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1 Introduction

Let G be a connected finite graph without loops or multiple edges, and let
Xc(n) be the number of proper vertex colorings of G using colors from a set
of cardinality n. xc(n) is called the chromatic polynomial of G. Chromatic
polynomials of graphs, and more generally of matroids, have been studied
via the broken circuit complex ((Whi32], [Wil76], [Byr77]), which is a simpli-
cial complex whosé maximal non- simplices correspond to circuits of G with
their last edges deleted. One can think of the broken circuit complex as the
Stanley-Reisner complex of a square-free monomial ideal, the broken circuit
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ideal. The Hilbert function of the quotient ring by this ideal easily determines
xc(n).

The broken circuit ideal varies with the choice of an order on the edges of
G, so when one attempts to study colorings of graphs via broken circuits, the
, intrinsic structure of G is obscured by artifacts of the order used. We exhibit
j a homogeneous ideal in characteristic 2 which is independent of this choice of
" order, whose initial ideals with respect to the computation of Grébner bases
are the broken circuit ideals for each possible order. \Thls ideal has the same
Hilbert function as the broken circuit ideals, so its free resomdetermlne
Xc(n) It defines a projective algebraic circuit variety whose structure we
do not understand, but which must be intricately related to the chromatic
properties of G. This setup is reminiscent of the construction of canonical
curves from graphs studied in [BE91], and can be studied using the computer
algebra system Macaulay [BS93].

The Four-Color Theorem asserts that if G is a planar graph without
loops, then x¢(4) > 0. Equivalently, the corresponding Hilbert series for
such graphs is positive at —1/3. We cannot establish this without relying on
[AH77], [AHKT77].

I would like to thank Jonathan Lennox, Oisin McGuinness, and Peter
Woit for their superb implementation of the MathSci databases at Columbia;
this work benefited from my being able to easily surf the math reviews. I
would also like to thank David Eisenbud, Gian-Carlo Rota, Richard Stanley,
Bernd Sturmfels, and Herb Wilf for helpful conversations. They haven’t seen
this draft yet, so any glaring omissions, oversights, or mistakes are my own.

2 Matroids

This section provides an exposition of some standard results on the con-
struction of matroids from graph coloring problems, to make this paper self-
contained for algebraists.

Let n be the order of a finite field K = F,,. Fix orientations for the edges of
the graph G| and fix a vertex of G. Pick a color from K for this vertex. Each
way of completing this choice to a proper n-coloring of G using colors from
K corresponds to an assignment of nonzero values from K to the edges of



G, giving the differences between adjacent vertices. These edge assignments
are characterized by the property that summing around any circuit of G is
zero; call such an edge assignment proper. xg(n) is n times the number of
proper edge assignments of G, which we proceed to count instead. :

Let G have e edges. Proper edge assignments correspond to points in K*
away from the coordinate hyperplanes, but contained in the circuit subspace
V' C K*® cut out by the linear equations which assert that summing around
any circuit of G is zero. We count such points by inclusion-exclusion: The
rank 7 of V is the number of edges in a spanning tree of G, which is v — 1
if G has v edges. So V consists of n" points. Each edge of G contributes a
coordinate hyperplane to be avoided, knocking out n"~! points from V. For
each pair of edges, we have knocked out the common intersection of their
coordinate hyperplanes with the circuit subspace twice, so we need to add
back in these points; there are n"~2 such points. Now, the points knocked out
by triples of edges need to be subtracted back out. There are n™~2 such points
if the three edges impose independent conditions on the circuit subspace, and
n’~? such points if the three edges instead form a circuit of G. Continuing
in a like manner for all larger sets of edges, we end up with a count of the
number of proper edge assignments of G.

Define the rank of a set of edges from G to be the number of independent
conditions they impose on the circuit subspace V. The set of all edges of G
equipped with this rank function is called the bond matroid of G.

