Computation of Hilbert Functions

Dave Bayer * Mike Stillman 1

December 20, 1990

1 Introduction

Let k be a field, and let S = k[zo,...,2z,] be a graded polynomial ring,
where each x; is homogeneous of degree one. Let I be a homogeneous ideal
in 5. We consider the problem of computing the Hilbert function of S/I, in
the case where I is generated by monomials.

Given the data of an arbitrary finitely generated S-module M, the con-
struction of a Grobner basis for its presentation matrix is the single most
fundamental operation which can be carried out by a computer algebra sys-
tem ([Buch 65], [Buch 85], [Bay 82]). From the leading terms of such a basis,
one obtains an S-module of the form S/l & ... & S/I,, where each I; is a
monomial ideal. This §-module has the same Hilbert function as M, a rela-
tionship which was first observed by Macaulay [Mac 27]. Thus via Grobner
bases, one reduces the computation of Hilbert functions for S-modules M
to the case considered here.

In this paper, we present an algorithm for computing the Hilbert function
of a monomial ideal, and give implementation details and timing data for
this algorithm.

Several algorithms for computing Hilbert functions in this case are pre-
sented in [MoM&® 83]. Our algorithm, which can be significantly faster in

*Partially supported by the Alfred P. Sloan Foundation, by ONR contract N00014-87-
K0214, and by NSF grant DMS-90-06116.

tPartially supported by the U.S. Army Research Office through the Mathematical
Sciences Institute of Cornell University, and by NSF grants CCR-89-01061 and DMS-88-
02276.

practice, has been influenced by their ideas, and by computational experi-
ence with the computer algebra system Macaulay [BaSt 90], which we have
been developing over most of the last decade. The implementation described
here will migrate soon to Macaulay, and represents an advance on the algo-
rithm employed by the version of Macaulay available as of this writing.

Hilbert functions have become a bottleneck only in the largest Grobner
basis computations now possible. As the capabilities of machines and com-
puter algebra systems continue to advance, it will become increasingly im-
perative to adopt improved algorithms for this subproblem. This paper is
likely to be of particular interest to designers of computer algebra systems.

2 Hilbert Functions

Recall that the Hilbert function of the finitely generated S-module M is
defined to be the function

p(d) = dim My,

where My is the degree d part of M (See [AtMa 69, Chapter 11] or [St 78].)

The Hilbert polynomial ¢(d) is the unique polynomial in d such that
q(d) = p(d) for all d > 0. Let X C P” be the support of M; ¢(d) has the

form

€ T
where e is the degree of X, and r is its dimension.

Recall also that the Hilbert series, or Poincaré series, of M is defined to
be the generating function

S d g(t)
Hy(t):= Y, p(d)t! = ——<,
— (1-1)

where ¢(t) is a Laurent polynomial in ¢. This representation of the Hilbert
function is suitable for manipulating by computer. Throughout this paper,
we use “computing the Hilbert function” and “computing the Hilbert series”
interchangeably. It is easy to compute the Hilbert polynomial from the
Hilbert series, by expanding it as a Laurent series in (1 — ¢):

g(t) R |
(1—t)n+t (1 —t)r+t

ot gy et

2

where e(t) is a Laurent polynomial in t. We can now read off the Hilbert
polynomial ¢(d) from the polar part of this expansion, since

— [j+d 1
Z(;)td=m

d=0
is the Hilbert series of P7, for each j. We have

d 14+d
q(d):a_r_l(rt)+---+a_2(-;)+a-1.

Thus, the polar part of the generating function for p(d) carries the infor-
mation which persists in all degrees. The polynomial part gives the error
between p(d) and ¢(d) in a finite number of degrees:

(=3 ((d)- g

d= 00

Finding the Hilbert series of arbitrary graded S-modules can be reduced
via Grobner bases to the computation of Hilbert series of monomial ideals.
Recall that S(—d) is the S-module S with the shifted grading S(—d). =
S_dte- Write M = F/L, where F = @7., Se; = @7, 5(~d;) is a graded
free S-module, dege; = d;, and L C F is a graded submodule.

Let > be a total order on the monomials {x4e;} of F, satisfying x4e; >
xBe; = x“x4e; > xCxPBe;, for all monomials z¢ of , and satisfying z;e; >
e;, for each j. Such an order is called a multiplicative order on F. For f € F,
define in(f) to be the initial (greatest) term of f. For L C F, define the
initial submodule in(L) := (in(f) | f € L). in(L) is most easily computed
using Grobner bases ([Buch 65], [Buch 85], [Bay 82]).

L and in(L) have the same Hilbert series by the following immediate
generalization of a theorem of Macaulay ([Mac 27}).

Proposition 2.1 If L C F = @], Se; is a graded submodule, then for
each d € Z,

dim Lg = dimin(L),;. O

If we define Ije; :=in(L)N Se;, for j =1,...,m, theneach I; C Sis a
monomial ideal, and F/in(L) =2 S/ & ...® S/Iy. Therefore

m

(L) = >t (L),

=1

where (L) denotes the numerator of the Hilbert series of F/L and (I;) de-
notes the numerator of the Hilbert series of S/I;. In either the ideal or
submodule case, the problem of computing the Hilbert series reduces to the
computation of the Hilbert series of a monomial ideal. Below, we give an
algorithm for computing the Hilbert series of a monomial ideal which we
believe is the fastest to date.

