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INTRODUCTION. The notion of space of polytopes was introduced by

A.M.Vershik, and used by him and A.G.Chernjakov in [1] + Where they
have proved Smale conjecture about the structure of the set of Pareto

optimum points. It was shown that this notion may be used in solving

different problems of optimal control theory and mathematical econonmy .
Related concept of smooth field of convex polytopes also was discussed.
]
The objective of this paper is to describe some examples of spaces of

convex polytopes. We shall give some combinatorial applicacions.,

X Let D be a d,—dimensional convex polytope which vertices are

&1,,.,, @n . Let C(D) be a set of all i -tuples (U;,..,, Uﬂ/)

where ULE R and q} : a’b—é Ui is a combinatorial isomorphism

—

between boundary complexes of polytope p and Contf{q,..., ”} , C(P)

dn
is topologized as a subspace of R . The action of the group of

nondegenerate affine transformations on Q,

on C(Q) as follows:

induces a natural action

A(U; o Un)=(AU; ' AU") where AE A‘)?f(Rd)

DEFINITION. C(p) factorized under action described above is

called a space of polytopes combinatorially isomorphic with D . It

e
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is denoted by Ca<p>
In this paper we shall prove the following main result:
THEOREM. If p is a cyclic polytope, then Ca(p) is homeo-

morphic to the Eucle\,dean space.

§ 1. CYCLIC POLYTOPES

Polytope D= CO‘r’LU{U,‘ T Uw} , where U:v=(503 x{'/ ,51./H/x1'/; Cos zxw
Si,n, 2\%{,/'-'0056{,3% s SLM d,xv) is called a cyclic polytope. Combinato-
rial type of p was calculated for example in E2] .

In this paper we shall give a detailed proof of the result only
for a 4-dimensional polytopes, because for another dimension the
proof will be completely analogous. When Qd =4 vertices U{/’ Ujf
U, U@ form a facet of p iff indexes 1./:J.,K ,6 may be divided
into two disjoint pairs (a«,], ay) (61,67,) , such that

la,=a,l=1, 16 ~b,1=1 (modn).

§ 2. THE PROOF OF THE MAIN THEOREM.

LEMMA 1. Let Da=001/[/(]{(]; e Uﬂ/} be a polytope, combina-
torially isomorphic to a cyclic one. Then D1=COH/{7{ U,; y - -'yUn_4}
is a convex polytope, which is combinatorially isomorphic to a cyclic
polytope with N —1 vertices.

PROOF. Let consider a polytope pt = corw { U; e Un—4 s
U-DVe+t0s} . 12 b€ [0,1)  then (0, (1-t)0+tu, ] s
the edge of DT/ , because U4 ' Un , Un_1 form a 2-dimensional face
of Do . If t & [0,’1) , then pt is combinatorially isomorphic
to pa ; because otherwise there would be t*e [0, ’1) and pt*
would possess a non-simplicide facet, and then there would be two ver-
tices with would not be endpoints of common edge. Supposing, that

t “>1 , we obtain desired result.

4q
LEMMA 2. Let pﬂ_4 =COH/U {'[); . Uﬂ«"l} be a polytope, combinato-
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y
CONnVex open set uc Qq , such that Uneu/ @Dn =COW{ p; Uw}

Ls combinatorially isomorphic to a cyclic polytope with " vertices.

PROOI . Applying Criinbaum Lemma [:2] we conclude that D would

have comb natoriel type of cyclic polytope iff U‘rt

containirg [U}, U/w_;’ except (U‘rt-'V U;, U

Of L)

the rest . We shall prove that the set of such points in non-empty. Let

Oc Inl Pl

cdge figu
exists o byperplane w

OXCoREt One . corre spon

o

4
bl of . If
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pE, P T clear,
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by anouvner even dimen

. C ,p2d> N )
QdIrH;LJRIN ooy U w is homeomorphic to

D le a cyclic

PROGE . When

R AN Qdﬂ

2d, 2d
p{conuiy U, 3 =conv { v HU?M}, PfCa(pn+4)_>Ca(p").

Appiyving Lemma ' we de

n=24+1 P

‘duce that p

o

)

ling to ('U:’ s U

n-4 !

p is the preimage of this hyperplane, then

that u

as remain true, if

510n.

Qd—dimensional
2d,

2a+1

let us consider the map P

polytope with #

is a simplex and Ca ( p

n-g

-4 be a dual polytope with the origin
4 .
re pn% of [Un

1ich separates all the vertices of this polygon

1 U;] is a polygon. There
UZ s U%—Z) from the rest ver-

is an open convex set.

we substitute dimension 4

2d(n-2d4-1)

2d

is correctly determined. As it

2
foliows From Lemma 2 preimage of each point is homeomorphic to Q/

‘ i RS
There fore we have: (/a,'\pn ): R

§ i COROLLARY

group of a cyclic poly

2d
brime Then the set of polytopes FCC(pn )

2d,
tope pn and

2d(n-2d -2) 2d, 2d (n—-2d.-1)
xR =R .

>t 6 be a fin.te subgroup of the combinatorial automorphisms

16]=p

in each of which

exists a non-empty

is beyond facets

U;/) and beneath

, where

vertices.

2d+1) is

defined as follows.

, where p is
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6 -symmetry can be realized by an affine transformation has exactly
two components of linear connectivity. 4
PROOF. Let consider the action of 6 on Ca(pn ) . Let FA
be a set of fixed points of this action. From Smith's inequalities

(see, for example, [3] ) we get:
. 2d,
BRI T fG0,),

00 4 00 { 2d
Z DB (F) = 2 p(G0,))

where ﬂi (X) = dt/m/ HI/ (X ; ZP) are the Betti numbers. From the
Theorem 1 we deduce /50 (E\ ) =1 , therefore f_?,o ( F)=2

REMARK. It is also true if ‘6 '—’= ch , where P is a prime.

§ 4. GENERAL REMARKS ABOUT "SURGERY" OF POLYTOPES

We are interested in such operations between two polytopes

DQ —99 which can be extended to a map Ca( Q)-——) Ca<p4)

Two examples are to be given

n+1
only simplicial facet of D and beneath the rest.