Recall that a matroid is a set equipped with an abstract rank function on
subsets, having properties modeled after sets of vectors in vector spaces; see
[Aig79] or [Ox192]. We only consider finite matroids in this paper. Such a
matroid M can be understood in terms of a polynomial ring whose variables
represent the elements of M, and whose square-free monomials represent the
subsets of M. We will use algebraic notation in place of set notation. The
dependent subsets of M are the square-free monomials of a monomial ideal
generated by the circuits, or minimal dependent subsets, of M; this square-
free monomial ideal determines the matroid structure on M. Which ideals
arise this way? The matroid axioms assert that this is a nontrivial square-
free monomial ideal, whose minimal generators, or circuit monomials, satisfy
one interesting condition, the exchange aziom (see [Aig79], p264):

Definition 2.1 A matroid M is a set as above whose circuit monomials
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satisfies either of the equivalent conditions:

(a) If C # C" are circuit monomials, p € M, and p | ged(C,C"), then
there exists a circuit monomial D so pD | lem(C, C").

(b) If C # C" are circuit monomials, p,q € M, p | ged(C,C"), and q | C,
q £ C', then there exists a circuit monomial D so q | D and pD | lem(C,C").

The chromatic polynomial xp () of the matroid M is defined by

() = 3 (~)FO )
ucM

where the sum is over all subsets U of M, #(U) is the cardinality of U, r(U)
is the rank of U, and r is the rank of M. This agrees with the inclusion-
exclusion count above, so

Xa(n) = nxm(n)

where M is the bond matroid of G. In subsequent sections, we shall study
xm(A) for an arbitrary matroid M.

There is a second construction of a matroid useful for studying 4-colorings
of planar graphs, which we describe here, but do not use in this paper. This
matroid is constructed as follows: To establish the Four-Color Theorem, it
suffices to vertex 4-color all graphs G which arise as triangulations of the
2-sphere. View a 4-coloring of an orientable simplicial surface as a non-
collapsing simplicial map to a labeled tetrahedron. Choose orientations for
both the tetrahedron and the surface, pull the orientation of the tetrahedron
back to the surface, and compare the orientations triangle by triangle. The
4-coloring can be recovered from this comparison data alone, up to automor-
phisms of the tetrahedron.

To yield a 4-coloring, putative comparison data must satisfy both local
and global compatibility conditions. The local conditions are seen by con-
sidering links of vertices: Each cycle of triangles sharing a given common
vertex must map somehow to the three triangles in the tetrahedron sharing
the image of the common vertex, so the surplus of orientation matches over
clashes must be 0 mod 3. The global condition is homological: The compar-
ison data yields a well-defined map if it is consistent along any closed loop
of triangles; this consistency follows from the local conditions for any loop
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which bounds a surface. Thus, the local conditions suffice for determining 4-
coloring of simplicial 2-spheres. This approach can in principal be extended
to higher dimensions, but it hits a wall: There exist simplicial 3-spheres with
arbitrarily high chromatic number; see [MS71]. Nevertheless, it would be
interesting to know if any invariants of higher dimensional manifolds can be
derived from matroid structures analogous to those discussed here. For a
study of colorings of simplicial complexes, see [Fis89).

Working in F3, the finite field with 3 elements, label triangles 1 which
match orientations with the image tetrahedron, and -1 which clash orienta-
tions. Dually, we are assigning nonzero values from F; to the vertices of a
planar trivalent graph G’, so the values sum to zero around faces of G'. The
relationship between such assignments and 4-colorings of the regions of G' is
known as the Heawood-Tait theorem (see [Aig79], p. 371) and can be derived
without the above topological excursion. The corresponding matroid struc-
ture on the points of G’ varies horridly with the characteristic, but this can
be fixed for the application at hand by replacing G’ by its edge graph. The
resulting bond matroid M has a characteristic-free structure, and satisfies

xm(3)>0 & xc(4) >0

for our original triangulation G. We have decremented the ) of interest by
one, in exchange for agreeing to work with the edge graph of the dual graph
of G. On balance, this doesn’t seem to be such a profitable trade.

3 ,. Broken Circuits

There is a useful generating function technique which employs Grébner bases:
Write down a generating polynomial which is too naive for the counting
problem at hand, and then fix it by reducing by an appropriately chosen
Grobner basis. For example, if we want to compute the numerator of the
multigraded Hilbert series of a quotient by the square-free monomial ideal

I=(xM,..., x%), then
(1= xM)- (1= x%) (1)

1s too naive a guess, because when this expression is expanded out, we get
products when we want greatest common multiples. However, this effect can
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be achieved in the square-free case by reducing (1) by the Grobner basis
{23 —21,...,22 — 1, }

where x,,...,x, are the variables of the polynomial ring. This technique
was commonly used with the computer algebra system Macaulay, before the
introduction of its hilb_numer command.