See [MoM6 83] for earlier work on computing Hilbert polynomials.

We now develop a number of rules, to be used in recursively computing
Hilbert series.

Proposition 2.2 Let I be a monomial ideal, and write I = (J,z4) for a
monomial ideal J and a monomial z4. Let (I) denote the numerator g(t) of
the Hilbert series for S/I, and let | A| denote the total degree of the monomial
z4. Then

(a) (a") = 1~ 4

(b) (J N (z4)) = 1 — tldl 4 ¢hAl(T : 24);

(¢) (I} = (J) = tAl(] - z4).

(T4

Proof. (a) We want to count the monomials of S/(z4), i.e. the mono-
mials of S which don’t belong to (z4). 1/(1 —¢)"*! counts the monomi-
als of §. dim(z4)q = dim S;_|4| for each d, because (z4) = S(—|A|), so
t41/(1 — t)»*1 counts the monomials of (¢4). Thus (1 — tl41)/(1 —)+
counts the monomials of S/(z4).

(b) The monomials of S/(J N (z#)) fall into two groups: those that lie
outside of (z4), and those that belong to (z4) but lie outside of J N (z4).
The first group of monomials is counted by (z4). (JN(z4)) = z4(J : z4), so
(z4)/(J N (2z4)) = (S/(J : 4))(—|A|), and this second group of monomials
is counted by tl4l(J : z4).

(c) We have
(D) = (J,24) = (J) + (z4) = (T n (24)),

since the monomials outside of (J,24) can be counted by adding the mono-
mials outside of J, the monomials outside of (z4), and subtracting the
monomials outside of J N (z4). Now substitute (a) and (b). O

Corollary 2.3 IfI = (z%1,...,247) C § is a monomial ideal, then
(I = (z4) — ZtlAil(xAl, o zdicn g g Al
=2

Proof. Apply Proposition 2.2(a,c), and induction on r. O

Proposition 2.4 Let I be a monomial ideal. Suppose that the variables o,

- Ty of S can be partitioned into disjoint sets Vi U---U V;, such that each
generator of I belongs to the subring k[V;] for some i. Define I, = I N k[V]].
Then

Proof. We have the tensor product decomposition
S/1 = kVi]/I @k --- @ k[V;)/ 1,
and Hilbert series multiply with respect to tensor products. O

We may compute (I;) using I;S C S for the same reason: S/I;S is the
tensor product of k[V;]/I; with the remaining variables.

Corollary 2.5 Let I be a prime monomial ideal, of codimension r. Then

(I = (1-1y.

Proof. [is generated by r degree one monomials, so (I) = (z;)". Now
apply Proposition 2.2(a). O

The following algorithm for computing Hilbert series works by recursively
applying Proposition 2.2(a),(c):

Algorithm 2.6 (Hilbert series)

mput:

A monomial ideal I minimally generated by (z41, ..., z4r).
output:

The numerator (I) of the Hilbert series for S/I
begin

Wit (s né gLl eod Ayl LG bL& [i\":'.')»
SRR - A led
\.,"'l 5 ol . -]
x e 1xlat]
S L+l.:‘;'
Wt

(*a) rearrange (241, ..., 24r) so that they are in ascending ‘1.
lexicographic order on the reversed set of variables z,,, ..., 2o.
(b) ifr=0

then set A(t) :=1
else set h(t) := 1 — tl41l,
(¢) for i :=2to r do
define 285 to be the least monomial such that z4:xBi
is a multiple of z4i, for j=1,...,i— 1.
set J = (z41,..., g4 gAd) = (2B L 2B,
and reduce to a minimal set of generators.
Compute <J) by one of the following three variants.
variant A:
set (Jy,&j,,...,2;,) = J, where
Jy contains no linear monomials .
compute <J1> by a recursive call to this procedure.
set (J) := (L —t)¥(J1).
variant B:
partition the variables zg, ..., z, into disjoint sets
Vi U... UV, such that each generator of J
belongs to the subring k[V;], for some j.
foreach j=1,...,pdo
set J; := J Nk[V}]
compute (Jj) by a recursive call to this procedure.
end for.

set, <J> = <J1><J2> - (J,,).
variant C:
compute (J) by a recursive call to this procedure.
set h(t) := h(t) — tl4:1(J).
end for.
return (I) := h(t).

end.

Step (a) is optional, and one of the variants (A), (B), or (C) must be
chosen. Step (a) and variant (A) are very easy to implement and have a
pivotal effect on the running time. One would expect variant (B) to give
a performance increase, but this doesn’t appear for small to moderate size
problems, because of the overhead of partitioning. Variant (C) is included
as a base algorithm; it is significantly slower than the other variants in the
case when the number of variables is large.

Proposition 2.7 Algorithm 2.6 correctly computes (I), whichever variant

(A), (B) or (C) is chosen, and whether or not the optional step (a) is omit-
ted.