Then we have a map p : Ca ( DZ) —> C(L (p4) defined as follows:

1. Let pz=co11/()’{ e , U } where U‘rb+4 is beyond the

pleonv iy ... v, D=cono{t,.. 0]},

n+1

2. Let polytope Dz is obtained from p4 by dual operation ,
namely first operation was applied to the polar of p,1 and then we
have got a polar of the polytope obtained.

In this case we also have a map

Co (B) — C, (D).

Using such consideration N.E.knev has deduced from Steinlitz theorem
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the following result.
THEOREM 2. C1<p , where p is a 3-dimensional polytope,
Ls howeomorphic to Rm
Wowe blave got the
COROLLARY . The combinatorial automorphism of the prime power
ardes of the 3-dimensional polytope is realized by an affine trans-
formnation. Let D be a simplicial polytope.Consider C_a (p)=
CEOSLL'L@ (Ca(pD . Connection between the differential struc-
ture of 8@;{ (p) and topological properties of Ca(p) is to be
cons doresd,
JETOREM 3L 1o C;<_pj 1s a manifold with angles then Ca,(p>=
Qm , for an aopropriate o,

frrstowe shall prove

LIMMA L Ca,(p,' is contractible to a point in Ca(p)
CROOF. Let us conssder space of all Gale diagrams (see, for exam-
ple, [’] l. corresponding to the polytopes M e Ca,<p) . It is easy

te show that this space is homeomorphic to Ca(p) . This space
A

\ A H~d ~1
consists of ail H-tuples (U; g .. "Uﬁ/)’ where ULE Q/
o

0 cond { ‘Zj{/ , = N‘I} @>001’1/(f{‘(], Le:[} is a facet
of p and (/\L . . Un—d/ are given. A A

o
Wirthout loss o7 gererality we may assume, that OEW{U : ‘Un-d/}

h

oS>

t
A A )
U — U i< n-d
v v
jive us desired honotopy.
FROOF 07 the theorem:
— 0
Since Ca( ! is a manifold with angles, there exists homo-

topy gt C_CL (P) > C—a (p) , such that go——_i/d/ g«/, (Ca(p))CC&(p)
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Combining it with the previous Lemma we obtain immediately:
(ZL(F)) is the manifold with angles contractible to a point.

Hence, applying Poincaré conjecture we complete the proof .
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CONFIGURATIONS OF SEVEN POINTS IN RD

S.M.Finashin

senirgrad Electrotechnical Institute

m
Lt IDn be the real projective  -space and Slpn be its
m
M-th symmetric power. We call a point of 5 [Dn a nonordered
M-confijuration of degree MWl . We consider it as a collection of
m 11
Wl points of n:’w . Let 65 fpn be the subset of Sfpn consist-
ing ot the configurations with points in general position (see 1.1
e m
belcw) . 6 [Dﬂ/ has & structure of algebraic variety and GSPYL is
its open subset, whicht consists of several connected components. We
call these components the cameras. The structure and the natural stra-
"
tification of S”:)‘rb for N <3 and M <6 can be described
without difficulties. The main purpose of the present paper is to de-

1
scribe the mutual position of the cameras in 6 [D3 . We gain it

by three steps. At first we describe the mutual position of the ca-

7
meras in S[pz . Then we introduce the duality which gives in par-

m "
ticular biregular Lsomorphism 65"3‘4 %6 =~ GSR’MPQL At last we
- L -
n-1

m-n-
. o ) 7 ,1
describe the mutual position of cameras in GS[DB ; using the

Viro theorem on ncrmamphicheiral configurations. The results given at

the first two steprs seem to be interesting for their own sake.
Recently new connections between the properties of configurations

and non-singular real projective varieties were found (see [14] , [17} X

This sets new problems and requiers new approaches in the investigation
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of confugurations. The author's interest to these problems is origina-
ted from his studing the real plane algebraic curves [16:[ and is
due to the personal contacts with his teacher V.A.Rohlin and with the
participants of the Rohlin seminar in Leningrad. The author's inves-
tigation was influenced also by ideas of A.M.Vershik on rigid isoto-
pies and the duality of configurations (see [10] ) . The author is
greatly indebted to 0.Ya.Viro for the fruitful discussions and use-

ful advices.
§ 1. BASIC CONSTRUCTIONS

1.1. Combinatorial types of configurations.
m
A point of M -th power fpn 1s called an ordered M ~configura-
m .
tions of degree M . For A (S ”Dn we denote the ¥ ~th compo-
nent of A by At ;, SO A=(A4,,..,Am). The least projective sub-

space of [p which contains all the points A1""’A‘n1, will be denot-

ed by \/(WA) . We set
deﬁv (A) = min (m-1,n)-dim V(A).

por S={ 1 ...l ] IS U< < As< om0 A —
=(A£7""Ai$)‘ We call the combinatorial characteristic of A the
funct4ion CA defined on the set of all subsets of {/1 gy m},
which set in correspondence to S (- { ’] ) m_} number d6)€V<AS)
Two configurations A, B < p::‘{ are said to be combinatorialy equi-
valent if CA = CB . We call configuration A a generic one if
CA = 0 - We denote the set of all generic configurations AE ,p:

m
b
vy GP,.
It can be shown that the set of confiqurations combinatorialy
m
equivalent to a given one is a locally closed subset of ’pn in
m
Zariski topology. So we have an algebraic stratification of ’Pﬂ, with
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strata consisting of combinatorialy equivalent configurations. We

call this stratification the natural one. Each stratum is a union if
several connected components, which are to be called the partitions.

