On the Mean Radius of Permutation Polytopes

ALEXANDER BARVINOK AND RAY ROBB

Abstract. Let X C S, be a subset of the symmetric group S, and let Qx C R
be the convex hull of the set of permutation matrices representing the elements of X in
IR™. We present some formulas relating the cardinality of X and the maximal value of a
typical linear function on Qx. Applications to the average case analysis of Combinatorial
Optimization problems and to efficient counting are discussed.

1. Introduction

In this paper we address the question of how combinatorially interesting polytopes, such
as the Birkhoff Polytope and the Traveling Salesman Polytope look like from the Banach
Geometry point of view. Connections between optimization problems and the combinato-
rial structure of underlying polytopes have long been studied (see, for example, [3]). In
[1] the first author considered the problem of optimizing an “average” linear function on a
given polytope. It was shown that the famous “measure concentration phenomenon” (see
[5]) implies that as the dimension grows the optimal value of almost any linear function
sharply concentrates around certain “most popular” value. Some bounds for this value
for the Birkhoff, the Traveling Salesman and other related polytopes were provided. In
this paper we give an asymptotic formula for this most popular optimal value using the
technique developed in [1]. Furthermore, we show that the optimal value of a typical op-
timization problem on a set of permutations roughly depends on the cardinality of the set
alone. This observation suggests a new approach to efficient counting: a rough estimate
of the cardinality of a set can be derived from the optimal value in a typical optimization
problem on the set.

(1.1) Definitions and notation. Let S, be the symmetric group, that is the set of

permutations of {1,...,n}. For a ¢ € S, we denote by 7(c) the permutation matrix
oy _ 1 ifo(i) =g,
mij(7) = {0 if o(i) # 5.

We consider (o) as a point in IR™. Our main object is the convex hull
| Qx = conv{n(c):0 € X},

where X C 5, is a subset. For example, if X = S, then Qx is the Birkhoff Polytope and
if X is the subset consisting of (n — 1)! one-cycle permutations then Qx is the Traveling
Salesman Polytope (see, for example [2]).



We denote by (-,-) the standard scalar product in Euclidean space IR?. Let || - || be
the corresponding Euclidean norm in IR? and let

st = {ue R?: |lul| =1}

be the unit sphere. We consider the (unique) rotation invariant Borel probability measure
p = du on S, With a polytope P C IR? we associate its support function

hp: ST — IR, hp(u) = max{(u,z) : = € P}.

Let p(P) denote the median of hp, that is the unique number such that

,u{u e §4-1. hp(u) < p(P)} > % and ,u{u € Sd_.l . hp(u) > p(P)} >

DN =

We identify IR™ with the space of n X n matrices. In particular,

n

(a,b) = Z a;;bi; for matrices a = (a;;), b= (b;;) € R"™.

=1

Thus for X C IR™ we have -
hgx(u) = max{z Uig(i) © T € X}, where u = (u;j) € R™.
=1

We denote by | X| the cardinality of a finite set X.
In this paper we prove the following main result.

(1.2) Theorem. Let X C S, be a subset of S, and let Qx = conv{n(c) : 0 € X} be
the convex hull of permutation matrices for the permutations from X.
(1.2.1) Let us define

sy =1 - 2IX

nlnn

Then

1—/3(X) +o(1) < Pl@x) 1-0(X)+o(l) as n— +oo.

2lnn

(1.2.2) We have

H{u € 5”2“1 : ’th(U) - P(QX)| > e}.S 2e><p{_€2(”22—n"2)}

for any € > 0 and any n.

Thus (1.2.2) asserts that the maximal value of the linear function (u,-) on Qx for a
“typical” unit vector u is very close to the median p(Qx) whereas (1.2.1) provides some
bounds for this median in terms of the cardinality of X.
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(1.3) Examples. Let us choose a sequence X, = S, so Ln}' 0(Xn) =01in (1.2.1).
The problem

n
Given ¢ = (¢;5) € ]R"z, find ¢ € S, which maximizes Z Cig(i)
=1
is known as the Assignment Problem (see [6]). Theorem 1.2 implies that if the entries
cij are chosen independently from the standard normal distribution (that is, c¢/|c|| is
chosen from the uniform distribution on the unit sphere in IR"2) then the optimal value

is V2Inn||c||(1 4 o(1)) with the probability which tends to 1 as n grows.