Proof. The algorithm terminates, since each recursive procedure call has
as its argument an ideal with fewer generators than I, and the case of zero
or one generator is handled separately in step (b). No subsequent step
depends on step (a) for correctness. Assuming that each variant (A), (B),
and (C) correctly computes (J), the validity of the for loop (c) follows from
Corollary 2.3.

Variant (A) correctly computes (J) by Proposition 2.4 and Corollary 2.5.
The validity of variant (B) follows from Proposition 2.4. If variant (C) is
chosen, (J) is set correctly by a recursive procedure call. O

Proposition 2.8 Let T(m,n) denote an upper bound for the number of re-
cursive procedure calls made by Algorithm 2.6, to compute the Hilbert series
of a monomial ideal I with m generators in the n+ 1 variables of P*. Then

(i) if step (a) is omitted, we can take
T(m,n) = 2m"1;
(i) if step (a) is not omitted, we can take

T _ (7;)_}_(722)_*__*_(,3) ifn >0 is even
mn) = ™M+ (™) + -+ () ifn>1is odd,

for any m > 1, so for m > n,

n

m
T(m,n)= 7 L4"7

Proof. (i) In this case, T(m,n) satisfies the initial condition T(1,n) = 1
(we are counting the original procedure call), and the recurrence T(m,n) =
T(m —1,n)+...T(1,n) + 1. Therefore one can take T'(m,n) = 2m~1.

(ii) If z4 is greater in the given lexicographic order than any of the
monomials z41,... z4i-1, then none of the generators zC1,...,z%m of (J:
z4) involve the last variable z,,. Thus each recursion via variant (C) drops a
variable. Since every ideal in k[z¢] is principal, (I') will be computed without
recursion by step (b) whenever the argument I involves only the variable .
Thus T(m, n) satisfies the initial conditions T°(1,n) = T(m,0) = 1, and the

recurrence T'(m,n) =T(m—-1,n-1)+T(m—-2,n-1)+...+T(1,n—1)+1.
Using the fomula

(o) = () =L B REES.

one checks that the given expression for T'(m,n) satisfies these rules. O

Clearly, (ii) holds no matter what order we choose for the variables

Zg,...,Z, in step (a). Our purpose in reversing the variables will become
clear after Proposition 2.10.

In practice, this algorithm will run much faster than these bounds indi-
cate, since the ideal quotient (z41,...,z4i-1 : z4¢) will usually have fewer
than ¢ — 1 generators.

One might wonder whether there is an algorithm for Hilbert functions
which executes in polynomial time in the size of the input. The following
proposition shows that such an algorithm cannot exist (unless P = N P).
The proof will be readily apparent to readers familiar with NP arguments;
we include it for completeness.

Proposition 2.9 The following problem is NP-complete: Given a mono-

mial ideal J C k[zo,...,2,], and an integer K, is the codimension of J
< K?

Proof. Recall the NP-complete problem VERTEX COVER ([Ka 72],
[GaJo 79]): Given a graph G = (V, E) and a positive integer K < |V,
is there a subset V' C V such that |[V’/| < K, and for each edge {u,v} € E,
at least one of u and v belongs to V'? Such subsets are called vertex covers.

Associate the polynomial ring k[zo,...,z,] with the vertex set V =
{0,....n}. For each subset V' C V, define P(V’) to be the prime ideal
(z; |7 € V'). P(V') defines a linear space of codimension |V’|. A monomial
ideal J has codimension < K if and only if J C P(V’) for some V' with
V< K.

If J has codimension < K, then given an appropriate choice of V'’ one
can quickly confirm that J C P(V') and |V'| < K. Thus, our problem
belongs to the class NP.

Given a graph G = (V, E), define J to be the monomial ideal (z;z; |
{i,j} € E). V'is a vertex cover of size < K if and only if J has codimension

< K. Thus VERTEX COVER is reducible to our problem, establishing NP-
completeness. O

There is an important class of monomial ideals, the Borel ideals, for
which the above algorithm completes after linearly many steps. In fact, a
closed form solution can be determined. A monomial ideal I is defined to
be Borel if z;aB € I implies that ;2B € I for all i < j.

Proposition 2.10 Let I = (z4,...,247) C S = k[zo,...,z,] be a Borel
monomial ideal. Let d; = deg a4, and let c; be the largest indezx j such that

z; divides z4i. If{z41,... x4} minimally generates I, then the numerator
(I) of the Hilbert series for S/I is

(I)y = 1- XT: 4 (1 —t)%.

Proof. Rearrange the z4¢ as in the algorithm so that z4i+1 is greater
than z-4, for all ¢, using the lexicographic order z,, > z,_; > ... > zo. This
ensures that any initial subsequence {z41, ..., 24¢} also minimally generates
a Borel ideal. Notice also that

(zAr,. . zA=1 i ghn) = (2o, ., 20m1),

by the Borel property. Therefore, by Corollary 2.3,
<I> = <.’L‘Al> — E td‘ (IIIo, .. .,(L‘c'»_1>.
=2

The desired formula now follows from Corollary 2.5. O

For an alternate approach to this problem, see [EK 89]. They compute
explicit finite free resolutions for these ideals. For a somewhat simpler,
Grobner basis approach to determine finite free resolutions of Borel ideals,
see [BaSt 91].