We say that two coafigurations are rigidly isotopic if they are situat-
ed In the same partition. In other words two configurations are
rigidly ssotopic if they can be joined by isotopy in 'pn consisting

of contigurations of the same combinatorial type. We call cameras and

walls ‘he partitions o: codimension 0 (i.e. connected components of
e R
Gpn oand codimensicon 1.
Contlguration A S ]pn ls said to be reducible if there
exists a pair of disjo:nt projective subspaces of pn , the union of
m
which contains all the elements A4, vy Am . We denote by prn
m
the set of all irreduc:ble configurations from [pn, . It can be
- m n+2 n+2
easily secn that _[[p = ¢ if mo< pr = [D
" w m
and I[pn contains all the cameras and walls of !Pﬂ/ if M2 N+3.
The actions of Sm and pGLn

The symmetric groug Sm and the projective group p@Lw act na-

m
curally on [Dn : the first one by permutations of the configurations'
elements and the second one by applying transformation to each element .

Since these two actions commute we have the action of SmX DGL

fp " . Let

"
m m m m %
A Y B =R o6l
sm, 6 n smx n
be the orbit spaces. The space Sfpn has an algebraic variety struc-
ture as an orbit space of the finite group action, while !pm and

Sﬂ)m have not. However their subspaces Ipm I'p %)GL
and L.Sp Ip‘rb/ﬁ X pGL have the structure of algebraic

prevariety, which is the same as the structure of variety without

the conditicn that the space is separated (see [8]
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The actions of Sm and pG L,n on lp:f induce actions on strata
and partitions of [D,T' . Hence we have stratifications of factorspa-
ces, which we call the natural ones too. Their strata are the locally
closed sets in Zariski topology of SP:, I[an s IS pf:n . We
define the notions of partition, camera, wall, rigid isotopy form
Sp‘:/ ) Ip: ) ISP:V just as for [p:r, . We set GSP:1=6PW/SW

1.3. Factorgraph

We shall call a graph a triad r———(\/, p, I) consisting of two
sets \/ and D , which are called the sets of vertices an edges
and of map I . p—> \/X \//5 from D into the set of nonordered

2

pairs of vertices, which is called the incidence map. We call a mor-
phism C—> |—; of graph r; =<\/4 y p4 ,:[1) to graph Fz =
(\/2,[)2,;[2) pair of maps gi(fv’ JQD)’ J?vf\/1—>\/2,fie—>pz such

that the diagram

is commutative.
Let we have an equivalence relations on the sets \/ and p and

let \/, D be the equivalence classes. If there exists a map

T : 5 - VX% , which makes diagram
2

I
_ \/><\/52
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commitative, then we call the graph l—': (V, ﬁ, I) the factorgraph

for the miven equivalence relation. It is clear that the factorgraph
Ls unique Jf 1t exists. The morphism F - l_' , which is given by

the wvair of projections \/“‘)v , p %F—) is called the projection of
factorization.

Lot Au,t(r) be the group of automorphisms of graph r . We
say that group 6 acts on r if we have homomorphism 6—')Au/t(r).
The Hrbit sets \/= \//(7 , P = % are the equivalence classes
satisfying the abcve condition. We dencte by % the factorgraph
lefincd by this ceculvalence relation.

1.3.4+. BXAMPLL. Let l_‘ be the graph with 2 vetices and 1 edge
connect ing them. 17 we take the action of the group 6=Au/t (r)
(whiclt 1s isomorphlic to symmetric group 52 ) then the graph % is
the graph with a single vertex and single edge-loop.

i.*.2. REMARK. We can associate 1-dimensional CW -complex Cr'

r
with & graph | and construct an action of group 6 on c’_ accord-
ing t¢ it action on r . The above example shows that CW—com—
-~
plex L/[_/G 15 not necessarily homeomorphic to the factorspace of CP
/

by the action of 6

i.4. Adjacency graph

We describe the mutual position of the cameras in the spaces
ﬂ)m , Sfpm ﬁ)‘rﬂ/ and IS [pm in terms of graphs. Let X be

" n ' " "

one o1 these spaces. We call the adjacency graph of X the graph,
which set of vertices is the set of cameras of X , set of edges
15 the set of walls of X and which incidence map set in correspond-
ence to a wall pair of cameras adjacent to it. Some pair may happen
to be a double of one camera:

aj X has a boundary and the wall is contained in it, as in
exanmp .e 1.4.1 below;

b: 1f tne wall is one-sided subset of X
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c) if the wall is two-sided subset but has the same camera adja-
cent from each side.
Each of these cases corresponds to a loop in the adjacency graph.

We call a wall the 1inner one in the cases b) and c¢).

We denote by | .5 Fm Fm and Srm the adjacency graphs
of the spaces [D SIP:”’ ﬂp—"‘v ana ISP

The natural actions of G and p@L on [PZ’ give actions
of these groups on an . 1t can be shown that § rm a2 FW/S
If M > n+3 then Fn"‘v = W/GL and SF:__A_; ]’“:”AMQGL;:
= SI—' P6L,, (if M < N +7 then the graphs F;;—W and
ST0" have no edges since TP, ana [SP, aoes not contain

the walls). For details see [14]

1.4.7. EXAMPLE. It is quite evident that configurations
A,BESP,m are rigidly isotopic if each of them is generic or if each
of them has just one pair of coinciding elements. So the space SQ
contains the only camera (for M > ) and the only wall (for
M22). So the graph 5’—;% has a single vertex and a single
edge - loop for MW =29

m+2
1.4.2. EXAMPLE. If is well known that any configuration AEGPW

n+2
can be transfered into any other configuration 8 EGID by the

n+2
only projective transformation. So the spaces Gfpn and DGL’%
are homeomorphic. We can deduce from that fact that:
n+2
a) [:‘1’ has 1 vertex and 1 edge - loop, if M is even

and Z verteces and 1 edge connected them, if M is odd;

n+2 N+
by ST M
edge for any M2>41 ;

c) '—'n+2 Srn‘z and !—m

n ’

ni
Sr‘ are the graphs with 1 vertex and 1
"

S[—;‘me for m< N, >4 are

the graphs with a single vertex and without edges;

d) me ’ Sr;:w for m< n+1 , nN>1 are the empty

graphs (without vertices and edges).