Let us choose X, to be the set of all one-cycle permutations 1 — 4; — ... — 1,7 — 1.
Thus | X,| = (n —1)!, so 1in41_ 4(Xn) = in (1.2.1). The problem
n—-—+0oo .

n
Given ¢ = (¢;5) € ]R"z, find ¢ € X,, which maximizes Z Cio(i)
=1
is known as the Traveling Salesman Problem (see [6]). Theorem 1.2 implies that if the
entries ¢;; are chosen independently from the standard normal distribution then the optimal
value is v2lnn||c|| (1 + o(1)) with the probability which tends to 1 as n grows.

It is interesting to note that the average case behavior of the polynomially solvable
Assignment Problem and NP-hard Traveling Salesman Problem is the same. With respect
to a typical linear function the Assignment (Birkhoff) Polytope and the Traveling Salesman
Polytope both look like a ball of a radius about v/2Inn. Some ramifications of these
examples will be discussed in Section 6.

The paper is organized as follows. In Section 2 we review some basic facts about
measure concentration on the sphere S¢~1. In Section 3 we review the technique from [1]
which allows us to compute p(Q) from p(P) where Q is a subpolytope of P and P has
a large symmetry group. This allows us to relate p(Qx) and p(P,), where P, cR" is
the Minkowski sum of n regular (n — 1)-dimensional coordinate simplices. In Section 4 we
estimate p(A) for the coordinate simplex A in IR™. In Section 5 we complete the proof of

Theorem 1.2. Finally, in Section 6 we discuss connections between approximate counting
and random optimization.

2. Measure Concentration

We define an inner metric on S9! by dist(z,y) = arccos(z,y) for z,y € S¢~1. In other
words, 0 < dist(z,y) < 7 is the angle between = and v.
Let A C S%7! be a closed set and let v € S%~! be a point. Let us denote

dist(u, A) = min{dist(u,z) : 2 € A}
the distance from u to A. For an r > 0 we denote
A(r) = {u € 8971 : dist(u, A) < r}
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the r-neighborhood of A. For y € §¢~! and r > 0 we denote by
C(y,r) ={ue S : dist(y,u) < r}

the spherical cap centered in y and of the radius r. In particular, C(y,7) = S%~! and
C(y,7/2) is a hemisphere. We are going to use the following fact, known as the isoperi-
metric inequality on the sphere (see Section 2 of [3]).

(2.1) Theorem. Let A C S*! be a closed set and let C(z,r) C S be a spherical
cap such that u(C(z,r)) = p(A). Then for any € > 0 one has pu(A(e)) > u(C(z,r +¢)).

Next, we are going to use some estimates of the spherical volumes (see Section 2 of [5]). |

2.2) Lemma. Let C(z,7/2) be a hemisphere in S¢~1. Then
(2.2) P

u(C(w,ﬂ'/2+e)) >1-— \/gexp{_e,?(dz— 2)};
u(C,m/2~ ) < \/’g’exp{_ez(dz- 2)}

for any € > 0.

Q

Theorem 2.1 and Lemma 2.2 imply the famous Levy’s Lemma (see Section 2 of [5]).

(2.3) Corollary. Let f: S%' — IR be a continuous function and My be its median.
Let A= {z € S*': f(z) = My}. Then for any € > 0 one has

p(A(e)) > 1— \/gexp{—e—%-(—(—i—é_—g—)-}.

[

Corollary 2.3 applied to the support function of a polytope gives us the following result.

(2.4) Theorem. Let P C IR? be a polytope with v vertices such that ||z|| < R for some
R and any ¢ € P. Then

241 pfue st lhnt) - P> e <[5 en{ - S22,

(2.4.2) 1 [5  hp(u) du- p(P)‘ < RY ln(dd—~22) 2.
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(2.4.3) p(P)<R .

Proof. First, we observe that ||hp(z) — hp(y)|| < R|jz — y|| for any z,y € IRY. Let
A={z e S :hp(z) =p(P)}. If u € A(e/R) then for some z € A we have ||z — u|| <
dist(z,u) < /R and thus |hp(u) — p(P)| < e. Now (2.4.1) follows by Corollary 2.3.

Let us choose € = R4/ ligi:t;_). in (2.4.1). Then |hp(u) — p(P)| > € on the set of

measure not greater than

2
Vd—2
proof of (2.4.2) follows.
' 2In2v
d—2
non-zero vertices of P onto the unit sphere S?~!. The set A(r) is a union of at most v
spherical caps of the radius r and hence by Lemma 2.2 we get

. Since Jhp(u)| < R for any u € S¢~! and p(P) > 0, the

Let us choose € =

and r = g — €. Let A be the set of radial projections of

(A < v (1

For each u € S%7! \ A(r) and each vertex & of P we have (u,z) < Rcosd = Rsine < Re.
Since hp(u) = (u,z) for some vertex = of P we conclude that hp(u) < Re for at least half
of u € $¢471, so (2.4.3) follows. O

3. Group Action

In this section we review some results from [1]. For the sake of completeness we present
full proofs here.