In characteristic zero, and in characteristic greater than the degrees of
generators of I, I is Borel if and only if it is fixed by the Borel subgroup of
GL(n+1). This will be the case for initial ideals in generic coordinates; see
[Gal 74], [BaSt 87a], and [BaSt 87b]. Moreover, initial ideals in nongeneric
coordinates often nearly satisfy this condition, so if the monomials are sorted
in ascending lexicographic order on the reversed variables z,, > z,_1 > ... >

To, then the ideal quotients of Algorithm 2.6 will partition in many of the
recursive steps of variants (A) or (B). Thus, one can expect these algorithms
to be fast in practice, even on very large examples.

2.1 An Example: The Rational Quartic Curve in P3

Let § = k[a, b, c,d], and let I = (ac—bd,ab?-c?, a%h—c?d, a®—cd?). This
ideal defines a rational quartic curve in P3. With respect to the lexicographic
order (on a,b,c,d), a Grobner basis for I is given by (ac — bd, ab? — ¢3, a2b —
c*d,a® - cd?,b3d — c*). Thus in(I) = (ac,ab?, a?b,a3,b3d). Arranging the
generators of in([) in increasing lexicographic order on the reversed variables
d,c,b,a, we have in(I) = (a3,a?b,ab?, ac,b3d). We follow variant (A) to
compute (in(1)):

(a3, a%b, ab?, ac, b3d)
= (a3) — t*(a® : a?b) — t*(a?, a?b : ab?) — 1%(a3, a2b, ab? : ac)
— t*(a%, a%, ab?, ac : b3d)
= 1-1® —t*a) — t3(a) — t%(a?, ab, b?) — t*(a)
= 12— 31 —t) - 3(1 - t) — t*(a?, ab, b2) — t4(1 - 1)
= 1-3641* 405 - 12 ((a?) - t%(a? : ab) — 12(a?,ab: 1?))
= 1-304+ 0480 - (1- 2~ 2(1 - 1) ~ £3(1 - 1))
= 1-t* 3344t - ¢

The above expression is most easily checked by considering a minimal
free resolution for the rational quartic: “You take 1 generator of degree 2
and 3 generators of degree 3, and then you subtract off 4 syzygies of degree
4, and add one second syzygy of degree 5.”

The Hilbert function of S/I is represented by

12 —33 44t -5 4 I
(1-2) IECED D!
so the Hilbert polynomial of S/I is

4<dil> _3=dd+1,

2

10

and there is one error term in degree one. The Hilbert polynomial agrees
with the Hilbert function in all degrees d > 2.

3 A Quick and Dirty Codimension Algorithm

Often the reason one computes a Hilbert function is to find the dimension,
or codimension of a scheme X. This information can be determined in less
time than the Hilbert function. In this section we present an algorithm for
computing the codimension of a monomial ideal.

Dimension is preserved if we replace I by its radical, which is an easy
operation: If I = (2B1,... 2Bm), let ¥ be the product of the variables
which occur with nonzero exponent in zP:. Then (z¢,...,2%m) is the
radical of I.

What is the dimension of X for a radical monomial ideal 7? In this case,
X is a union of coordinate subspaces of P*, and can be thought of as a
simplicial complex embedded in the n-simplex of all coordinate subspaces.

I is generated by square-free monomials corresponding to the non-cells of
X.

The codimension of a squarefree monomial ideal I is the minimum size
of any subset X;, of zg,...,z, such that each generator of I is divisible by
a variable in X;,. Such a subset generates an associated prime ideal of I
of minimal codimension. There are several ways to organize the search for
such subsets. A method which has worked particularly well in our system
Macaulay is based onthe algorithm below.

Briefly, the algorithm is organized in the following way. One loops though
each monomial of “monoms”, adding a variable of the monomial A to the set
Xin, which contains the variables in the current associated prime, and then
calling recursively this routine. On subsequent calls (one for each variable
in the monomial A), one may assume that the variables already considered
do not ke in the associated primes being constructed. These variables are
placed in the set X,,;, which contains those variables which cannot be part
of the associated prime. The set X ntnown coOntains those variables which
have not been placed in X;, or X, ..

At any time, the union of the three sets X;,, Xout, Xunknown is €xactly the

set {zo....,%,}. For the purpose of this algorithm, a squarefree monomial
is simply a subset of {zq,...,z,}.

