Two Algorithmic Results

for the Traveling Salesman Problem

ALEXANDER I. BARVINOK *

Version of December 6, 1994

Abstract. An algebraic approach to the Traveling Salesman Problem is described which
results in an algorithm for counting Hamiltonian circuits in a graph and in an approxi-
mation polynomial time algorithm for computing the longest Hamiltonian circuit with the
given vertices in a normed space. For a graph with n vertices the counting algorithm has
an+0(ogn) time complexity whereas the space complexity is polynomial in n. For any norm
in a Euclidean space and for any number § > 0 we present a polynomial time algorithm
which computes a Hamiltonian circuit with the given vertices in the space whose length
approximates, with relative error less than 6, the largest length of a Hamiltonian circuit
with these vertices. As a by-product of our approach we prove that the permanent of a
matrix can be computed in polynomial time provided the rank of the matrix is fixed.

Key words: Hamiltonian circuit, Traveling Salesman Problem, Combinatorial Opti-
mization

1. Introduction

The Hamiltonian Circuit Problem and its weighted version known as the Traveling
Salesman Problem are probably the most famous problems of Combinatorial Optimization.
They represent perfect examples of so-called “NP-hard” problems and serve as a test for
various computational methods (see, for example, (3,6]). In this paper we prove two new
algorithmic results about these problems. We use the model of computation based on RAM
(see, for example, [1]). As a measure of complexity we consider the number of performed
arithmetic operations (addition, subtraction, multiplication, division, and comparison of
real (rational) numbers). Sometimes it is convenient to add another operation, namely,
taking a root of a non-negative number.

* Supported by the United States Army Research Office through the Army Center of Excellence for Sym-
bolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical Sciences Institute of Cornell University,

Contract DAAL03-91-C0027 and Center for Discrete Mathematics and Theoretical Computer Science (DIMACS)

We begin with formulations of these problems. Let I' = (V, E) be a directed graph
with vertex set V' and set of edges E. Suppose that the graph I' has n vertices, that is
V| = n. An ordering Py, ..., P, of the vertices of T is called a Hamiltonian circust if and
only if the vertices P;, Piyy for i = 1,...,n — 1 and the vertices P,, P; are adjacent in I.

Hamiltonian Circuit Problem. Given a directed graph T' decide whether I' has a

Hamiltonian circuit and if so, construct such a circuit. We assume that I' is given by its
adjacency matrix.

The Traveling Salesman Problem is a weighted version of the above problem. We
assume that the edges of T' have certain weights {w(e) : e € E} and we are looking
for a Hamiltonian circuit of the maximal (or minimal) weight w(e;) + ... 4+ w(e,), where
€1,...,¢, are the edges of the circuit.

Our first result deals with the worst-case complexity of the Hamiltonian Circuit Prob-
lem. In fact, we solve a more difficult problem, namely, how to count the number of
Hamiltonian circuits in a graph.

(1.1) Theorem. There exists an algorithm which for any given n € IN and for any given
directed graph I with n vertices computes the number of Hamiltonian circuits in T’ with
O(n* - 2™) time complexity and O(n?) space complexity. If T' does contain a Hamiltonian
circuit then the algorithm constructs such a circuit with O(n® - 2"™) time complexity and
O(n?) space complexity.

To the best knowledge of the author, the algorithm of Theorem 1.1 is the fastest
known PSPACE algorithm for the Hamiltonian Circuit Problem. The exhaustive search
can be accomplished in a polynomially bounded space, however it would give us O(n!)
time complexity. The method of dynamic programming allows one to test a graph with
the time complexity O(n* - 2"), however it uses O(2") memory (since the basic idea is a
reduction to subgraphs, see, for example, [6]). The algorithm from the paper [5] (see the
“HPA3” algorithm from [5]) uses O(n) memory but has 22"n°(1) time complexity.

The second result deals with a special version of the Traveling Salesman Problem.
Assume that we have a complete graph I' whose vertices P,..., P, are certain points in
a Euclidean space IR%. Let us choose an arbitrary norm | - || in IR? and define the weight
w(e) of an edge ¢ = (P;, P;) to be the distance || P; — P;|| between the vertices in this norm.
We are looking for a longest Hamiltonian circuit in T.

(1.2) Theorem. Let us fix a numberd € IN, a norm ||-|| in the d-dimensional Euclidean
space IR? and a number § > 0. Then there exists a polynomial time algorithm which
for any given n € IN and for any n points P,..., P, in IR?, given by their coordinates,
computes a Hamiltonian circuit with vertices Py, ..., P, whose length approximates, with
relative error less than ¢, the largest length of a Hamiltonian circuit with these vertices.

An algorithm from [2] constructs a Hamiltonian cycle in a complete weighted graph
with nonegative weights whose weight is at least 2/3 of the maximum weight of a Hamilto-
nian circuit. To the best knowledge of the author this was the best approximation achieved

2

so far. Considerable attention has been paid to approximating the smallest length of a
Hamiltonian circuit in Euclidean space where factor 3/2 has been achieved (see [6]). The-
orem 1.2 clarifies the status of the Longest Euclidean Hamiltonian Circuit Problem in the
computational complexity hierarchy. It was proven in [8] that the problem of computing
the smallest weight of a Hamiltonian circuit in a complete graph whose edges have weights
1 or 2 is MAX SNP-hard, that is, if for any fixed § > 0 there exists a polynomial time
approximation algorithm which achieves the relative error § then such an algorithm ex-
ists for a large class of difficult combinatorial problems. It follows immediately that the
problem of computing the largest weight of a Hamiltonian circuit in such a graph is also
MAX SNP-hard. The last observation contrasts with Theorem 1.2 and shows, in partic-
ular, that the weights arising from a norm in a vector space are “better” than arbitrary
weights satisfying the triangle inequality. In contrast, the status of the minimal weight
Traveling Salesman Problem in the Euclidean space (and even in the Euclidean plane) is
still unclear: it is not known to be MAX SNP-hard, and no polynomial approximation
scheme 1s known.