In the spirit of Definition 2.1, view zi,...,x, both as the elements of a
matroid M, and as the variables of a polynomial ring S = k[zy, ..., ) over
a field k. Our naive guess for a generating polynomial is this: If each subset
of M has rank equal to its cardinality, then the expression

(I—21) (1 — ) (2)
can be converted to an expression for x3s(A) by substituting
Ty= ... =2, = A"

and multiplying by A", where 7 is the rank of M. This works because when (2)
is expanded out, it has terms representing every subset of M, appropriately
signed and with degrees equal to the cardinalities of the corresponding sub-
sets.

For an arbitrary matroid M, expression (2) can be fixed: We need to
prune each of the terms in its expansion, removing dependent elements from
each monomial until the degrees accurately reflect the ranks. This pruning
can be carried out by relations of the form x4 — xZ, where x“ is a circuit
monomial of M, and x? is the same monomial with a variable deleted.
Reducing by this binomial has the interpretation: “Whenever a subset of M
contains the circuit x*, throw out the element not in x8.” o

We need to choose a consistent set of relations, one for each circuit of
M. Such a consistent set will form a Grobner basis, and reducing by such a
Grobner basis will prune any subset of M down to an independent set with
the same span. One consistent set of choices is as follows:

Proposition 3.1 Let {x*,... x4} be the circuit monomials of a matroid
M. Fori=1,...,m, let xB be the monomial obtained from x* by deleting
its last variable. Then

{xA —xB . xAm — xBy (3)
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18 a Grobner basis with respect to any monomial order compatible with the
variable order £ > x93 > ... > 1,,.

Proof. Let x* — x5 and x% — x% be any two binomials from (3), and

define x%, x% xP so

C,

xCixA

Ci A

f=x i = xP = lem(x%, x%),

We need to show that
xC"(xAi — xB") — xC]’(xAJ' — xBj) (4)

can be reduced to zero using the relations in (3). Let a; = x%/x% and
a; = x® /xBi; we can rewrite (4) after expansion as

xP Ja; — xP /a,. (5)

If a; = a; we are done; suppose that a; < a;, so xP/a; is the lead term of (5).
Then a; is the last variable of x?, and cannot divide x4 (or else it would
also be the last variable of x4, yielding a; = a;). Thus x* divides x?/a;,
so we can reduce (5) by x* — x| yielding

—xP/a; + xP Jaa;. (6)

with lead term —x?”/a;. Now we apply the exchange axiom (b) of Defini-
tion 2.1: There exists a circuit monomial x#* divisible by a;, which divides
xP /a;. Remainder (6) is a multiple of the corresponding binomial x4 — x B+
so it reduces to zero.  m

Saying that (3) is a Grobner basis is a whole lot easier to remember than
the exchange axiom (b) of Definition 2.1. Unfortunately, these statements
aren’t equivalent. In the language of Definition 2.1, Proposition 3.1 only
checks the exchange axiom for the last element of each lem(C, C"), and lets
putative matroids which fail the exchange axiom for other p slip by.

Now we are ready to reduce the generating polynomial (2) by the Grébner
basis (3), to yield a polynomial from which we can deduce yas(\). If one is
bracing for a more complicated answer, it is quite a shock to see the result
of this reduction come up on a computer screen: All of the terms which



belong to the monomial ideal J = (xB,... xBm) simply go away, leaving
the other terms intact. J is the square-free monomial ideal corresponding in
the Stanley-Reisner sense to the broken circuit compler studied by [Whi32],
[Wil76], [Byr77] and other authors. Call the x5 broken circuit monomials;
we record the above property of J, due in slightly different language to the
cited authors:

Proposition 3.2 Let xB1,... x® be the broken circuit monomials of a
matroid M, and let J = (xP',... xBm) be the corresponding broken circuit
ideal. Then the chromatic polynomial xar(X) can be computed by substituting
Ty =...=2xy= A1 into the sum

OENCY (7

x¢ square—free

xCgJ

and multiplying by X", where #(C) is the degree of x€, and 7 is the rank of
M.

Proof. It is enough to show that (7) is the result of reducing (2) by the
Grobner basis (3). The terms x© ¢ J can never be reached by this reduction
process; we need to show that all the other terms cancel out.