11

Algorithm 3.1 (codimension of a monomial ideal)

input: A monomial ideal I C S.
output: a number, the codimension of I.
begin
compute J := the radical of I.
rearrange the generators of J in ascending degree lexicographic order
with &, > z,-1 > ... > zg, obtaining an ordered
set of squarefree monomials, named monoms.

return codim(monoms, {}, {}, {zo,...,2Zn}).
end.
codim(monoms, Xin, Xout, Xunknown) =
begin
if monoms = {}
then return length(X;,). <— Priv- (\ ’ ‘

let {A} be the first monomial in “monoms”.
let B = monoms \ {A}.
if XinNA# t
then return codim(B, Xin, Xout, Xunknown)
else if A C X,u:
then return oo
else
write AN Xynknown = {Ziy, ..., Zi }, for i < ... < .
return the minimum of the values of
COdim(B, Xin U {xil}, Xout) Xunknown\{zil})y
COdim(B, Xin U {xiz}a Xout U {xil}) Xunknown\{zila zi;})a

codim(B, Xin U{zi, }, Xout U{zi,, ..., 2i_, },

Xunknown\{zip sy zik})
end.

Proof. Let L be the (squarefree) monomial ideal generated by the monomi-
als in “monoms” and the variables in X;,. We claim that codim(monoms,
Xin, Xouts Xunknown) is the minimum of the codimensions of every associated
prime ideal of L not containing any variable of X,,;. If the set “monoms”
is empty, the codimension of L is the size of X;,. Otherwise, if A is the
first monomial of “monoms”, then a minimal associated prime of L must
contain a variable occuring in A. If some variable of X;, occurs in A, then
A is not a minimal generator, and we can ignore it. If every variable of A
is contained in X,,;, then there are no associated primes of L satisfying the

12

above condition. By induction, the call

codim(B, Xin U {2i;}, Xouwt U {Zi),--,%i;_, }r Xunknown \{Ziy,---»2i;})
computes the minimum of those associated primes of L which contain z;,
but do not contain any of z;,,...,z;;_,. This establishes the claim, since
every associated prime ideal of L not containing any variable of X,,; is of

this form. Therefore the call codim(monoms, {}, {}, {zo,...,2x}) correctly
computes the codimension of J. O

Recall that the degree lexicographic order first orders monomials by de-
gree, and is the usual lexicographic order on monomials of a given degree.
Since each monomial being ordered is squarefree, monomials divisible by the
least number of variables occur earliest in the ordered set “monoms”.

In an actual implementation, there are a number of improvements that
would normally be made. For example, if there were a global variable which
gives an upper bound on the codimension, then whenever the size of X;,
reached this value, one could immediately return this value instead of trying
to complete the X, set. Timing data for this algorithm are given in the
next section.

4 Examples and implementation notes

In this section, we discuss some implementation issues and present some
execution times of the Hilbert function algorithms.

Before attempting to implement the algorithms defined in this paper,
we had used the algorithm in the Macaulay system to compute Hilbert
functions. Finding the Hilbert function of a homogeneous ideal involves two
steps. A Grobner basis for the ideal (under any multiplicative order) is first
computed, and the Hilbert function of the monomial ideal of initial terms is
then found. In small numbers of variables, the Grobner basis computation
takes much longer than the corresponding Hilbert function computation,
even if Macaulay’s Hilbert function algorithm is used. For more variables, we
found the Hilbert function algorithm of Macaulay to take much longer than
the corresponding Grobner basis computation. For example, if the number
of generators is larger than 1000 or 1500, with 20 or 30 variables, then the
execution of Macaulay’s Hilbert function algorithm might take several days,

13

or not complete at all. The Hilbert function algorithms defined here, on the
other hand, almost always require only a fraction of the time to compute
the Grobuner basis; Grobner bases, rather than Hilbert functions, are now
the bottleneck.

For each example below, we present timing data for computing the
Grobner basis of an ideal I using Macaulay, for computing the Hilbert func-
tion given the initial monomial ideal J, and for finding the codimension of
the ideal J. In two cases, J is only a subset of the initial ideal in(I). Timing
data is presented for three Hilbert function algorithms, named (A), (4;),
and (B). The algorithms (A) and (B) correspond to the variants (A) and
(B) of Algorithm 2.6. Algorithm variant (A;) is described below. On all
but the largest examples, we include the time required by Macaulay 3.0’s
Hilbert function computation. We also include the time required by an im-
plementation of the codimension algorithm of § 3. The examples below were
all run on a Sun microsystems SPARC station 1.

In each of the Hilbert function algorithms, the minimal generators of the
monomial ideal I are sorted in ascending lexicographic order. Therefore, if k
is the largest index such that zj divides 24+, then the only variables occuring
in J = (gf,...,24~1 : g4 are among zo, ..., 2x_1. This fact can be used
in both the recursion and in the monomial ideal data structure. As we will
see in the timing results below, this makes a modest improvement (usually
between 5% and 15%) in the performance of the algorithm. Each of the
algorithms (A) and (B) incorporates this speedup. In order to measure the
resulting performance improvement, we have included timings for variant
(A) of Algorithm 2.6 where this feature is not used; each ideal quotient is
computed as if all n 4+ 1 variables could occur. In the examples and timing
data below, this variant is referred to as algorithm (A;).

Overall, the two most important features to implement are: (1) process
the monomials in ascending lexicographic order, and (2) use the linear parti-
tioning algorithm, (algorithm (A)). One can delay implementing the general
partitioning algorithm (algorithm (B)) until a further performance increase
for large problems is needed.