Our approach is algebraic. We introduce a certain inner product in the ring of poly-
nomials and then reduce our problem to the problem of computation of the inner product
of two given polynomials. All the necessary facts about this inner product are presented
in Section 2. As a by-product we prove, in particular, that the permanent of a matrix can
be computed in polynomial time provided the rank of the matrix is fixed (Section 3). In
Section 4 we introduce the Hamiltonian permanent of a matrix, whose difference from the
usual permanent is that we take the sum over all Hamiltonian permutations. Similarly, we
represent the Hamiltonian permanent as the inner product of two polynomials and prove
that the Hamiltonian permanent can be computed in polynomial time provided the rank
of the matrix is fixed. In Section 5 we prove Theorem 1.1. In Section 6 we introduce the
notion of combinatorial rank of a matrix and prove that if the n X n matrix of weights has a
fixed combinatorial rank then we can compute the largest weight of a Hamiltonian circuit
with a relative error € in time which is polynomial in ¢! and n. In Section 7 we show
how to construct a particular Hamiltonian circuit whose weight approximates the largest
weight of a Hamiltonian circuit. In Section 8 we show that the matrix of pairwise distances
between n points in any polyhedral norm in a Euclidean space has a fixed combinatorial
rank independent of n. Finally, we prove Theorem 1.2.

(1.3) Notation. We let S,, denote the symmetric group, that is the group of all per-
mutations of the set {1,...,n}. By H, we mean the subset of S, containing all the
permutations which consist of a single cycle. Thus |Hn| = (n — 1)! and for a complete
weighted graph T’ with n vertices and the matrix W = (w;;) : 1 <4,j5 < n of weights, the
largest weight of a Hamiltonian circuit can be written as

(W) = max{z w; gy - 9 € Hn}.

=1

2. Preliminaries. An Inner Product in the Ring of Polynomials

Let P, = IR[zy,...,z,] be the ring of polynomials in variables zi,...,z, over the
reals. For a polynomial P € P, we interpret its argument z = (zy,...,z,) as a vector
from the Euclidean space IR™. We fix the standard inner product (-,-) in IR", so {(z,y) =
Ty oy + ...+ Ty -y for vectors z = (21,...,2,) and y = (y1,...,yn) from IR". For an
index & = (ay,...,a,) where o; : ¢ =1,...,n are non-negative integers by z® we denote

the monomial * = z{" - 2;». We consider the following inner product (which we denote
also by <~, >) defined on the real vector space Py:

for P:Zpa~xa and Q:an-xa

we put

(21) <P7Q>:Za1!"'an!’pa'qa~

It 1s immediate that (-,-) is indeed an inner product. For a polynomial P = Zpaxa let

us introduce a differential operator

8a1+ Fan

0

Then formula (2.1) can be formally written as

: 0 0
(22) <P7Q>:P(—6—$_laa£>Q($lv7mn)

We also give the third equivalent definition of the inner product in P,,. We observe that

Q@) =@ v 50) el

Therefore by (2.2) we get

r1=...=z,=0.

y=0.

0 0 0 0
2.3 P,Qy=P exp{(z, ‘
23 (P =P(5)@) e
An important feature of the introduced inner product is that it “behaves nicely ” with
respect to & linear transformation of the variables z1,...,2,. More precisely, let G be a

linear operator on the Euclidean space IR". By G* we denote the operator on IR™ which
1s conjugate to G, so (z,Gy) = (G*z,y) for all z,y € IR"™. For a polynomial P € P, let us
define a polynomial G(P) € P, by the formula

G(P)(x) = P(G"(x).
We observe that
G(P+Q) = G(P)+ G(Q), G(P-Q)=G(P)-G(Q) and (GH)(P) = G(H(P))
for all polynomials P,Q € P, and linear operators G, H on IR™. The following result is

well-known, but for the sake of completeness we give its short proof here.

4

(2.4) Theorem. We have

(G(P),Q) = (P.G"(Q))
for all polynomials P, @ € P, and all linear operators G on IR"™.

Proof. We use (2.3), the identity (G(z),y) = (z,G*(y)) for all z,y € IR", and the obser-

0 0
vation that the differential operators P <i i and Q) (—

c.. ...,— | commute.
Oz’ Oz, oy’ 3yn>

Thus we have

(P.6@) =P)0) epllGl))

z=y=0

= Q(afh a(Zn)P(ail"“’éi_n) exp{(m,G*(y))}’xzyzo -
=(Q,G(P)) = (G(P),Q).

[

In particular, the inner product <-, > in the ring of polynomials P, is invariant under
orthogonal transformations, that is <G(P), G(Q)> = <P, Q> if G is an orthogonal transfor-
mation of IR"™.

We will see that the problems of Combinatorial Optimization that we are interested in
can be reduced to the computation of the inner product of the two given polynomials. If the
number n of variables is small we can use the definition (2.1) directly to efficiently compute
this inner product. However, even if n is large, it might happen that by a suitable linear
transformation we can significantly reduce the number of variables. Then to compute the
desired inner product we use Theorem 2.4 and (2.1). As an illustration of this approach, in
the next section we show that the permanent of a matrix can be computed in polynomial
time provided the rank of the matrix is fixed. Finally we present a useful identity for the
inner product of polynomials of a particular type.

(2.5) Lemma. Let P € P, be a homogeneous polynomial of degree n and Q(z) =
xy--r,. For a (possibly empty) subset w C {1,...,n} let us denote by z, € IR" the
vector whose i-th coordinate is equal to 1 if + € w and 0 otherwise. Then

(P,Q) = (—1)"- Y (-1 P(xv),

w

where the sum is taken over all subsets of {1,...,n} and |w| denotes the cardinality of w.

Proof. This identity holds since for P =) the sum is obviously equal to 1. If P is a
monomial whose support does not contain certain 7 € {1,...,n} , then the summands
corresponding to w — {i} and w U {7} annihilate each other. U

3. Example. Computing the Permanent

In this section we give an example which illustrates how our technique can be applied
to combinatorial computations.

(3.1) Definition. Let A = (a;;) be a real n X n square matrix. The expression

per A = Z Hai,g(i)

gES, 1=1
1s called the permanent of A (see [7]).

It is known that the problem of computing the permanent of a given matrix is #P-
hard. We show, however, that if we fix the rank of the matrix then its permanent can be
computed in strongly polynomial time. Our method can be interpreted as a “Gaussian
elimination” for the permanent.