It is easy to see how all multiples of a single x5 are canceled out by
reduction by x* — x%: Let a; = x /x5 as before, and pair square-free
multiples of x# which differ only by the presence or absence of a;. The terms
of these pairs have opposite signs in the expansion of (2), so after reduction,
the terms divisible by a; cancel the corresponding terms not divisible by aj;.

To continue this argument for the other binomials of (3), we need to insure
that the terms already canceled out pair up in the above sense with respect
to each subsequent binomial under consideration. It suffices to sequence the
set of binomials so the a; are considered in the order z,,. .., z,. |

From Proposition 3.2, we can see that the chromatic polynomial of M is
closely related to the Hilbert function of the quotient by J: The chromatic
polynomial is derived from an alternating sum of square-free monomials not
in J, whereas the Hilbert function is derived from the ordinary sum of all
monomials not in J. This observation yields



Proposition 3.3 Let M be a matroid of rank r with broken circuit ideal J .
If §/J has the Hilbert series

F(t) = % — fj t dim(S/1)q

d=0
then the chromatic polynomial of M is given by

-1

W) =X F(=) = xmo-nrs (). @

Proof. Various methods for computing the Hilbert series of S/J build up
F(t) by adding or subtracting terms of the form
t(l
(1 — t)”

obtained by substituting x; = ... = x,, = ¢ into the sum of all monomial
multiples of certain degree d monomials x4 € J for various d. These x4
and their eventual coeffiecients as used in F'(¢) can also be obtained from a
free resolution of 5/J, or by appying Mébius inversion to the characteristic
function of the monomial complement of J. (This is what the terms of f(t)
“mean” to an algebraist; we are likely to be much more comfortable looking
at f(t) than xar()).) ’

When J is square-free, all such x* used in constructing F(t) will also be
square-free. To instead build up xar()), we need for each x4 to substitute
Ty = ... =z, = A"l into the sum

Z (__1)#(XC) e
xC square—free
xA4|xC
and multiply by A", yielding
)\1'(__1)(1/\—(1(1 _ /\—l)n—d — /\1' (1 _ /\)—(l(l _ /\—l)n.
Substituting ¢ = —1/(X — 1) into t4/(1 — t)*, we get

—1d Y __1\n—d _
(l(i—ll) )n . ( 1) (in l) — (1 o /\)—(l()‘ ) ]‘)n — (1 _ A)_d(l . )\—l)n.




The formula for x(A) in terms of F(t) follows by linearity, and the formula,
in terms of f(t) then follows by a routine calculation. =

We can use Proposition 3.3 to define the chromatic polynomial of any
projective algebraic variety.

4 Circuit Varieties

The following assertion is supported by substantial computer evidence and
meager intuition, but has not yet been established.

Conjecture 4.1 Let M be a matroid. For each circuit x4 of M, define the
corresponding circuit form in characteristic 2 to be the sum

Z XA/.'I,',;

:I:i|XA

of all broken circuits obtainable from x?. This set of circuit forms is a
Grobner basis with respect to any monomial order, with initial ideal given by
the corresponding broken circuit ideal for that variable order. In particular,
if I is the ideal generated by these forms, then S/I has the same chromatic
polynomeal as M, in the sense of Proposition 3.3.

Apparently, no similar result holds in other characteristics, with excep-
tions such as for the bond matroid of a 2-colorable graph. The quotient S/I
can be thought of as a commutative analogue to the exterior algebras studied
in [Arn69], [0S80]. Thus, the use of characteristic 2 is not surprising; it is a
haven for constructions that want to alternate.

Define the circuit variety of a matroid M to be the variety X, c P*!
over a field of characteristic 2, cut out by the ideal I of Conjecture 4.1. We
would like to better understanding the properties of X7, and how they affect
X (A).

A noteworthy feature of the ideal I is that its minimal generating set
is substantially smaller than the full set of circuits of the matroid M. For
example, for the bond matroid of a triangulated 2-sphere, it appears that one
only needs forms corresponding to face circuits, and to circuits such that the
dual graph of each half of the sphere cut out by the circuit is 2-connected.
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Example 4.2 Let the graph G be the tetrahedron shown below:
c d

-

The circuits of the corresponding bond matroid M are abc, bde, aef,
cdf , acde, beef, and abdf. The ideal I C S = kla,b,c,d, e, f] defining the
circuit variety Xy is generated by the circuit forms corresponding to the face
circuits, so

/ = (ab+ac+bec, bd + be + de, ae + af + ef, cd + cf + df).