For example, in Example 4.3 below, which is an ideal with 444 gener-
ators in 32 variables, Macaulay found the Hilbert function in 7 minutes.
Modifying algorithm (A;) by first sorting the monomials into reverse lexico-
graphic order rather than lexicographic order requires 19.2 minutes to find
the Hilbert series. The time required by algorithm (A;) is 18 seconds, a re-

14

markable improvement. We found Algorithm (B) to execute faster on large
problems than Algorithm (A), although it uses a large amount of memory.
In one case (in Example 4.2,n = 5), Algorithm (B) ran out of space at 40
megabytes. For the medium size examples presented here, Algorithms (A)
and (B) use about the same amount of time to find the Hilbert series.

Times are given in minute:second (mm : ss) or hour:minute:second
(hh : mm : ss) format. The Grdbner bases in the following examples were
computed using Macaulay. The timing data below is accurate to within a
few seconds. Space information is accurate to within 64 kilobytes. A “-”
entry under space means less than 64 kbytes were used for the given algo-
rithm. The timing information for the codimension algorithm includes the
time to input the monomial ideal, as well as the time to compute the square
free part of the ideal.

Example 4.1 Let M be a generic n by n matrix in a polynomial ring
S with n? variables zi;, let I C S be the ideal generated by the entries
of the matrix M2, and let > be the reverse lexicographic order such that
Ti1 > T12 > ...> Tip > T3 > The monomial ideal which is the input
to the Hilbert function algorithms is the initial ideal J = in(I), with respect
to this order. The case n = 3 takes almost no time, and » = 4 is also a
small example. For n = 5, there are 1372 generators for this ideal: 25 in
degree 2, 76 in degree 3, 217 in degree 4, 356 in degree 5, 397 in degree 6,
188 in degree 7 and 113 in degree 8.

The Hilbert series for S/I is given by

(I) =(1—-1)*®Hg/y(t) =
= 1 — 252 + 2413 + 275t — 576t° — 1400¢° + 6024¢7 + 503t® — 5117612
+ 17922041 — 393000t + 671803¢'2 — 963728¢13 + 1161279¢**
— 1105688t1% + 68727516 + 18472t17 — 740749¢'® + 1182944¢°
- 1222811¢*° + 960600t%* — 600774¢%% + 303600t% — 123971¢*
+ 40480t%° — 10350826 + 2000t*7 — 275¢28 4+ 24¢2° — 30

15

Example 4.1 (n = 4)
16 variables, 161 generators
26 generators in radical
Algorithm time | space
Macaulay Grobner basis || 0:15 | 126k
A 0:01 -
Al 0:01 -
B 0:01 -
Macaulay Hilbert fcn 0:36 -
codimension = 8 0:00 -
Example 4.1 (n =5)
25 variables, 1372 generators
91 generators in radical
Algorithm time | space
Macaulay Grobner basis || 1:04:15 | 1950k
A 3:06 | 252k
Ay 3:47 | 252k
B 3:08 { 755k
Macaulay Hilbert fcn 14:32:24 | 504k
codimension = 13 0:02 | 126k

Example 4.2 Let M, N be generic n by n matrices in a polynomial ring
S with 2n? variables z;; and y;;. Let I C S be the ideal generated by the
entries of the product M N, and let > be the reverse lexicographic order
with z,; > yg, for all possible indices, and such that z3; > z12 > ... >
Tin > 221 > ... and similarly for the y variables.

If n = 4, the initial ideal J = in([) using this order has 500 elements.
For the n = 5 example, we use only the Grobner basis in degrees < 8. In
this case, the resulting monomial ideal J has 4785 generators.

For the n = 5 case, the codimension algorithm takes more time than
usual due to the fact that J is a radical ideal. This algorithm is still faster
than any of the Hilbert function algorithms. The codimension algorithm
first sorts the radical of the ideal J in ascending degree lexicographic order.
If we change the order in which the monomials are processed to be the
strict lexicographic order, then the time increases to almost exactly 6 hours.
Algorithm (B) finally ran out of space at about 40 megabytes after 2 hours
and 52 minutes. We were unable to complete the execution of Macaulay’s

16

Hilbert function algorithm on this example.

Example 4.2 (n = 4)

32 variables, 500 generators

500 generators in radical

Algorithm time | space

Macaulay Grobner basis 2:59 | 441k

A 0:35 | 126k

Aq 0:42 | 126k

B 0:34 | 504k

Macaulay Hilbert fcn 11:01 | 189k

codimension = 12 0:04 | 126k

Example 4.2 (n =5)

Grobner basis in degrees < 8
50 variables, 4785 generators
4785 generators in radical
Algorithm time space
Macaulay Grébner basis || * 5:00:00 *
A 2:53:23 1196k
Ay 3:34:04 1196k
B *¥* 1> 40195k
Macaulay Hilbert fcn > 4 days 77
codimension = 19 26:40 1070k

(*) Time is approximate and space was not measured.

(**) The execution of algorithm (B) ran out of space.