(3.2) The algorithm.
Input: an n X n matrix A such that rank A < r, where r € IN is a fixed number;
Output: the number per A.
Algorithm:
1. Compute an n x n matrix B = (b;;) such that b;; = 0 unless ¢+ < r and an n X n
matrix G = (g;;) such that GB = A (such matrices exist since rank A < r);

2. Define two polynomials L and R in r variables zy, ..., z, of degree n by the formulas
n T n T
L(zy,...,z,) = szi]‘ ~zi, R(z1,...,2;) = HZgij~:cJ'
j=1i=1 i=1 j=1

n+r—1
r—1

L:Z)\a-xa, R:Zpa~xa

consecutively removing the parentheses;

and then expand them into the sum of () monomials

3. Compute the desired value of the permanent by the formula

per A = Z al o) Ay pa-

a=(a1,...,ar)

(3.3) Theorem. Let us fixr € IN. Then for any given n € IN and for any given n X n
matrix A such that rank A < r the above algorithm computes the permanent of A using

a number of arithmetic operations which is bounded by a polynomial in n (the degree of

6

this polynomial is linear in 7). If A is a rational matrix, then the size of all the numbers

involved in the algorithm is bounded by a polynomial in the input size.

Proof. First, we estimate the complexity of the algorithm. To compute the matrices
G and B one needs to perform O(n®) arithmetic operations (as to solve the problem
of linear algebra). Since the number r of variables is fixed, the expansions of L and R
contain O(n"~!) terms and we can compute these expansions (consecutively removing the
parenthesis) by using O(n"~!) arithmetic operations. Similarly, since the expansions of L
and R contain O(n""1) monomials, the third step of the algorithm requires a polynomial
in n number of arithmetic operations provided r is fixed.

Now we are going to prove that the above algorithm indeed computes the permanent
of A. Let us define polynomials P, Q € P, as follows

P(z) = Hzaij-xi, Qlz) =21y
1=11=1
for 2 = (21, ..,2,) € IR™ Then by (3.1) and (2.1)
per A = <P, Q>

Now we observe that the G(L) = P in the ring of polynomials P,. Applying Theorem
2.4 we get

per A = <G(L),Q> = <L, G*(Q)>
Let us denote R = G*(Q). Then R is the product of linear forms
R(z)=[]D gis =5
i=1 j=1

Since L is a polynomial in the first r variables z1,...,2, only we get
per A = <L,R> = <L,R>.

Now by the definition (2.1) we conclude that the algorithm indeed computes the value of
the permanent of A. O

4. Hamiltonian Permanent

In this section we consider an analogue of permanent which we call “Hamiltonian
permanent”. We recall that by H, we denote the set of all Hamiltonian cycles (i.e.,
permutations which consist of a single cycle) in the symmetric group S,. For an n x n
matrix A we define its Hamiltonian permanent by the formula

(4.1) hamp A = Z ﬁai,g(i)'

gEH, 1=1

7

If A 1s the adjacency matrix of a directed graph then hamp A is the number of Hamiltonian
circuits in the graph. Therefore to compute the Hamiltonian permanent of a given matrix is
a #P-hard problem. However, we show that one can compute the Hamiltonian permanent
in strongly polynomial time if the rank of the matrix is fixed. First, we represent the
Hamiltonian permanent as a certain inner product in the ring of polynomials P,,.

(4.2) Lemma. Forz = (zy,...,z,) € IR" let us define a diagonal n X n matrix D(z) =
diag {z1,...,2,}. For an n X n matrix A let us put

P(z1,...,2,) = Tr (D(z)4)",

where Tr denotes the usual trace of an n X n square matrix. So P € P, is a homogeneous
polynomial of degree n in n variables x1,...,z,. Let us denote Q(z) = z1---xn, € Php.

Then)
hamp A = — - <P,Q>.
n

Proof. Let us denote by T,(z) the s-th diagonal element of the matrix T(z) = (D(z)A)".

Then
n
(4.2.1) Ts(w) :anij -a,‘j}iHl,
1 j=1
where the sum is taken over all sequences I = (1 < ¢1,...,%, < n), where ¢y = s and we

put i,41 = 5. Let us denote by ¢, ;1 € Py, the I-th summand of (4.2.1). It is clear now that

T

(tor Q> _ H a;; ;4> if all the numbers 4y,. .., are pairwise distinct;
s, 5 ol
0, otherwise.
Hence there is a bijection between the set of all strings I = (¢1,...,t,) such that <ts,I, Q> £

0 and the set of all Hamiltonian permutations ¢ € S, which maps a sequence I to the
Hamiltonian permutation ¢ such that g(¢;) = ;41 where ¢y = 1,41 = s. Therefore, for all
s=1,...,n we have that

<TS, Q> = hamp A.
Since P =Ty + ...+ T, the proof follows. L]

Now we describe an algorithm which computes the Hamiltonian permanent of a given
matrix.

(4.3) Computing the Hamiltonian permanent of a generic matrix.
Input: an n X n matrix A,
Output: the number hamp A.
Algorithm:

1. Put hamp A := 0;
2. Consecutively generate all the subsets w C {1,...,n}, for every subset w define the
n x n matrix A(w) = (a;; (w)) by the formula:

ot = {2 i

0, otherwise,

raise the matrix A(w) to the n-th power A(w)™ and put

hamp A := hamp A + (—1)""| -Tr A(w)™;

3. Finally put hamp A := (—_—i-hamp A.
n

(4.4) Theorem. For any given n € IN and for any given n X n matrix A the above
algorithm computes the Hamiltonian permanent of A using O(n*-2") arithmetic operations
and O(n*) space. If A is a rational matrix, then the size of all the numbers involved in the
algorithm is bounded by a polynomial in the input size.

Proof. First we estimate the complexity of the algorithm. We need to enumerate 2" sub-
sets w. For any w C {1,...,n} the power A(w)" can be computed using O(n*) arithmetic
operations (in fact, we can achieve O(n® -log n) by repeated squaring and using fast matrix
multiplication we can proceed even faster).

Now we have to prove that the algorithm indeed computes the Hamiltonian permanent
of the matrix A. This immediately follows by Lemma 4.2 and Lemma 2.5. U

Let us show that the Hamiltonian permanent of a matrix can be computed in poly-
nomial time provided the rank of the matrix is fixed.

(4.5) Computing the Hamiltonian permanent of a matrix when the rank is
fixed.

Input: an n X n matrix A such that rank A4 < r.

Output: the number hamp A.

Algorithm:

Without loss of generality we assume that n > r? (otherwise we compute hamp A
using the definition (4.1) directly).