507

1.5, The MIRROE INVOLUTION. Since the group P@ Ln is connected

m m ‘—| ~

for ever i and s0 acts trivially on r’n and Sﬂ/ we have " pGL hand
n

-~ m.m o M _ P—
=rwvbrn/’/pG[_/% ==5fw and hence [_'nm_ﬁ- r:, Sr‘r‘:‘/ %’SF: for

cven Mooane M2 N +3 | For an odd 1 pGL is a disjoint

anion of

connected components pGL and pGL, . The component
m m

oF ddentity pGLn acts trivially on rn and SFm , while the

second component gives :nvolutions on r‘r‘rv and Srm , which we

m SAm
call ~he mirror involutions. We denote them by 8 and 8 . We

nave from the definition that W/GL r/m/ SF/GL Sr/ and
nence for MM +3 . r ’=r/m,, Sr‘m"’sr% (it holds, cer-
tainlv, alsc for thes even if we set 59m , to be the
ident ity involutions) .

«t 1s clear that the mirror involutions are induced by the iso-

"
norph: sms pn_ép;vand S[D Sp defined by the mirror reflec-
tion about any hyperplane in ’Dn, ,

We say that a configuration (no matter ordered or nonordered) is
amphicheiral, 1f it is 1igidly isotopic to its image under the mirror
reflection about hyperplane.

!.6. STRUCTURAL GRAPH. Let A be fl-configuration (no matter
ordered or nonordered) , which elements are not contained all in one
hyperplane. Each pa.r of its noncoinciding elements can be connected
by 2 linear segments in [pn - We say that a hyperplane «crosses the
segment 1f thelr intersection is norempty and does not contain an end
point of the segment. We can construct a graph which vertices are
the elerents of A an(ﬁ edges are the segments, not crossed by any
of the hyperplanes determined by generic subconfigurations of A of
degree ¥, (we add zlso an edge for each pair of coinciding elements

ot A J. Ve call tris graph the structural one and denote it by r

We ieave for the reader to prove the next useful property of the
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structural graph.
grap e

t.6.1. BASIC PROPERTY. Let AE GsPn , >+ ang A{, , AJ
be the vertices of rA , connected by an edage. Then the configura-
tions A/.\ ’ A’-‘ (S8 65”%:11-1 which we can get respectively by re-

J
moving the elements A1/ , AJ from A , are rigidly isotopic.

It follows that the configurations A/; and Ao are rigidly iso-
topic also in the case when Ai/ and AJ belong tJo the same connect-
ed component of FA .

1.7. (W, K) -CONFIGURATIONS. In addition to the configurations
of points we shall deal with the configurations of hyperplanes and

the configurations of lines in ":)3 . So it is convenient to introduce

a generalizing notion of (%,k) ~configuration. Let [pn,,( be the

manifold of all the linear projective I-(-subspaces of [Pn (it can
be identified with the grassmanian GnH KH ([R,) ). A point of its po-
m )
wer fD is called an ordered (1’1,, k)-configuration of Mm~-th degree.
nwK mw m m ~ [pm/ "W
P™ =P =2 elP
We have .0 " and lpn,k ekt For A n,K we denote
by /\ (A) the intersection of the elements A1""’Am of A and

by \/(A) the minimal linear subspace of [pn , containing these

elements. We set

d%(A) = minn, mk+D-1)-dimV(A),
d(’%\ (A) =dim A(A)~ max 1, n—mn-k)),
( d/lxﬂ’l/p/:—1 ).For5={1'/

1/5} , 441/44.. .41/5é ", we

IEREEY
denote by AS the configuration {AL g ooy Ai/ } We call the
1 S
combinatorial characteristic of A the map from the set of all the
subsets of { 4, . .,141/} into Z X Z which maps a set 5 =

c{”,...,m} to pair (d@;v (AS) ’ MA(AS)) just in the same way as it

was for the cdnfigurations of points. We can introduce the natural

m
structification of IDW,K ’ ‘Sffine actions of Sm and of p@l_.w
define the factorspaces SIP ﬂ)m SIP"” . We introduce

nwkKk ' wk'’ ",K



509

also by analoyy the notlions of rigid isotopy, partition, camera,
wall, adjacency graph and define the spaces Glpn,:v;( ’ GSP‘:,DK of
gener 1¢ corfigurations.,

maned for (1’1/,0)»-configurations the numbers d@ﬁA<A5) are de-
tovmined by the number: d%\/ (A) , the new definitions coincide

with the former onces in this case. It is clear also that the natural

1247 m " wy
Leomorphisns [p o~ and S[p = 5"3
n,K ",K H,n-K-14

keep the struti-
W, H-K-1
Floan tons.,

.3, CONFIGURATIONS OF HYPERPLANES (ARRANGEMENTS) . The nonorde-

rodd (1, n '4)7 ‘onf igqurations which have no coinciding elements are
traditionatly called tl-arrangements. M -arrangement is said to
be sirple one 17 0t o 1s generlc and have no points coruron for its hy--

m
perplanes. We say that configurations A,Be':fpﬂw1 are homeomorphic
,
tf tnere exists a homeomorphism [Pn_> 'PYI/ which maps A1/ into 51'/
[{ w omirt the orcer preserving condition we get the definition of

-

£or " -arrangements. The rigidly isotopic (1’1/,1’1«"'1) -

HOmMe SWOvph o sm
contiluurations are clearly homeomorphic (the opposite statement is

a0t true as it was shown by N.E.Mnev [11] ).