(3.1) Lemma. Let V C S%! be a finite set. Suppose that for any two points z,y € V.
there exists an isometry gz of the sphere S~ such that g, (V) =V and gz ,(z) = y.
Then for any subset U C V' and any r > 0 one has '

u(U() 2 :—‘U/—zu(V(r))-'

Proof. We use Voronoi diagrams on the sphere. For every point x € V let us define the
Voronoi cell:

K(z,r) = {u € V(r): dist(u,z) < dist(u,y) for any y € V}.

It is seen that V(r) is represented as a union of closed subsets { K(z,r) : = € V'} with pair-
wise disjoint interiors. Furthermore, for any two z,y € V the isometry g, , maps K(z,r)

)



onto K(y,r). Therefore u(K(z,r)) = ,u(K(y, r)) and hence p(K(z,r)) = u(V(r))/|V] for
each r € V. Since U(r) C U K(y,r) we get that
yeU

W) 2 3 ulE () = (v ).

yelU

0

(3.2) Theorem. Let P C IR? be a polytope with the vertex set V. Suppose that for
any two vertices ¢,y € V there is an orthogonal transformation g, , of R? such that
9z,y(V) =V and g y(z) =y. Let U CV and Q = conv{U} C P be the polytope with
the vertex set U. Then for a = |V|/|U| and R = max{||z|| : « € P} one has

21ln2a

p(P) = R/ ——;

< p(Q) < p(P).

Proof. Since.hg(u) < hp(u) for any u € S4!, we have p(Q) < p(P). Without loss

of generality we may assume that U C V C S and thus p(P) < R =1. Let r =
1

arccos p(P). Then /.L(V(T)) =3 and hp(u) > p(P) for any u € V(r). By Lemma 3.1

we get that ,u(U(r)) > _2|—|g‘7|[ = —2}&. Let C(y,7/2 — €) be a spherical cap such that

u(C(y,7/2 —¢€)) = u(U(r)). Applying Lemma 2.2 we get that

1 s (d — 2)e? 21n 2«
— <= A < .
5a S\/3 exp{ } and hence e <

2

By Theorem 2.1 u(U(r + e)) > ,u(C'(y, g—)) = % Furthermore, for every u € U(r + €) we

have that dist(u,U(r)) < € and therefore hg(u) > p(P) — € since the Lipschitz constant
of hg does not exceed R = 1. Hence hg(u) > p(P) — € for at least half of u € S9~1.
Therefore p(Q) > p(P) — € and the proof follows. u

4. Coordinate Simplex

In this section we estimate the average value of the support function for the coordinate

simplex. Using such simplices as building blocks, we’ll prove our main result in the next
section.



(4.1) Theorem. Let f(z) = max{z1,...,2,} forz = (z1,...,2,) € IR". Then

Inn

- f(av)e""”’””2 dzr = —(1 + 0(1))

U

as n — +oo.

Proof. Let us choose any € > 0. We are going to prove that for all sufficiently large n one
has

2 [Inn Pe-rlal® gy 1 Jjlon
(4.1.1) (L4720 > @) dz > (1+e)2‘/ -z,

For a Borel set X C IR™ we let v(X) = / e~mel* gy Clearly, v is a probability measure
X
on IR".
Let us prove the lower bound of (4.1.1) first. We observe that f(z) < 0 if and only if =
belongs to the negative orthant R™ = {(z1,...,2,):2; <0: i =1,... ,n}. Furthermore,
the contribution of the negative part of f is asymptotically negligible:

(:r)e"'”‘”’”2 dib" S/

R

(l$1| +...+ lxn|)6_"(zf+“'+xi) de = = o(1)

1 R» 2"

as n — +o00. Let us choose a positive a. Then we have

(ac)e"r”x”2 dz >a-v{z € R": f(z) > a} + o(1)
mn»

= a<1 —v{z e R"™: f(z) < a}) + o(1).