1. Compute an n X n non-degenerate matrix U such that the last n — r columns of
the matrix AU are zeros. Compute the inverse matrix U~!;

2. For the variables zi,...,z, define the n x n diagonal matrix D(z) = diag
{1,...,2,}. Then compute the n X n matrix S(z) whose entries are linear forms in
r = (x1,...,z,) by the formula

S(z) = U™ D(2)AU.

Thus the (4,7)-th entry of S(z) is written as (s;;,z) where s;; € IR™ is a vector and we
compute these vectors s;;;

3. Put m = r* and construct a bijection ¢ which maps the set of pairs {(i,5): 1<
i,7 <r} onto the set {1,...,m} and the inverse bijection ;

4. Define an r X r matrix F(z) whose (¢, j)-th entry is the variable z4(; ;. Raise the
matrix F(z) to the n-th power and define a polynomial L of degree n in m = r? variables
T1,..., %, by the formula L(z) = Tr F(z)". Compute the expansion of L(z) into the sum

of monomaials
L(z) = Z Ao - 2%

in the variables zq, ..., 2y;

5. Construct an n x n matrix G = (¢;;) : 1 < ¢,7 < n in the following way: for
J =1,...,m the j-th column of G is the vector s, ;) whereas g;; = 0 for j > m. Define
the polynomial R of degree n in m = r? variables z1,...,2,, by the formula R(z) =

T m

H E gi; - t; and compute its expansion
=1 j3=1

R(z) = Epa -z

«

into the sum of monomials in z1, ..., z.4,;

6. Compute the desired value of the Hamiltonian permanent by the formula:

1
hampA:g- Z arl- - ap! - Aa - pa-

az(ala"'aam)

(4.6) Theorem. Let us fix r € IN. Then for any given n € IN and for any given n X n
matrix A such that rank A < r the above algorithm computes the Hamiltonian permanent
of A using a number of arithmetic operations which is bounded by a polynomial in n (the
degree of this polynomial is linear in r%). If A is a rational matrix then the size of all the

numbers involved in the algorithm is bounded by a polynomial in the input size.

Proof. First, we estimate the complexity of the algorithm. Steps 1 and 2 as problems
of linear algebra require O(n?) arithmetic operations. Since r is fixed Step 3 requires a
constant number of operations. To perform Step 4 we can consecutively raise the matrix
F(z) to the n-th power and then sum up its diagonal polynomials. Since the number r
is fixed, the expansion of L contains O(n”) terms and it can be computed using O(n™")
operations. Similarly, the expansion of R (Step 5) contains O(nrz) terms and it can be
computed in O(nrz) time which is polynomially bounded in n when r is fixed. Finally, the
Step 6 can be made in O(nrz) time.

Now we have to prove that the algorithm indeed computes the Hamiltonian permanent.
Since

Tr (D(2)A)" = Tr (UT'D(2)AU)"

10

by Lemma 4.2 we get

hamp A = % : <TI‘ S(x)" ,Q >a

where Q = 21 - - - zn,. Now we observe that the last n — r columns of S(z) = U™ D(z)AU
are zero vectors. Therefore Tr S(z)™ = Tr C(z)", where C(z) is the left upper corner
r x r submatrix of S(z). The operator G maps the polynomial L(z) =Tr F(z)" to the
polynomial Tr C(z)™ in the ring of polynomials P;. Therefore, by Theorem 2.4 we have

hamp A = % . <Tr C(z)" | Q> - -71; (L, G*(Q)).

From now on we follow the proof of Theorem 3.3. Let us denote R = G*(Q) € P,,. Then
R is the product of linear forms

R(e) = [ID_ gis - @i

i=1 j=1

2

Since L is a polynomial in the first m = r? variables z1,...,z, only we deduce that

1 . 1
hamp A = — (L,R) = — (L,R).

Formula (2.1) implies that the algorithm indeed computes the value of the Hamiltonian
permanent of A. O

5. Counting Hamiltonian Circuits

In this section we prove Theorem 1.1. Without loss of generality we assume that the
given graph does not contain loops or multiple directed edges. Therefore, we assume that
a graph T with n vertices {1,...,n} is given by its adjacency matrix A:

A = { 1 if z_j is a directed edge in I,
0 otherwise.

(5.1) Proof of Theorem 1.1. First we show how to compute the number of Hamiltonian

circuits in the graph I'. If A is the adjacency matrix of I' then hamp A is equal to the

number of Hamiltonian circuits in I'. To compute the Hamiltonian permanent we use

Algorithm 4.3.

Now we show how to construct a Hamiltonian circuit in I' provided such a circuit
exists. We use the “divide and conquer” method. First, we test whether the graph I' has
a Hamiltonian circuit. Then we consecutively try each edge e of I'. We check whether the
graph obtained from T' by deleting the edge e contains a Hamiltonian circuit. If it does, we
modify I' by removing e. Otherwise we conclude that a Hamiltonian circuit we are looking
for must contain e. In the both cases we proceed trying the next edge. Since the number
of edges does not exceed n? we get the desired complexity of the algorithm. B

11

6. Combinatorial Rank

Now we turn to the Traveling Salesman Problem. We consider a complete directed
weighted graph I' with n vertices and an n X n matrix W of non-negative weights w;;. We
want to compute the largest weight of a Hamiltonian circuit in I', that is the number

c(W) = max{z Wi gy 1 g € Hn}
=1

(see (1.3)). In particular, we are looking for a condition on the matrix of weights W which
can ensure polynomial solvability of the corresponding problem. Algorithm 4.5 computes
the Hamiltonian permanent of a matrix in polynomial time provided the matrix has a
fixed rank. Let us try to find an appropriate version of the “fixed rank” for the Traveling
Salesman Problem. We observe that if we formally replace “Y.” by “max” and “IT” by
“>.7 in the definition (4.1) of the Hamiltonian permanent then we come to the above
formula for the largest weight of a Hamiltonian circuit. If we replace “>.” by “max” and
“7 by “47 in a definition of the rank, we come to the following notion.

(6.1) Definitions. Let W = (w;;) be an n xn real matrix. We say that the combinatorial

rank of W does not exceed r if there exist r real n-vectors h* = (h{,...,h%) and r real
n-vectors v* = (v7,...,v3): s=1,...,r such that
(6.1.1) wi; = max{h] t+vj, s=1,...,r}

for all 1 <:,j < n. In this case we write
comr W <r.
We say that the representation (6.1.1) is well-centered if
max{h] + v}, s =1,...,r} = max{[h] +vj|, s=1,...,r}

forall 1 <u,5 <n.