“Peohyperplanes of T —arrangement if they have no common points
3:ve o ocellular decomposition of ,Pn . It is easy to see that two
suct M —arrangements are homeomorphic if and only if they give com-

binatorially isomorphis cellular decompositions.
we denote by 0 (A)  the number of  M-cells with T facets
in tne cellular decomposition defined by the hyperplanes of simple
N -errangement A >f degree MU . We have clearly P.(/ (A)=0
v U< M or 1f U>M . We call the sequence p(A) ==
=(Pnu.(/\:] . 'per(A)) the spectrum of A
More informat:on about topological and combinatorial properties

of arrangements can be found in [5] and [1]
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§ 2. PLANAR CONFIGURATIONS

2.1. Topological classification of simple arrangements for M.<§.

The classification of simple Q—arrangements for 111/414 is a
trivial problem because of their projective equivalence. We can see
ot P(A)=(4) ic AcGSP, ana P(A-(1,3) ir A€GSP,,.
The problem of classification for, M=) and 14’!/=6 also can be solv-

ed without any troubles. There exists the only topological type of

simple 2 -arrangements for " =35 (spectrum 5, 5,’] ) and 4 topo-
logical types for 7"!’1/=6 (spectra (6,9,0:’1);(6,8,2);(7;6;3);(40,0;6)-
For M= 1 the topological classification of simple 2 -ar-

rangements was given by H.S.White [H] and L.D.Cummings [2] There exist
11 topological types of such arrangements (see dia. 1 in appendix) .
For mé@ we could see that the spectrum of simple arrangement de-
termines its topological type. For M =7 it does not. There exist
a pair of topological types with spectrum ( 7,'12,3) and a pair with
spectrum  (8,10,4) . In each pair one type gives arrangements which
have two pentagons with common edge and the other type gives arran-
gements without such pairs of pentagons. We would denote topological
types by their spectra supplying the spectra (%,12,3) and (8,10,4)
with indices A or B : A for types with a pair of adjacent penta-
gons and B for types without such pairs. The problem of classifi-
cation for M >§ seems to be too difficult to deal with without
computers. E.R.Halsey [_-6] and R.I.Canham [1__] solved this problem for
m=8 using 2 diffirent computer algorithms. It was proved to
exist 135 topological types of simple 2 -arrangements of degree 8.

2.2. Isotopic classification.

The topological type of 2 -—arrangement for W& 7 determines
its rigid isotopy type (see [14] ). So for M’Lé5 the space SPZ:

, 6 7 .
contains 1 camera, S[PQ4 contains 4 cameras and 5'P,24 contains
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Il cameras. It may seem to be likely that the homeomorphic 2-arran-
gements are rigidly isotopic for any #, , but it isn't true even for
case of simple arrangements as results of N.E.Mnev [14] show. His
siuaplest example contains 19 lines and the guestion whether or not
homeomerphic 2 Tarrangements are always rigidly isotopic is open
for Xé m < 1§

We ~all an arrangement k—donal if K is the maximal number of
sides, which have the polygons of this arrangement (so [ is a number
2f the latest position in the spectrum of arrangement where a nonzero
integer stands) . 1t s difficult to prove that any two #,-donal 2-
arrvangements of degree ], can be connected by a rigid isotopy for
any ML (sce E9] , [:16] ). It can be proved also that for any 1t ho-
mecmorpliic (ﬂ’lf"/’)—(ional Q-arranqements of degree 44, are rigidly
lsctopic V(see [16] ).

Let A € 5”:;” s a dual configuration for AES[DZ: . We call

v
A the k—gonal configuration if A is k—donal arrangement.
N

it A is Me-gonal then we can remove some line from ‘pz to get
v
an affine plane, on which the elements of A become the vertices of
v
convex MM -polygon., By analogy we can give description of A if it

1s k—donal.

NP ¢ (7
2.3. The graphs SD for m< 7.

m
We use the description of the adjacency graphs Srz for ‘r’ﬂrél?,
which is given in [16] . For M <l he graph Sr;m is described
5
in '.4.Z, graph SFQ has a single vertex and a single edge-loop.

6
The graph SD 1s shown on the diagram below.

A(é,g,o,n A(6,8,2) A(?.e,a) A<4o.o,6)

The structure of the graph Sr; is much more complicated. So it has

locps with centres A(S,M,QJ) ' A('M,5,5.4)’ A(S,w,”)g (pair of loops for
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ecach vertex) and a double edge between vertices A(gg 5) and‘A

(8.10,4)5

(see dia. 2 in appendix).

One of the loops with centre A1840N) corresponds to a two-

7 40.4) 8

sided inner wall in 5”%{ and the other correspond to one-sided inner
walls.

§ 3. EXTRINSIC DUALITY

3.1. The history of construction

The subject of this Section is the duality between configurations

P p"
of "1 and oin/ m-t-1 which induces also duality between confi-
m
gurations of 6“3 ) and Sﬂ) . The idea of this duality seems
n- m-n-14

to belong to H.Whitney. He investigated its combinatorial properties
which can be formulated in terms of matroids (see D2] ). D.Gale stu-
died the geometrical properties of the duality construction and used
this construction in the theory of politopes with great success (Gale
transformations, Gale diagrams, see [3] ' [4] ). P.McMullen was the
first who applied this construction to arrangements [7] . R.I.Canham

[1] and E.R.Halsey [6] carried further investigation of the McMullen's
canstruction and clarify its topological nature.

In this article the duality is introduced in algebro-geometric

"
terms as a biregular isomorphism Iﬂ)m = IIP and its symmet-
—— “n-1 m-n-1
rization IS[P"” ;;:ISIP"V. The author is greatly indebted to A.
-1 m-n-1
Vershic and N.E.Mnev, who acquainted him with their considerations

conserning this subject. Now we give two definitions of the extrinsic
duality, which we hope can help the reader to grasp the geometrical
idea of the construction.

Let A{,.- -ﬂA”L (= ,E;_4 be the point with coordinates repre-

sented by the lines of the identity matrix (5%}) of dimention XM
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/
et JI  be projective (%—/])-subspace of fpm_1 and ﬂ: be (m-n—4)—sub-

space dual Lo it. lLet p5<lpm_1\ ]V)——)j{: and p/i([pm_4\j£)—>jf/ be the

natura: projections. If no one of the points A“---, A‘rﬂ/ is contained
/

in U and JC then we get two co’nfigurations (P(A,,),...,P(Am))and

/ / !y ) B

\p<A*>’p(Am)) , which we call the extrisicly dual ones. It is
/

profecs ive types between which this duality is defined,since jr, and ﬂ:

can be identified with and by different ways.

