffian of a matrix of size n x n may be computed

in O(n’) arithmetic operations (see [20, pp. 318-329)).
Case (2.4). Let the charge 4 be defined by the formula

1 (p(w)) = det p(w), wew.
We list below the expressions for the sums (6.1.1).
The A, series (see (2.1)).

‘ ].E:w B, , C, series. For a linear functional with matrix ¢c={c.), 1<
!, ] < n, wehave v )
S,(c;t) = amRoxU?ﬁL - QGTR:; 1<i, j<n

The D, series. For a linear functional defined by the matrix ¢ = (¢ ) we
have ( 7
. l
S (e = 3 amxnxc?m:@ —exp{—zc, })
l
+ M%Rox@?mi +exp{-ic, }). L </ j<n.

Given a weight v, let us introduce a statistical sum with respect to some
Baamm:ﬂo over the polytope JxS. Let 4 be a half-sum of positive roots
an Qm:o:ﬂ.g (v:u) Ew multiplicity of the weight u in the representation
corresponding to the weight v . By the Weyl formula [17], the identity

exp{t{c, u)}(v:u)=(S (c: R
D explele, u} (v u) = (S,(c; Nop i) S

uep (v) # Aﬁw Nv_wﬂw:?;é

m
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is valid for a linear functional ¢ = (¢, ..., ¢,). Here the sum (6.1.1) for
the polytope P = w&\s stands in the denominator, the charge u being the
one described above; the numerator contains the sum (6.1.1) for the polytope
pP= @Ae +4) with the same charge u (here we do not consider the degenerate
case of vanishing denominator). Note that by the formulas of example (2.4)
both sums may be computed by an algorithm with a polynomial in n number
of arithmetic operations and applications of the exponential function. The
latter example proves to be rather useful in combinatorial optimization (it is
considered in detail in the author’s paper [19] for W, =S, _ ).

Thus, in the examples (2.1.2), (2.2.1), and (2.4) the sum (6.1.1) is com-
putable, for an appropriate nontrivial charge x4, ina polynomial in n number
of arithmetic operations and applications of the exponential function. This
fact might serve as an algebraic “explanation” of the relative simplicity of
the corresponding polytope’s structure.

Except for trivial ones, the author does not know any examples of poly-
topes of the form P (v), P, admitting a polynomial-time algorithm for the
problem (1.3) and distinct from the above (or their evident modifications).

However, other polytope series may also admit such algorithms for linear
functionals of a special form. Below we consider the problem of computing
the sum (6.1.1) in the example (2.3) and the sum (6.1.2) in the example
(2.2.3), the charge x and the functional ¢ of special form being chosen
appropriately. The corresponding algorithmic results for the problems (1.3)
have been proved in the author’s papers {19] and [21].

Case (2.5). Suppose that / is even. In this case the stabilizer of the element
v consists of even permutations only, and the formula x(v(c)) = sgno
correctly defines a charge. Set

C. . ) = exp{fc,
t

ooy ennd

it

Then, evidently, M:An., t) = P(C), where P is some polynomial in the co-
efficients of the tensor C. Consider the space V, = %‘_v@\ and define the
action of the general linear group GL(n,R) in F, as the /th tensor power
of its natural action in R" .

(6.4) ProrosiTION (see [7, p. 327]). The polvnomial P is a relative in-
variant of the group GL (n, R), namely,

VG e GL(n:R). P(G(CYy=det G- PLCO).

The problem of computation of the invariant P 1s NP-hard when [/ > 2.
The difference from example (2.2.1) (the case / = 2) is that for / > 2 there
are no more “normal forms™ for tensors ¢ € }/ with respect to the action of
21 (o Y dacerithed ahave
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(6.5) DerFINITION. The rank of the tensor C is the minimal number r
r=rank C, r € N, such that C possesses a representation of the form

‘
. . .
C= MU u'e--ou', where u” eR". (6.5.1)
i=1
Similarly, the 2-rank of a tensor C is a minimal number r = rank, C
such that C possesses a representation of the form

c=Yd"e -®d", (6.5.2)
-1
where a”/ € (R")®? (here [ is assumed to be even).

(6.6) THEOREM. Let a number k € N be fixed, and let one of the following
two conditions be satisfied.
© Ma.mav.: rank C = n/l + k, and the tensor C is represented in the form

(6.6.2) rank,C =k, and the tensor C is represented in the form (6.5.2).

Then the value P(C) may be computed in a number of arithmetic oper-
tions polynomial in n. The condition (6.6.1) being replaced by the condi-
tion rank C = 2n/l, C being represented in the form (6.5.1), the problem of
computing P(C) is polynomially equivalent to the problem of computing the
invariant P for an arbitrary tensor of degree .

ProOOF. See [21].
Case (2.2.3). Let us define the charge x on the vertices of the polytope
P, by the formula
u(t(c)) =sgna, o€S,.

The linear functional ¢ on the space End(V) of the representation 7 = b®N

will be represented as a quadratic form on the space End(V ) of operators
of the representation p (see (2.1)). ’

(6.7) THEOREM. Suppose that the rank of the quadratic form c is fixed (i.e.,
it does not depend on n). Then (6.1.2) may be computed with an arbitrary
precision € using a number of arithmetic operations and applications of the
exponential function polynomial in n, m.

PrROOF. Let us expand the form ¢ into the sum of k& forms of rank 1,
k
QHMUQN@@_, k =rankc,
=1
where a', b' are linear forms on the space m:a@vv. Then

, ‘ m ,
o lcsm) = M A v
L,y

:Hf: . :»V

k
< Y sgno - ] (a's pla))d', plo™

- P
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where the outer sum is taken over all the multi-indices a such that
a +--to=m and QNWO.

Note that each of the (™%~} summands has the form

%wi
Xy

ALyt -0t oyt -9y

k
x 3 sgno-exp & Yo tda’, p(@) +y,(b', p(o))
g€eS, i=1 :H:.H;H_\_H:.He»no
The expression whose derivative is taken is the statistical sum (6.1) for the
polytope of the example (2.1.2) whose value at any point may be computed
in OA:J arithmetic operations and applications of the exponential function.
Let us replace the derivative by the difference operator

1

k
o [, -p™@ -0,

i=1

D(AL) =

where Y,, T, are the operators shifting the arguments y;, f,, respectively,
by At, and I is the identity operator. Thus, the application of the operator
D (At) requires computation of the sum under the derivative sign at

k

[Tt (1)

i=1

points. The formula for the remainder of the Taylor series allows one to
estimate easily the value of At required to provide the given absolute error

¢ (see [19] for more details).
A similar result may be obtained for the other Weyl groups. The case of
the symmetric group is considered here since it has essential applications in

combinatorial optimization (see [19]).
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