Like the usual rank, the combinatorial rank of an n x n real matrix does not exceed
n. However, it seems to be a difficult problem to compute the smallest r which bounds the
combinatorial rank of a matrix. Therefore, in what follows we assume that the matrix W
of weights 1s already presented in the form (6.1.1). In Section 8 we describe some natural
examples of matrices having small combinatorial rank for which the well-centered represen-
tation (6.1.1) can be easily constructed. The property of “well-centeredness” is essentially
used in the approximation algorithm that we present later in this section. Although it is
always possible to make the representation (6.1.1) well-centered by adding a suitable large

constant to every weight w;;, one may loose the approximability this way.

12

Our main goal is to prove that for any r € IN there exists a polynomial time algorithm
which for any n x n matrix W = (w;;) of weights such that comr W < r and the matrix 1s
given by its well-centered representation and for any given € > 0 computes a Hamiltonian
circuit whose weight approximates, with relative error less than e, the maximal weight
(1.3) of a Hamiltonian circuit in time which is polynomial in n and e™!. First we compute

(approximately) the maximum weight ¢(W) (this section) and then compute a suitable
circuit (next section).

(6.2) Lemma. Suppose that W = (w;;) is a matrix of non-negative weights given by
its well-centered representation (6.1.1). For a real parameter t we define an n X n matrix
A(t) = (ay;(t)) by the formulas:

r

a;;(t) = Zexp{t “hi}-exp{t-vj}

s=1
for 1 <i,j <n. For a given € > 0 choose a positive even integer m such that

log(n — 1) +n-logr
log(1 + €) ’

m >

and put

3

1 dm
m — t
¢ (r"(n —1)1 g P Al

)

Then ¢, approximates the largest weight ¢(W') of a Hamiltonian circuit with relative error
less than €, that is

(1+€) -cm>ec(W)>cm.
Proof. Let {1,...,r}" be theset of all n-tuples s = (s1,..., s,) of numbers s; € {1,...,r}.
For a Hamiltonian permutation ¢ € H, and for an n-tuple s € {1,...,r}" let us denote
by o(g,s) the sum

n

o(g,8) = Y (B +v3,),

1=1

where A'....,h" and v!,...,v" are the vectors from Definition 6.1. Then the Hamiltonian
permanent of the matrix A(t) can be written as

hamp A(t Z Z exp{t -o(yg, s)}

9€EH, se{1,..
Therefore
(6.2.1) (cm)™ = ' Z 2 (a(g,s))m.
g€EH, se{1,..

13

Now we use the following inequality which holds for any set of real numbers 01y...,0N
and any positive even integer m:

N 1/m ' 1 N 1/m
(;a]m) > max{|o;| :]:1,...,N}Z(WZJ?) -

Since the two summations in (6.2.1) contain N = r®(n — 1)! summands and since our
choice of m implies N1/™ <1 4 ¢ we get

(6.2.2 1+¢€) ¢ > max o(g,s8)| 2 cm-
) () geHn,se{l,.--,r}"| (9,91 2

For any ¢ € H, we have

n
: Si 4 .8 |
se{llr,lé’_),(r}n o(g,8) < se{rln,'.z.l,},(r}n lo(g,8)| < 31,...,513%{1,...;} ; [hi* + vg(l’)' -
n
Z max{|h] +v;;|:s=1,...,r} (we use well-centeredness) =
i=1

L]

n
h; Sayis=1,... = .
iz:; max{ 1 + Ug(z) S) 7T} se{rlr,la),cr}" U(ga S)

Therefore, for every g € H,, we have

max |o(g,s)| = max o(g,s)= max{h; + vy :s=1,...,r} = Wi o(i)-
sE{],‘.‘,r}"‘ (g)l se{l,...,r}n (g) Z { 9(4) } ; ,9(%)

=1

Hence from (6.2.2) we conclude
e > E L >
(14€)-cm > grg}i{}i 2 Wi g(i) = Cm

and the proof follows. [

(6.3) Computing the largest weight of a Hamiltonian circuit.

Input:

1. An n x n matrix of weights W = (w;;) such that the combinatorial rank of W does
not exceed r and the matrix W is given by its well-centered representation (6.1.1).

2. Ane > 0.

Output: A number ¢ approximating the largest weight ¢(W) of a Hamiltonian circuit
with relative error less than e;

14

Algorithm: Let us choose a positive even integer m wich satisfies the inequality of
Lemma 6.2. Without loss of generality we may assume that € < 1/2 and choose m to be
the smallest even integer bigger than 4¢~1n?. For a variable t let us define an n X n matrix

~

At) = (Zu(ﬂ) as follows

~ . t-hi)™ £. %)™
(Lij(t):Z(l‘Ft'hf—}-...—*—%—).(1+t.vi+.”+(m]!))

s=1

(we have replaced the “exp” in the definition of A(t) by the first m terms of its Taylor
expansion).

Since A(t) is the sum of r matrices, each of those being the product of a row and a

column, we have that rank A(t) < r for all ¢. Furthermore, the Hamiltonian permanent of

~

A(?) is a polynomial in t of degree at most 2mn:

2mn

hamp Z(t) = Z ay -tk
k=0

Using Algorithm 4.5 we compute the values of hamp A(t) for ¢ = 0,...,2mn and then
compute the coeflicent «,, from the arising system of linear equations.

Finally we compute

|

m!

d:——- m
r*(n — 1) @

and put
(6.3.1) c=dm.

If we need to perform arithmetic operations over the rationals, we can choose m twice as
large and then take the m-th root with error less than €/2.

(6.4) Theorem. Let us fix r € IN. Then for any n € IN, for any n X n matrix W
of non-negative weights such that the combinatorial rank of W does not exceed r and W
is given by its well-centered representation (6.1.1) and for any positive € > 0 the above
algorithm computes the largest weight ¢(W') of a Hamiltonian circuit with relative error
less than e. The algorithm uses a number of arithmetic operations which is polynomial in
n and ¢! and takes a root once. If the input consists of rational numbers then all the

computations can be performed over the rationals in time which is polynomial in the input
size and e 1.