" Prg ¢ Py y

‘e definition is also can be given in terms of matrix. Let
Ae ﬂ):: s contigurarion with V(A)=P,_, ana Re fpm"fn_ﬂ be configu-
vat.ion with \/(B): [Pm%_4 . Let Ai
and BJ

extrinsicly dual to A if 0,45- AR

has coordinates . . .
c (a/t a/“‘)
has coordinates (6' ,

ik ...:6J'(m-n)>' B i

'+a’m5' 6mt =() for any

Confilguration

SEM,--’,“’}, tE{ 1, o, L 1’1/} { in other words if matrix (&d) is

to <ag-) ).

y... The extrinsic duality in vector form.

an orthogonal complement

" m
We would use symbol [R' to denote the space [R/ and symbol [R/n

"
"
to dercte the MW-th power of [Rn , so an element AER% is a se-

quence (A4 ye e ey Am) where ALE[RW An element of ﬂZ,m
w

m
. Two vector configurations A,Benzfn

is said
to be a vector configuration
are called linear equivalent if there exists a linear isomorphism
[Pvn/h} [Rn, which maps Av into B‘b for 1',=4,...,m.

Let LA ; [R,m—‘—> van
the vectors of standart basic 64 . e of ,R

g0t Vi
A .,Amof a configuration AE "2: . We denote by LW(A“;AW)
the | inear subspace of an generated by the vectors A4,---,Am. We
nase iearty dim (hev Ly)=m-n . e iy Ap)=Ry ane bl
=&% LB if B is linearly equivalent to A . Let CRW =
={A€[R:V:L'Lﬂ/ (A“,,,,Am)-—'ﬂz”}and CR: =C[R1:/6Lw . We have a map from
CR™

valence class of A nto h%l_/A

be the linear transformation, which maps

into the element

EEE

into tne grassmanian W, m-n which maps a linear equi-
. We leave for the reader to

prove some properties of extrinsic duality (complete proofs can be
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found in [1 6]

"
3.2.1. LEMMA. The map Cﬂzn—>6m/,m_n defined above is a

bijective one.

3.2.2. LEMMA. The composition C{Pv:r:ﬁ CR,T—%QMM% is a regu-~-
lar morphism of algebraic varieties. -

So we get a factorstructure of algebraic variety on C[Pvm . Ve
call the composition of isomorphisms C’R:L;Gm,m_'vﬁ NC!R'” the
outer duality isomorphism. The function (, from the set of all the
subsets of  {4,...,m] into Z , which maps a set §5={ Lyyoers g )
into the integerC(5)=m,i,n(5 n)—d,Lm(LM(A, Ais )) is called the
combinatorial characterlctlc of conflguratlon A = [PV

3.2.3. LEMMA. Let A e C[R BECIRm ,be extrinsicly dual
configurations (e.d.c. ). Then C, (5) C (5) _ for any set
sc{4,...m} ana for §= {1 .. ,m}\S

3.2.4. COROLLARY. Let Aecmw, Re C[R be e.d.c. ’I;}\uen
AL”—:O if and only if LM(B ...,Bm)gé [Rm_m(symbol over

81'/ means that Bt is omitted).

m

3.2.5. COROLLARY. Let Ae C[R , Be Cﬂ%m_w be e.d.c. Let

1/<J <M ana At , A %O . Then AL , A are collinear if and
only if L,H’L(B 1/,,.. J B>¢Rmn

3.2.6. LEMMA. Let ACCIRm , B€CIR . be e.d.c., d€ R, 40 .

=14

Then configurations (A At 4’0(/ A ALH’ Am? and (81""’81',-4’ o 'Bf,’
BLM""’ m) are also e.d.c.

R™ A
We call configuration AC yw reducible if the elements of

can be divided into two nonempty subsets, such that the intersection

of two subspaces of Rn linearly generated by their elements is {0}
3.2.7. LEMMA. Let A and B be e.d.c. Then A is reducible
if and only if B is reducible.

We let I [R:: { AE R:: A is irreducible } ,I 'R':-:I[R?%Ln

and denote by
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dv s IRT—IR

restriction of the extrinsic duality isomorphism.

3.3, kExtrinsic duality in projective form
The natural projection ’R, \{O}h) lpﬂ(_"
" m "

I ﬂz -—> I [Pn4 (since irreducible configurations have no elements
" -

m "
edquas to 0), which induces IIRW‘—)I[PW_ . According to the lemma

gives the projection

a0

S N . i m, m m . o
3.0.6 we can construct a map ﬁ" : I [Pn_,,_—}:[ﬂ)m—n% which makes dia
Jrarnm
J &"1
j—— n [
R, —— IR,
L - i
m n "
—r
[P P
m
commutative. It follows that /jn is a morphism of prevarieties

: -1

m ;oM
and : ince ﬂ = (ﬁﬂ/) it is a biregular isomorphism. Factorization

m-n _ _

S, m " m
by tre action of 5§ ives isomorphism . P .
\ w9 p ﬁ)% ISRH_’IS et
Accoraing to the lemma 3.2.3 isomorphisms ﬁm and sﬂm preserve
n nw

the natural stratifications. We call these isomorphisms the extrinsic
duality isomorphisms. So we get the next theorem.

2.3.1. THEOREM. The extrinsic duality isomorphisms
m

P IP" =IP™ o Spr:ISPT—ISPT

isomcrphisms of prevar

are the biregular

ieties preserving their natural stratifications.

By

4 m Sp"™ .
’.3.2. COROLLARY. Isomorphisms ﬁ, and p"" give 1-1 corres-
w

pondence between cameras and walls of I”Dm , IS {p""d and I{pm«
n-1 n-

m-n-1
m . .
IS [Pm-n% . This correspondence keeps adjacencies , so we have
[m o~ rm g™ ;SF"" for 3<MN <M—2 (we need the
11 Comeneg 0 "1 m-n-1
las zondition for the

configurations of cameras and walls to be irre-
duciblej} .
-3.3. COROLLARY. For odd M 23 and even M= M +3 we have

2
W m n+3
[_‘:: = rm—n% ) Sf—‘%_4 =~ S rm”_bn% - In particular graph 5 Fn for




even MW is a graph with a single vertex and single edge-loop (see

1.4.2).
¥ . . .