We observe that f(z) < @ if and only if z; < a for : = 1,...,n and hence

e~ dw)n = (1 — /+°° e~ dw)n

(14+¢€)a n
< <1 —/ e~ dw) <(1- eae_”(1+f)2“2)n.

a

V{&:EIR":f(:I:)<a}=</

—oC

Therefore
f(:l:)e"‘"”“”“2 dz > a(l - (1~ eae_"(l"'e)Q“z)n) + o(1).
]R,"

1 n
Let us choose ¢ = a, = —— ln_n Then (1 — 6an€_”(1+6)242) = (1 ~ean/n)" — Oas

n — 4-o00. Therefore for all sufficiently large n we have

—nl|z|?
z)e dr >
R» ( ) - 1-|—€



and the lower bound in (4.1.1) is proven.
Let us prove the upper bound. Let us choose an a > 1. Then we have

+oo
f(x)e—ﬂ'”xllz dr < Z(k +1)a-v{z:ka< f(z) < (k+ L)a}

R

k=0
+00 4o
aZ(k +1v{z: f(z) > ka} <a+ aZ(k +1)(1 - v{z: f(z) < ka}).
k=0 k=1 .

Now

ka 4o

V{mGIR":f(:c)<ka}=</

— o0

e ™" dw) .

6_7"1:2 dx)n — (1 _ /
» k
/lnn
Let us choose a = a, = (1 + ¢) . Thus for k > 1 we have
7

oo — 72 oo —7z? —nkZa? —(1+‘e)2k2
e dz < 2nze dz <e =n
k k

a a

a

and
v{z e R": f(z) < ka} > (1 - n—(1+f)2k2)n >1—n"

for all sufficiently large n. Summarizing, we get that for all sufficiently large n

Inn
el —ek? <
nf() dw<1+e\/ E (k+1)n (1+e),/7r

and the upper bound in (4.1.1) is proven. Our result readily follows by (4.1.1). O

5. Proof of the Main Result

In this section we complete the proof of Theorem 1.2. Our plan is the following. Let us

introduce a polytope P, C IR™" as the set of solutions z = (z;5) to the system of n linear
equations and n? inequalities

ZJII']':].: izla"')” and -Tz]ZO i,j=1,...,n.

Let us consider IR™ as the direct sum of n copies of IR", so R™ = R®... IR}
with (Zg1,...,%kn) being the coordinates in the k-th summand IR}. It is seen that the

polytope P, can be represented as the Minkowski sum of the (rn — 1)-dimensional simplices
Ag CIR,Z, k=1,....,n

Ak:{(ﬂckj): Tpr+ ...+ Tk =1 and xijO:jzl,...,n}.

Using Theorem 4.1 and (2.4.2) we estimate p(P,). Then using Theorem 3.2 and (2.4.3)
we estimate p(Qx).



(5.1) Lemma.

/;7#_1 hp,(u) du =V 21nn(1 + o(l))

as n — +oo.

Proof. We use the representation of P, = Aj+...+ A, as the Minkowski sum of simplices
Ag. Thus for z = (z;5) € IR™ we have

hp, (z) = Z ha,(z) = Zmax{wkl, e ,a:kn}.
k=1 k=1

Since hp, (a:) is a homogeneous function of degree 1, applying the standard trick of passing
to polar coordinates, we get

/ hp,(u) du = ﬁr—(ﬂ;)/ | hpn(:v)e_’r”“””2 dzx.
sn2-1 I‘("—zzji) R"?

On the other hand, using Theorem 4.1 we get

/IR"2 hp, (.’E)e”"”I“2 dz = Z /]R"2 max{xkl, .. ,.’nlm}e"’rng”“2 dx
k=1

- /1
= Z / max{:ckl, - ,mkn}e_”(z'zﬂ+"'+fﬁn) drri ... degn =n nn (1 + 0(1)).
k=17 Ry T

Stirling’s formula implies that

and the proof follows. O
(5.2) Corollary. We have
p(Pn) = V2Inn(1l + o(1))

as n — +400.

Proof. Follows by Lemma 5.1 and (2.4.2) with R = y/n and d = n?. 0



Proof of Theorem 1.2. Let us prove (1.2.1). Let V, C IR™ be the vertex set of P,.
We observe that V;, consists of 0-1 matrices z;; such that each row contains precisely one
1. Therefore |V,,| = n™ and for every two vertices x,y € V,, there exists an orthogonal
transformation g , of IR™ such that gz,y(z) = y (one can choose g; 4 to be a permutation
of the coordinates in IR™ ). Let Ux = {(c) : ¢ € X} be the vertex set of Qx. Then Ux C
V. and we may apply Theorem 3.2 with R = \/n and a = n"/|X| = exp{é(X)nlnn}.