Proof. By Theorem 4.6 and our choice of m we conclude that the algorithm computes

the values of hamp A(t) in time which is polynomial in n and ¢~!. Furthermore, the size

of the system of linear equations defining ., is polynomial in n and e~! and thus the

15

computation of a, can be done in polynomial time. Finally, the polynomial estimate of
the complexity of the algorithm follows by the well-known fact that a root of a rational
number with a given error can be computed in polynomial time. We observe that

m m
——hamp A(t —h At
dgm P (*) =0 dgm 0P (*) t=0
and by Lemma 6.2 we conclude that ¢ approximates the largest weight of a Hamiltonian
circuit up to the desired relative error. [

In the next section we will need a version of Algorithm 6.3 which does not use the operation
of taking a root from a non-negative number.

(6.5) Version of Algorithm 6.3. We stop before the line (6.3.1) and output a pair of
numbers (d, m), such that dw = cis the approximate largest weight ¢(W) of a Hamiltonian
circuit and /n 1s a natural number such that m < 4¢=1n% + 2.

7. Constructing a Hamiltonian Circuit

Now we cousider how to construct a particular Hamiltonian circuit whose weight
approximates the largest weight of a Hamiltonian circuit with relative error less than e.
Let I' be a directed weighted graph with n vertices {1,...,n} and the matrix W = (wi;)
of weights. We will use a version of the “divide and conquer” algorithm, adding one edge
to the circuit at every step. Thus at every step the circuit ¢ will be represented by a set
of vertex disjoint directed paths Il = {my,..., 7} which cover the set {1,...,n}. So every
vertex ¢ belongs to exactly one path 7; from the collection II. We allow paths containing
one vertex and no edges. We start with n paths, 7; = {i}, i = 1,...,n and end up with
one Hamiltonian path 7. At every iteration of the algorithm we merge a pair of these
paths into one path.

(7.1) Definitions and notation. Let 7 = {i1 = 13 = ... = 4.} be a directed paths
with m distinet vertices {iy,...,i} C {1,...,n}. We call vertex i1 the tail of 7 (denoted
tail(7)) and vertex iy, the head of 7 (denoted head(r)). For a path 7 containing one vertex
we let tail(7m) =head(r).

For a directed path m we define the weight of m (denoted by wr) as the sum of the

edges of the path. In particular, we interpret w;; as the weight of the directed path 7 = Z]
If 7 consists of one vertex we let w, = 0. Let II = {m1,...,m} be a collection of vertex
disjoint directed paths which cover the set {1,...,n}. We define the weight of II (denoted
by wr1) as the sum of the weights of the paths m; : wy = Wr, + ..o+ Wy,

For a collection II = {ny,...,m} of vertex disjoint paths we denote by c¢(W,1II) the
maximal weight of a Hamiltonian circuit which contains all the paths 71, ..., 7,. We recall
that by ¢(W) we denote the largest weight of a Hamiltonian circuit.

The following simple result plays the crucial role in our considerations.

16

(7.2) Lemma. Let II = {m,..., 7} be a collection of vertex disjoint paths which cover
the set {1,...,n}. Let us define a t x t matrix W = (w;;) by the formula

W;; = Wap, Wwhere a= head(m;) and b = taﬂ(ﬂ'j)'

Then

(7.2.1) c(W,II) = wy + (W),
If the matrix W is given by its well-centered representation
wij = max{h; +v]: s=1,...,r}

for some n-dimensional vectors h',... h7,v, ... v" then the matrix W can be defined by
a well-centered representation

(7.2.2) w—ij:max{h_quh_;: s=1,...,1},
where the t-dimensional vectors h*,v® : s =1,...,r are defined as follows
hY = he, _j = vy, where a = head(w;) and b = tail(nw;).

Proof. Let us denote by H,(II) the set of all Hamiltonian circuits which contain every
directed paths m; from the collection II. We establish a bijection ¢ : H,(Il) — H,.
Let ¢ € H,(II) be a Hamiltonian circuit containing the paths my,...,m;. We define the
Hamiltonian permutation v € H; of the set {1,...,t} as follows. For ¢ € {1,...,t} we
let v(i) = j, where 7; € II is the unique path such that the edge which joins head(m;)
and tail(7;) is the edge of the Hamiltonian circuit g. It is immediate that ¢ is indeed a
bijection and that '

n t
Z Wi, g(i) = wir + Z Wi, y(3)-
1=1 1=1
Therefore (7.2.1) is proven. The equations (7.2.2) are obvious. N

(7.3) Computing a Hamiltonian circuit of the maximal weight.

Input:

1. An r x n matrix of weights W = (w;;) such that the combinatorial rank of W does
not exceed r and the matrix W is given by its well-centered representation (6.1.1).

2. Ane > 0.

Output:

n
A Hamiltonian circuit ¢ € H, whose weight ¢ = Z w; 4(;) approximates the largest
i=1
weight ¢(W) of a Hamiltonian circuit with relative error less than e, that is,

(1+eec>c(W)>ec.

17

Algorithm:
1. Without loss of generality we may assume that n > 2 and that ¢ < 1. We compute

1 = €/2n and introduce an integer variable t. Let us put t = n and define a collection
Il = {m,..., 7.} of n directed paths where every path m; = {1} consists of a single vertex
{1}. After the (n — t)-th iteration of the algorithm the Hamiltonian circuit is represented
by a collection Il = {my,..., 7} of ¢ vertex disjoint paths which cover the set of vertices

2. Ift =1 we go to Step 3. If t > 2 then for every k = 1,...,¢t — 1 we do the following

procedure:

Definie a new path 7 by merging the paths 7x and 7;. To do that join the vertices
head(m;) and tail(7;) by the edge. Let IIx = {1, ..., Tp_1, Tk, Tks1,Te—1 } be a new collec-
tion of paths. Compute the (t — 1) X (¢ — 1) matrix W and its well-centered representation
for the collection Il as in Lemma 7.2 . Apply Version 6.5 of Algorithm 6.3 with the matrix
W and relative error €. Let (dk,my) be the output of (6.5). Compute wyy, and define

Cr = wi, + (dk)m—k

Now we choose & such that ¢, = max{cy : k¥ = 0,...,t —1}. We find & without
computing ¢ (so to avoid taking a root) in the following way. For any pair (4,5) we can
check whether the system of real inequalities

(7.3.1) wi, + Y > wny +y5, vt =diyy; o =dj,y > 0,y; >0

m two real variables y;,y; is feasible using an algorithm from the existential theory of the
reals (see, for example, [9]). Hence we check the inequality ¢; > ¢; without computing
these numbers. Thus we find x and redefine the collection II := II,. Redefine ¢t := ¢ — 1
and go to Step 2.