3.3.4. COROLLARY. The graph SG is isomorphic to the graph

kd
S[_; (see dia. 2 in appendix).

m 149

3.3.5. meoreM. tet A QP Be6P .., ve e.d.c. then the

structural graphs r and r are isomorphic.
A B8

PROOF. If Av is connected with AJ by edge of I; then a seg-

ment connecting AL with AJ in e is not crossed by any of

hyperplanes determined by elements of A (see 1.6). Let moving Ab

along this segment toward A , all the other elements of A keep-
ing on their places. This deformation of A is a rigid isotopy

{
(exept of the end of movement). We get configuration A at the end

of movement which has the ¥ -th element coiciding with the J-—th one.

/ !
Let B be extrinsicly dual to A . According to 3.2.5 all the ele-
/ / /
ments of B exept of BJ and BJ lie in the same hyperplane,
/ /
and so one of the segments connecting Bo with BJ is not crossed

/
by it. It is clear that after a small deformation of B this segment

gives an edge of structural graph of the result of deformation. Hence
Bi/ and BJ should be connected by an edge of l_é

3.3.6. COROLLARY. Any configuration A€66[P: is extrinsicly
dual to itself since the structural graphs of configurations from dif-

6
ferent cameras of GSR are different (see dia. 4 in appendix).

§ 4. ADJACENCY GRAPH

4.1. Linking number for (3,1)-configurations of degree 3
In the next two sections we describe the construction of 0.Ya.Viro
[1 3] + which shows that all the generic nonordered (3,0)-configura-

tions of degrees 6 and 7 are nonamphicheiral.
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for two nonintersecting oriented lines L’1’ ,“‘2 in H the link-
ing number EZQ, ( L“ L2> is defined. It can be equal to %1%, We can
determine it for example by the next way. Let JU is a plane in P}
such that Lﬁc ﬂ; . The orientation of L,1 gives the orientation
of the complement SN L,,, - The intersection number of this complement
with L/Z Ls just >qual to the linking number £E€/<L1, Lz) In this
definition we need the orientation of PB to be fixed. If we change
the orientation the value of the linking number should be changed too,
just as if we change the orientation of one of the lines. The number
(/& ( L’w L’Q ) ts not changing in the process of rigid isotopy and
when we change the order of lines. Now let L':{L/M L’Z’L’3} be a set of
mutually nonintersecting lines in !Pa (in other words a generic non-

* x *

ordered (3,1)-configuration of degree 3). Let L1’ LQ, L3 be the
same lines with some orientations fixed. We denote the product

X o ox x x X *
bl Ly) k(L L)) R(L,, L, )by [E(L) or by LR(L, L, Ly).
It can be easily srowd that this produvct does not dejend on the choise
ot the crientations and order of the lines, that it is changed
if we change the orientation of “‘)3 and that it isn't changed in
the process of rigid isotopy.

4.2. The invariants of generic (3,0)~-configurations of degrees
6 and 7

Let A be a generic (3,0)-configuration of degree 6 (no matter
whether it is ordered or not). We denote by S(A) the sum of the num-
bers E&(L) for all the generic (3,1)-configurations L of de-
gree 3 defined by partitions of A into pairs. The number S(A) is

not changed in the process of rigid isotopy of A and is multiplied

.
According to the definition, which is generally used in literature

1
the linking number is tQ‘ . We regard the double of the linking

number .
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by -1 if we change the orientation of ”33 . This sum consists of 15
summands which are equal to ¥ 1, hence S(A)#O
Let B be a generic (3,0)-configuration of order 7. If we re~

move some element Bf/ from 8 we get in result generic (3,0)-con-

figuration BA of degree 6. We associate with element Bi/ number
+1, if 5<Bt)>0 and number -1, if 5(8t)<0 . So we supply

the configuration B with the canonical orientation (as a manifold of
dimension 0). This orientation isn't changed in process of rigid isoto-

py and is replaced by the opposite one, if we change the orientation
of ”% . Let 6(8) be the signature of B (which is equal to
the sum of the numbers associated with elements of B ).

We can prove now the next theorem of 0.Ya.Viro.

4.2.1. THEOREM. All the generic nonordered (3,0) ~configurations
of degrees 6 and 7 are not amphicheiral.

PROOF. For generic nonordered (3,0)~configuration A of degree 6
we have S(A)# 0 and so the value of S(A) is changed if we chan-
ge the orientation of (P3 . Hence A can't be amphicheiral. For
configurations of degree 7 the proof is analogous to the above one
with replacing § by G

ThlS theorem shows that the mirror involutions on the graphs SF

and SF does map no vertex into itself. So the numbers of cameras

5[D3 and S[Dj are the doubled numbers of cameras in SP; and
S“): (see 1.4). Together with the theorem 3.3.1, example 1.4.1, and
isotopy classification of generic nonordered (2,0) -configurations (see
2.2) it gives the next result.

4.2.2. THEOREM. The space 6”)3 contains 2 cameras, and the
space S[p: contains 22 cameras.

In other words there exist 2 isotopy types of generic nonordered
(3,0)-configurations of degree 6, and 22 isotopy types of generic non-
ordered (3,0)-confiqurations of degree 7. Now we can describe the

6
graph SFS - It has 2 vertices by Theorem 4.2.2. It is not diffi-
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cult to prove also, that the stratum of condition 1 in S[P; is connect-
ed, so this graph has the only edge which should connect its two ver-
tices.
Combiration of the results of 1.4 and Theorem 3.3.1 gives isomor-
¥
phisms Sra/se,; Sr:
position of the projection Sr: —-»SFI/SQ; and these isomorphisms.

-
Since rl (A) ‘onsists of two elements for each vertex A of
v

iR
IR

Srz = Srz . We denote by VL:('L”QP the com-

?
-4 )
Sr 4 fl (‘n’)also consists of two elements for each edge 90U of Srl

2 P
which cornects two d:fferent vertices. The problem is to determine how
docs this palr of edres connects two pairs of vertices.