Example 4.3 Let S be the polynomial ring defined in Example 4.2, and let
> be the reverse lexicographic order defined in that example. Let I be the
ideal generated by the entries of the matrix MN —NM. For n = 3, the initial
ideal in(/) has 26 generators, in degrees 2 through 5. The computation of
the Hilbert function requires essentially no time (less than .1 seconds, on
a Sun Sparc-station 1). For n = 4, the entire Grobner basis has yet to
be computed. Tor this example let J be the first 444 generators of in(T)
computed via Macaulay.

17

Example 4.3 (n = 4 case)

32 variables, 444 generators

248 generators in radical

Algorithm time | space
Macaulay Grobner basis * *
A 0:14 | 126k
Aq 0:18 | 126k
B 0:15 | 441k
Macaulay Hilbert fen 717 | 252k
codimension = 11 0:02 | 126k

(*) The Grobner basis computation was not timed.

Example 4.4 Some of the most intractible ideals known are the Mayr-
Meyer ideals. E. Mayr and A. Meyer [MaMe 82] used these examples to show
that the ideal membership problem is double exponential in the number of
variables. In this example, we use the simplified equations in [BaSt 89, pg.
5]. Fix a non-negative integer n, and an integer d > 2. Let

Sn = klz,{si, fi,bij,¢:;:0<1<n,1 <5 <4}

be a polynomial ring in 10(n + 1) 4+ 1 variables. Let I, 4 C S, be the
homogenization with respect to z of the ideal I,, defined in [BaSt 89, pg. 5].

When n = 1, the polynomial ring above has 21 variables. The monomial
order we choose in this case is the product order:

So >tg>bor > ...>bgg>co01>...>C>> 8> ...> 14 >> 2,

where in each block of variables the (graded) reverse lexicographic order is
used. For d = 2, in(1; 2) has 444 generators, in degrees ranging from 2 to
11. For d = 3, in(I; 3) has 610 generators, in degrees ranging from 2 to 18.

When n = 2, the ring has 31 variables. For d = 2, we use blocks of 10
variables each (and one final block of 1 variable). In this case, in(I) has 3204
generators, in degrees ranging from 2 to 32. When n = 3, we break up the
variables into 6 blocks of 5 variables each, and one final block containing the
variable z. In this case, in(/) has 8100 generators in degrees ranging from 2
to 109. There are 324 generators in degree 109 alone.

The timings below indicate that algorithm (B) becomes useful for suffi-
ciently large problems.

18

Example 44 (n=1,d = 2)
21 variables, 444 generators
26 generators in radical

Algorithm time | space
Macaulay Grobner basis 0:30 | 252k
A 0:21 -
Al 0:22 -
B 0:21 | 252k
Macaulay Hilbert fcn 12:51 | 189k
codimension = 3 0:01 -

Example 4.4 (n =1,d = 3)
21 variables, 610 generators
26 generators in radical

Algorithm time | space
Macaulay Grobner basis 0:52 | 315k
A 0:48 | 126k
Ay 0:52 1 126k
B 0:45 | 441k
Macaulay Hilbert fcn 24:36 | 252k
codimension = 3 0:02 -

Example 4.4 (n = 2,d = 2)
31 variables, 3204 generators
59 generators in radical

Algorithm time | space
Macaulay Grobner basis || 23:28 | 1321k
A 49:16 | 504k
Aq 52:28 | 504k
B 48:40 | 6039k
Macaulay Hilbert fcn ?? 77
codimension = 5 0:02 | 441k

19

Example 4.4 (n = 2,d = 3)

31 variables, 8100 generators

59 generators in radical

Algorithm time | space
Macaulay Grobner basis || 3:52:23 | 3083k
A 7:45:39 | 1636k
Aq 8:58:33 | 1636k
B 6:06:53 | 13902k
Macaulay Hilbert fcn 77 ?7?
codimension = 5 0:04 | 1133k

5 Multi-graded rings

The algorithm we have given for Hilbert functions can be generalized easily
to the case when the ring S = k[zo, ..., z,] is multi-graded.

Fix m weight vectors wy,...,w, € N*tl. The multi-degree of a mono-
mial 24 is (w;.A,...,wn.A) € N™. The k-vector space generated by all
monomials of multi-degree (dy,...,d,) is denoted by S4,4,..4,,- An ideal
I C S is multi-graded if

I= @ I0Sid.dm
dl,...,dmeN

Similarly, one can define multi-graded S-modules. The Hilbert series of
a multi-graded module M is defined to be the generating function

Hp(ty, .. tm) = Z dideld%.dmtfl ...t;dn"‘.
di,e..dm€Z

The values of the Hilbert function for large values of d; are not easily encoded
into a single polynomial.

As in the homogeneous case, the computation of the Hilbert series of
an arbitrary (finitely generated) multi-graded module can be reduced via
Grobner bases to the computation of the Hilbert series of a monomial ideal.
If I is a multi-graded ideal, define

(I) := Hgyy(t1, ... tm)/Hs(t1, .- -).

and for a monomial z4, define

il = guA | pm-A,

20

With these new definitions, Proposition 2.2 holds as follows.

Proposition 5.1 Let I be a monomial ideal of the multi-graded ring S.
Write I = (J,z4) for a monomial ideal J. Then

(a) (z4) =1 - tl4);
(b) (J N (z2)) =1 — tlAl 4141 : z4);
(c) (I)={(J) - thAl(J - z4).