3. The circuit g is the unique Hamiltonian circuit containing the Hamiltonian path
1.

(7.4) Theorem. Let us fix r € IN. Then for any n € IN, for any n X n matrix W of
non-negative weights such that the combinatorial rank of W does not exceed r and W is
given by its well-centered representation (6.1.1) and for any € > 0 the above algorithm
computes a Hamiltonian circuit whose weight approximates, with relative error less than
e, the largest weight ¢(W') of a Hamiltonian circuit. The algorithm uses a number of
arithmetic operations which is polynomial in n and e~ !. If the input consists of rational
numbers then all the computations can be performed over the rationals in time which is
polynomial in the input size and e~ !.

Proof. First we prove that the algorithm is correct. We prove by induction on n — ¢
that after the (n — t)-th iteration of Step 2 the algorithm produces a collection of ¢ vertex
disjoint paths IT = {my,..., 7} such that

(7.4.1) (1+e)" " o(W,II) > (W) > (W, 1I).

18

This is obviously the case when t = n. Suppose that the inequality is satisfied after the
(n—t)-th iteration. On the (n—t+1)-st iteration, the algorithm constructs ¢ —1 collections
y,...,I;_; of paths such that any Hamiltonian circuit ¢ which contains all paths from
[T should also contain all paths jfrom II; for exactly one k € {1,...,t — 1}. Therefore

(7.4.2) (W, 1) = max{c(W,IIx): k=1,...,t—1}.

By Lemma 7.2 and Theorem 6.4 we conclude that c; approximates the value of ¢(W,II})
with relative error less than e;, that is, ¢(W,IIx) < (1 + €1)cg. Therefore, from (7.4.2) we
deduce that

(W, II) < (14 &)e(W,I1,),

and (7.4.1) follows for all ¢. Now we plug t = 1 into (7.4.1) and use the inequality
(1+€)" <1+ € to see that the Hamiltonian path 7; that we constructed satisfies the
inequality

(14 €)e(W,m1) > (W) > (W, m).

In other words, the weight of the unique Hamiltonian circuit which contains the Hamilto-
nian path 7; approximates the largest weight of a Hamiltonian circuit with relative error
less than e. Hence the algorithm is correct.

The algorithm uses n — 1 application of Algorithm 6.3 (Version 6.5), which in turn,
uses a polynomial in n and e™! number of arithmetic operations (Theorem 6.4). The
complexity of feasibility testing for the system (7.3.1) is polynomial in m;, m; as follows by
the results of [9]. Since the numbers m; and m; do not exceed 47 'n? + 2 the complexity

of this procedure is polynomial in n and €~!. Therefore Algorithm 7.3 has the desired
complexity. 0

8. Longest Hamiltonian Circuit in Euclidean Space

In this section we consider certain natural examples of matrices having a small com-
binatorial rank. These matrices arise as the matrices of pairwise distances between given
points in various metrics in a Euclidean space. The first such example (L°° norm in IR%)
was suggested by S. Onn. Inspired by this example, the author considered L! norm in the
Euclidean space and then A. Gerards suggested a far reaching generalization.

Let || || be a norm in the Euclidean space IR?. Assume that we have a set Py,..., P,
of points in IR? and let us consider the n x n matrix W = (w;;) of pairwise distances
between these points, so

w;; = || P; — Pj|.

Let us consider the unit ball
B ={zecR":|z] <1}.

If B is a polytope then the norm || - || is called polyhedral norm. The following result was
suggested by A. Gerards.

19

(8.1) Lemma. Let || -| be a polyhedral norm in the Euclidean space IRY. Assume
that W = (w;;) is the matrix of pairwise distances between given points Pi, ..., P, € IR¢
defined by the formula

wij = ||Pi — Pj|.

Then the combinatorial rank of the matrix W does not exceed the number of facets of the
polytope B.

Proof. We denote by (-,) the standard inner product in IR? and assume that the ball B
1s given by the system of linear inequalities:

B = {:I:E]Rd:(bs,@ <1, 3:1,...,7’},
for some vectors b',...,b" in IRY. We can choose the vectors b* ranging over all normal
vectors to the facets of B. Since B is centrally symmetric, the set of normals {b, : s =
1,...,7} consists of r/2 pairs of antipodal vectors b, —b. For s = 1,...,r let us define the
vectors h* = (hy, ..., h}) by the formula h = (P;,5°) and the vectors v* = (v,...,v2) by
the formula v = —(P;, b°).

Then we have

(8.1.1) |P; — Pj|l =min{A\>0: P, —P; € A\ B} =

min{AEO:(P,-—Pj,bs) S)\forszl,...,r} :max{hf+v}?:s:1,...,r}.

Since B is centrally symmetric we have that
max{hf—%v‘; D8 = 1,...,r} :max{|hf-|-v;| 15 = 1,...,r}.

Thus comr W <r, and, moreover, the representation (8.1.1) is well-centered. [

Thus, if || -|| is the L° norm then for any n points Pi, ..., P, in IR? the combinatorial rank
of the matrix W = (wy;), where w;; = ||P; — Pj|, does not exceed 2-d and for the L' norm
the combinatorial rank of this matrix does not exceed 2¢. The main observation is that
we can bound the combinatorial rank of the matrix of pairwise distances independently of
the number of points.

(8.2) Computing the largest length of a Hamiltonian circuit in a polyhedral
norm.

Let us fix a Euclidean space IR? and a polyhedral norm || - || there. In other words,
we fix a convex centrally symmetric polytope B € IR? containing the origin as its interior
point. So

B:{:CEIRd:(bs,m)gl,s:l,...,r}

for some vectors b', ..., b". If the vectors b',...,b" are rational we say that the norm -l

18 rational.

20

Input:
1. Points Py, ..., P, € IRY given by their coordinates;
2. A number € > 0;

Output: A Hamiltonian circuit whose length approximates, with relative error less

than e, the largest length (in the norm || - ||) of a Hamiltonian circuit with the vertices
Py....,P,.

Algorithm:

1. Compute r vectors h* = (hj,...,h$) and r vectors v° = (v7,...,v;) by the
formulas: h = (P;,b°%) and v{ = —(P;,b%) forfor s =1,...,rand:=1,...,n.