1.3, Orientation:. of generic (2,0)-configurations of order 7

¥
Let S(t) be a path in S‘P3 which connects configurations A7BE
F —
ecr S [Pa from the ad)acent cameras. Let this path crosses the wall bet-
weon this cameras in a singl i = i 4 /01
. s can gle point ( =§ {3). Then 4 elements ofAwhich

Furrv to be contained in the same plane during the deformation, presave

thelr orientatioas a‘ter crossing the wall. The other 2 elements change

theis orientations. %o prove this we should remove one element from A
and look at § (t) - if we remove one of the four elements indicated
above, the deformation S(t) turns to be a rigid isotopy of generic
(3,0)-configuration of deagree 6, while if we remove any other element

the deformation turns to be connecting configurations from different

6
cameras of S[P3 o

We can see that from this rule of changing the orientations it

follows that the signatures of configurations from the adjycent came-

?
ras of 8[P3 should differ by 2 or by 6.
The extrincis duality defines the orientations on the generic
(2,0)-configurations of order 7. Since the extrinsicly dual configu-

. 7 . . . .
ration for AE G-SPA is defined modulo projective transformation we

have realiy a pair of orientations on A , which are opposite one to

another,

If we take a dual property for the rule of changing the orienta-

Eogiven apove, then we find what happens when we go from one came-
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ra of S"-); to another one through a wall. The orientations are
changed in three elements which turn to be at the same line in the
process of deformation. In the other 4 elements the orientations are
not changed.
9
4.3.7. LEMMA. The orientation of 7-gonal configuration AEGS[DQ
has equal values at each element (the values are all +1 or all -1).
PROOF. Let B €66P}7 be extrinsicly dual confiquration to A
We have isomorphism of the structural graphs I—'A:—i rB according
to the Theorem 3.3.5. Graph r

A

gon), so FB 1s connected too. It follows from the property 1.6.1

is connected (since it forms 7-

that all subconfigurations of B of degree 6 are rigidly isotopic.
Hence all elements of B have the same value of orientation.

Now we know the orientations of configurations from one camera

7

of SIPZ . We know also how the orientations are changed if we go
from some camera to the adjacent one. So we can determine the orien-
tations of configurations from each camera step by step. The result
of the calculations is shown on diagram 4 in appendix.

4.4. The edges of the graph 5(’3?

7
Let A1 and A2 be two different vertices of 9 I"z connected

-1 + - -1 + -

by an edge N . Let ZV <A4)= {A1 ’A’I} ) ?\/(AQ)“{ A2 , AQ} ,

where "+" stands if camera consists of the configurations with posi-
tive signature and "-" stands if their signature is negative.

Since signatures of configurations from the adjacent cameras

+
should differ by 2 or by 6, we can determine whether A is con-
+ - -
nected by the edge with A2 (and A'I with Az ) or with
- - +
A2 {and A4 with Az ). There we use that we know values of

signatures and that the values are odd. .

Since the signatures of adjacent cameras in 5"33 should be
different, the graph Sr; have no loops. So the only gquestion remain-
ed to construct the graph SF; is whether 2;1(ﬂ) consists of

%
1 element ot of 2 elements for the loop ﬂ: of the graph SFZ



521

4.4.1. LEMMA. ZVPI(J[) consists of 1 element if Jl is one-
sided wail ani consists of 2 elements if Jb is two-sided wall.
/ _
PROOY. Lot U 62(; () . By the definition ﬂ;/ is the only
element o ?Pj(ﬂ) if and only if the mirror involution

9 — - / /
73 . S‘z) B ‘713 map s i into itself or in other words iff jt

consists of amphicheiral configurations. If fﬂ:/ consists of amphe-
chelral contigurations then jE//pGLB is on one-sided wall in ST;
because the action of any clement EEPGL; maps JE/ into itself
st sranspose 2 ocameras adjacent to ﬂ/ . If ﬂ:/ i_s_not the mirror

. 7
BT t ot i than j[://—) 15 a two-sided wall in 5”33 because any de-
“P6L,

,
aorlent s 1oop 1n /f[/pGL is covered by a desorienting loop

. 3
I JI . Te conclude the proof we note that a wall J]: is one-sided

. 7
tfoand ordy o1 ﬂ:/pﬁL 1s a one-sided wall in SIPZ
2

ki
Now Che iniormation about the graph 6[;

Lares Sfthe generie (3,0)-configurations of degree 7 enable us to

(seg 2.1) and signa-

3
construct the grapn Srs - It is shown on diagram 5 in appendix.
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=7 é ; f f
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bia. °. Simple Z-arrangements of degree < 7.
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(10,6 ,6)

(%,11,3),
(99,3 (8,124 (%,14,0,0,1)
{11,5,5,1)
(8,104,
(7,11,3),
(8,10,4),
(385) ;
bia. 2. Graph §[
Simple 2-artangements Scmple 3-arzangements
0f degree F of degree 7
(#,14,0,0,1) (#,21,%,%)
(7,13,1,1) (7,19.11,5)
(8,11,2.1) (8,17,12,5)
(9,3,3,1) (9,15,13,5)
(11,5,5,1) (14,11,15,5)
(#,12,3), (7,18, 13,4),
(f,12,3), (7,18, 13,4),
(8,10,4), (8,16, 14,4),
(8,10,4), (8,16,14,4),
(9,8,5) (9,14,15,4)
(10,6 ,6 ) (10,12, 16, 4)

Dia.

3. Spectra of extrinsicly dual simple

gements of degree 7.

2 - and 3-arran-
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/
m=3 m=4 m=5
4
= (4,3) (5,5,1)
m=6 / [ .
(6,9,0,1) 6,8,1) (7,6,3) (10,0,6)
m=7 /
(%,14,0,0,1) 7131 1) (8,11, 2,1) (11551)
+ ¥

+/ . \+ ‘/ \— /++ +
* e H K —_" +. 7\'_
(9,9,3,1) (8,10,4), (8,10,4),

+ +/f . d

+
/ n
=T + +‘/ \+ _: 4+
(%,12,3), (9,8,5) (10,6,6)
Dia. 4. (2,0)-configurations of degree 1/}’1/47 , structural

graphs and orientations for W=7 .
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