Thus we have
p(Qx) 2 p(P) — 2R (X) (1 + o(1))

and the lower bound for p(@Qx) in (1.2.1) follows by Corollary 5.2. The upper bound in
(1.2.1) follows by (2.4.3) with v = |X|, R = \/n and d = n?.
Part (1.2.2) follows by (2.4.1) with R = \/n and d = n?, ' [

6. Approximate Counting and Random Optimization

Theorem 1.2 has obvious applications to the average case analysis of Combinatorial Opti-
mization problems (cf. Example 1.3). What seems to be more interesting is that Theorem
1.2 can be used for estimating the cardinality of an implicitly given subset X C S, by
solving an optimization problem on X with a randomly chosen goal function. We are going
to describe a randomized algorithm for approximate enumeration. Qur algorithm uses a
procedure that samples a random point from the uniform distribution on the unit sphere
in Euclidean space. It is known that there is a polynomial time algorithm for simulating
this distribution from the standard Bernoulli distribution, see, for example, [4]. By intro-
ducing randomness, we allow a certain probability that our algorithm does not produce
the correct answer. However, we'll make sure that this probability quickly fades to 0 as
n — +00.

Our algorithm is the following. We sample a random point u € S™°=1 from the
uniform distribution on the sphere, solve the optimization problem

6.1 Given u € 5"2_1, compute hg,{(u) = max Uig(s) 10 € X
Qx (9

=1

at this point v and then write the estimate

(6.2) o’ (u)+o(1) < < 2ax(u) — ok (u) + o(1), where ax(u) = —hQX (u)

nlnn V2lnn'
As above, “o(1)” stands for a function depending on n alone which tends to 0 as n grows
to infinity. Indeed, from (1.2.2) we deduce that with the probability at least 1 — O(e“ﬁ)
the solution to (6.1) at a randomly chosen point u = (u;;) € gn°-1 approximates p(Q x)
within at most n~!/* error (let us call such a u € g1 typical). Then the inequalities
(6.2) for a typical u can be obtained by inverting (1.2.1).
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We note that the gap between the upper and lower bound in (6.2) is small when ax (u)
is close to 0 or 1 and is the largest if ax(u) = 1/2.

Sometimes the problem (6.1) is easy to solve and so we get an easy way to approximate
the cardinality of |X| via (6.2) Even when the problem (6.1) is difficult, we can still get

a lower bound for | X| by choosing a permutation ¢ € X and using the number Z Ui (i)
i=1

as a lower bound for hg, (u). Theorem 1.2 implies that for a typical u € $™°=1 there is a

o € X such that

1 n
io(i) = 1 —/0(X) + o(1).
m;u(). ( ) +o(1)

If we are lucky we can guess such a o and hence by (6.2) we’ll have a probabilistic certificate
that In |X| is at least (1 — /8(X) + 0(1))2nln n. If the problem (6.1) is easy we can find

such a certificate efficiently. We discuss two examples below.

(6.3) Estimating the permanent. Let A = (a;;) be an n x n matrix with 0-1 entries.

The number per A = Z H @iq(i) is called the permanent of A. Computing the perma-
c€S, 1=1 )
nent 1s a #P-complete problem and even estimating it seems to be difficult if no special

property of A is assumed. Let us interpret A as the adjacency matrix of a directed graph
G. Let X C Sy be the set of permutations o such that a;,(;y = 1 for each ¢ = 1,...,n.
Thus per A = |X| and the permutations from X are in one-to-one correspondence with
cycle covers of G. Then (6.1) is the problem of computing the largest weight of a cycle
cover in G provided each edge (7,j) of G has given weight u;;. This problem admits an
algorithm of O(n?) complexity (see, for example, [6]). Hence in this example we get a
randomized polynomial time algorithm for estimating per A = | X| via (6.2).

(6.4) Counting Hamiltonian circuits. Let G be a directed graph with n vertices. An
ordering 1,...,n of its vertices is called a Hamiltonian circuit iff (1,2),(2,3),...,(n—1,n)
and (n,1) are edges of G. Let ham(G) be the number of Hamiltonian circuits in G. It
is a #P-complete problem to compute ham(G) and even to check whether ham(G) > 0
i1s an NP-complete problem. Let X C S, be the set of all one-cycle permutations o such
that (¢,0(¢)) is an edge of G. Then ham(G) = |X|. In this example the problem (6.1)
of finding the maximal weight of a Hamiltonian circuit in a weighted graph is NP-hard.
However, we can try to guess a Hamiltonian circuit with a sufficiently large weight. It
follows that if ham(G) = exp{(1 — §)nlnn} then there exists a short randomized proof

that ham(G) is at least exp{ (1 — Ve + o(l))znln n}. The proof consists of generating a

random weighting u € S n*~1 and then demonstrating a Hamiltonian circuit in G with a
V2Inn(1—+v640(1)) weight (such a circuit exists almost surely as n — 400). Of course,
to find such a proof is difficult but its very existence seems to be of interest.
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