2. Define an n xn matrix W = (w;;) by the formula w;; = max{hf—{—v;’ cs=1,... ,r}

and apply Algorithm 7.3.

(8.3) Theorem. Let us fix a polyhedral norm || - || in the Euclidean space IR¢. Then
for any given n € IN, for any n points Py,..., P, in IR? given by their coordinates, and
for any given € > 0 the above algorithm computes a Hamiltonian circuit whose length
approximates, with relative error less than €, the largest length of a Hamiltonian circuit
with the vertices Py, ..., P,. The algorithm uses a number of arithmetic operations which
is polynomial in n and e™'. If || || is a rational norm and the points Py, ..., P, are rational
then all the computations can be performed over the rationals in time which is polynomial
in the input size and e~ !.

Proof. Follows by Theorem 7.4 and Lemma 8.1 (see (8.1.1) in particular). i
Let || - || be an arbitrary norm in IR?. Then we can approximate the unit ball B by
a centrally symmetric convex polytope and thus approximate the norm || - || by a certain

polyhedral norm. To prove Theorem 1.2 we must prove that there ezists a polynomial time
algorithm that computes an (approximate) longest Hamiltonian circuit. We will discuss
how to construct a particular algorithm after the proof of Theorem 1.2.

(8.4) Proof of Theorem 1.2. Without loss of generality we assume that ¢ 1s sufficiently
small, say § < 1/3. Let B = {z € IR? : ||z|| < 1} be the unit ball in the norm || - ||. There
exists a rational centrally symmetric polytope By such that

(1-6/3)-BC By C(1+6/3)B.
Then the Minkowski functional
|z||; = min{\ > 0:2z € X- By}
is a polyhedral norm in IR? such that
(1=6/3) -zl < llell < (1 +6/3) - [lz]lx
for all z € R

21

The algorithm, whose existence is asserted, is the version of Algorithm 8.2 that uses
the polyhedral norm || - ||; defined by the ball B, and ¢ = 6/3. The length of the computed
circuit approximates, with error less than 6, the largest length of a Hamiltonian circuit.

Since the norm || - || and the error ¢ are fixed, we choose the norm | - |l1 independently of
the choice of the points P,..., P,. l

To construct a specific algorithm whose existence is claimed by Theorem 1.2 we have
to construct a rational centrally symmetric polytope B; approximating the unit ball B.
A particular construction depends on how the norm || - || is given. For example, for the
usual Euclidean norm for By we can take the convex hull of a sufficiently dense centrally
symmetric e-net on the unit sphere. A similar construction works for any L,-norm. One
can suggest a method for a norm given by an oracle. This oracle computes the norm
of any given point and it should be well guaranteed in the sense of [4]. That is, the
points with small cordinates shouldn’t have too large norm whereas the points with a
large coordinate shouldn’t have too small norm. Then one can construct a linear operator
L which transforms the ball B into a well-rounded body (see [4]), take the convex hull of
a sufficiently dense e-net and then apply the inverse operator L=!. We don’t discuss this
issue in detail since it is a problem of computational convex geometry. As we mentioned
earlier, the complexity of this construction does not affect the complexity of the algorithm
from Theorem 1.2. However, the complexity the polyhedron B; itself (the number of its
facets and the size of integers in defining linear inequalities) does affect the computational
complexity of the algorithm from Theorem 1.2.

9. Remarks

Similar methods can be developed for “Euclidean relaxations” of other NP-hard op-
timization problems. Let us consider, for example, the weighted 3-Dimensional Match-
ing Problem. In this problem we are given an n X n X n cubic tensor W of weights
W = (wix): 1 <15,k < n and we are looking for a partition of the set {1,...,n} into
n/3 pairwise disjoint 3-tuples so that the total weight of this partition is the largest possi-
ble (see [3]). One can construct a polynomial time approximation algorithm in the special
case of this problem where the weight w;;x is the perimeter of the triangle {4, j, k} for given
points {1,...,n} in a space IR* equipped with some fixed norm || - ||. The main challenge
in this class of problems is to construct a polynomial time approximation algorithm for
the Minimal Length Traveling Salesman Problem.

A simple modification of our methods allows one to find new special cases where the
Minimal Weight Traveling Salesman Problem admits a polynomial time approximation
algorithm. This is the case when the matrix W = (w;;) is given by a representation of the
type

. E s | .
w,'j:mm{hi—i—vj. 3—1,...,7’}

22

for

all 7,7 and a fixed number r of real n-dimensional vectors h®,v° (one also needs an

analogue of well-centeredness, cf. Definition 6.1). However, the author doesn’t know any
natural class of matrices having this property. Besides, it may be not easy to check whether
the matrix admits such a representation.

Acknowledgements

Lemma 8.1 was proved in collaboration with Shmuel Onn and Bert Gerards. I am

grateful for their valuable suggestions. I am indebted to anonymous referees for their
remarks and for pointing out the papers [2] and [5].

References

Ct

. A Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms,
Reading, Mass: Addison-Wesley, 1974.

M.L. Fisher. G.L. Nemhauser and L.A. Wolsey, An analysis of approximations for
finding a maximum weight hamiltonian circuit, Operations Research, 25(1979), N 4,
799-809.

M. Garey and D. Johnson, Computers and Intractability: a Guide to the Theory of
NP-completeness, Freeman, San Francisco, 1979.

M. Grotschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Op-
timization, Springer-Verlag, Berlin, 1988.

. Yu. Gurevich, S. Shelah, Expected computation time for Hamiltonian Path Problem,
SIAM J. Comput., 16(1987), N 3, 486-502.

E. Lawler, et al., eds. The Traveling Salesman Problem: a guided tour of combinatorial
optimization, Chichester, New York: Wiley, 1985.

H. Mine, Permanents, Reading, Mass.: Addison-Wesley, 1978.

C. H. Papadimitriou and M. Yannakakis, The traveling salesman problem with dis-
tances one and two, Math. of Oper. Res., 18(1993), N 1, 1-11.

J. Renegar, On the computational complexity and geometry of the first order theory
of the reals. Part 1. Introduction. Preliminaries. The geometry of semi-algebraic
sets. The decision problem for the existential theory of the reals, Journal of Symbolic
Computation 13, N 3 (1992), 255-299.

A.L. Barvinok

Departinent of Mathematics
University of Michigan

Ann Arbor, MI 48109-1003 USA

e-mall: barvinok@math.lsa.umich.edu

23