The minimal free resolution of I has the betti numbers given by the following
Macaulay output,

7 betti ¢
total: 1 4 5 2

—
|
N

where the rows and columns of this table are numbered starting from zero,
and the number of ith syzygies of degree d is given in row d— 1, column ¢+ 1.
The Hilbert series for S/I is therefore

=

1 — 4t + 2¢% + 3¢1 — 9¢5
(1—1)¢

s0 F'(—1/3) = 3/32. The rank of M is 3. Thus, the number of 4-colorings of
the vertices of G is given by

F(t) =

Axm(4) = 4-4° F(-1/3) = 24,

which can be checked by inspection.
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Example 4.3 Let the graph G be the triangulated 2-sphere shown below:

The ideal I C S = kfa,b,c,d, e, f, g, h,i] defining the circuit variety Xy
is generated by the circuit forms corresponding to the face circuits, and by
one additional circuit form corresponding to the circuit agh, so

I = (ab+ac+bc, ad+ae+de, ef +eh+ fh,
df +dg+ fg, cg+ ci+ gi, bh+ bi + hi, ag + ah + gh).

The minimal free resolution of I has the betti numbers given by the following
Macaulay output,

% betti c

total: 1 7 19 25 16 4
0 1 ~ - - -
1 - 4 - -
2 - - 15 16 4 -
3 - - - 9 12

which takes close to 3 megabytes of memory to compute. The Hilbert series
for S/I is therefore

1 — 7% + 4¢3 + 15t% — 165 — 5¢5 4+ 12¢7 — 4¢3
(1—1t)%

so F(—1/3) = 3/128. The rank of M is 4. Thus, the number of 4-colorings
of the vertices of G is given by

4dxm(4) = 4-4* F(=1/3) = 24,

F(t) =

which again can be checked by inspection.
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Thursday, October 28

9:00 Welcome

9:15-10:00 Tony Geramita, Hilbert functions of
points in P*

10:00-10:30  Mid-morning Break

10:30-11:15 Lorenzo Robbiano,
Computation of Hilbert functions

11:30-12:15  Mark Green, Cook's generalization of
the connectedness of the numerical
character for space curves

12:15-2:00 LUNCH v

2:00-2:45 Giuseppe Valla, The h-vector of a
Gorenstein codimension three gradede
domain

3:00-3:45 Alfio Ragusa, Hilbert functions of points
on a quadric in P?

3:454:15 Afternoon Break

A 4:15-5:00 Dave Bayer, Hilbert functions and \
/. chromatic polynomials Q
l\\olwi/ e e s S
8:30 PROBLEM SESSION

Friday, October 29

9:00-9:45

9:55-10:40

10:40-11:05

11:05-11:50

12:00-12:45

David Eisenbud, Hilbert functions of
ideals containing a regular sequence

Francesco Brenti, Unimodal h-vectors

Midmorning Break

Tony larrobino, Derivatives of homoge
neous forms and determinantal ideals of
catalecticant matrices

Luchezar Avramov, Resolutions of
modules over complete intersections

Afternoon Free: Weather permitting, some of us will go

for a hike.

All talks will be held in Room 212,
Mathematical Sciences Institute, 409 College
Avenue, Comell University

Saturday, October 30

9:15-10:00 Mark Haiman, Diagonal harmonics
and q,t-Catalan numbers

10:00-10:30  Mid-merning break

10:30-11:15  Craig Hunecke, Hilbert functions and
rational singularities

11:30-12:15  Viadimir 1. Arnold, Graded rings with
simplest Poincare series, continued f
fractions, and simple Young dirgrams

12:15-2:00 LUNCH

2:00-2:20 Ed Davis, Subcanonical curves with
gaps in the Rao module: the numerical
possibilities

2:25-2:45 Juan Miglicre, On the Cohen-Macaulay
type of the general hypersurface section

2:50-3:10 TBA

3:10-3:30 Afternoon Break

3:30-3:50 TBA

3:554:15 TBA

4:20-4:40 TBA

7:30 Dinner Rulloff's