Similarly, Proposition 2.4 generalizes to the multi-graded case as well.
Using the new definitions for (J) and tl4l, Algorithm 2.6 can be used exactly
as stated, except that in variant (A), (J) should be set to

(J) := (1= tleanly (1 = t=ad) ()

All that remains is to identify the Hilbert series of 5. This is easy: the
Hilbert series of 9 is

1

Hg(tl, .. .,tm) = (1 — t'xo‘)(l _ tlfcll) . .(1 _ t|g;n|).

Example 5.2 The ideal T C § of § 2.1 is bigraded, with respect to the
gradings

wy; = (1,1,1,1)
and

we = (1,4,3,0).

The numerator () of the multi-graded Hilbert series of I, computed via
variant (A), is
(a3, a?b, ab?, ac, b3d)
= (a®) — 315(a® : a?b) — t3t5(a, a%b : ab?) — t3t3(a’, a%b,ad? : ac)
— t1t3%(a®, a%b, ab?, ac : b3d)
= 1 -8t — £315(a) — 3t3(a) — 1313(a?, ab, b?) — t}13*(a)
= 128 - 2(a) - Bil(a
~ 1313 ((a?) - 315(a? : ab) — £315(a?, ab : B?)) — 11t}*(a)
= 186 - 315(1 — t1t2) — 363(1 — t113)
~ 313 (1- 834 - 3651 - tit) — 3151 - taty)) — H32(1 — tatz)

= 1— 35— 1313 — 345 — 313 + 145 + 1315 + 1165 + t113° — 3¢50

21

As in the homogeneous case, this can be checked using finite free reso-
lutions: “Take generators of degrees (2,4), (3,3), (3,6), and (3,9), and then
subtract off 4 syzygies of degrees (4,6), (4,7), (4,9), and (4,10), and add one
second syzygy of degree (5,10).”

6 Applications of Hilbert functions

The most basic application of Hilbert functions is to find numerical invari-
ants of a subscheme X C P™. For example, if I is the homogeneous ideal of
X, and if the Laurent expansion in {1 — t) of the Hilbert series of §/1I is
Gy a.
m+---+(—l—_l—”+ao+---+ast3,
then dim X = r, deg X = a_,_1, and the arithmetic genus ps(X) of X is
p(X)=(-D(a_r_y +a_,+...+a_1—1).

Hilbert functions are also useful as an algorithmic tool. For example,
Hilbert functions can be used to determine if two schemes are equal, or
“nearly” equal, in the following sense. Given two (homogeneous) ideals I C
J of S, I and J are called scheme-theoretically equal if they define the same
projective scheme in P". Equivalently, I and J are scheme-theoretically
equal if they are equal in large degrees. In this case, I and J have exactly
the same primary components, except that I has (possibly) an additional
embedded component supported at the irrelevant maximal ideal.

More generally, we say that I and J are equal in codimension < c if they
have the same primary components in codimension < ¢: i.e. the localizations
Ip and Jp are equal, for all prime ideals P of codimension < ¢. Similarly, we
say that I and J are equal in dimension > d if Ip = Jp for every prime ideal
of § with dim §/P > d. Two ideals I and J of S are scheme-theoretically
equal if they are equal in codimension < n + 1, or equivalently if they are
equal in dimension > 0.

One can use Hilbert polynomials to detect equality of two ideals in codi-
mension < ¢, as long as ¢ < n + 1. The following (equivalent) test uses
numerators of Hilbert series instead, so that equality of ideals can also be
detected.

Proposition 6.1 IfI C J C S are homogeneous ideals, then I and J are
equal in codimension < ¢ if and only if (I) — (J) is divisible by (1 — t)°.

22

In terms of Hilbert polynomials, if hg/1 and hg;; are the Hilbert poly-
nomials of S/I and S/J respectively, and if d > 1, then I = J in (Krull)
dimension > d if and only if hgy(z) — hg;;(2) is a polynomial of degree < d
mn z.

Proof. I C J are equal in codimension < c if and only if dim J/I < n+1—c¢,
which is true if and only if the Hilbert series, Hj/(t) of J/I has a pole of
order < n+ 1 —¢. But

() -)

HJ/I(t) = HS/I - HS/J = m

Therefore Hj/; has a pole of order < n 4 1 — ¢ if and only if (I) — (J) is
divisible by (1 -1t)c. O

It is also possible to use Hilbert functions to test for equality of inho-
mogeneous ideals. Let > be a degree preserving multiplicative order on the
monomials of R = k[z1,...,2,]. Let I C R be a (not necessarily homoge-
neous) ideal. Define (I') := (in(I)). This polynomial does not depend on the
particular degree preserving monomial order >.

Proposition 6.2 Let I C J C k[z1,...,z,] be ideals, and define (I) and
(J) as above. The ideals I and J are equal in codimension < c¢ if and only
if (IY — (J) is divisible by (1 — t)°.

Proof. Let I* be the ideal generated by {f* € §: f € I}, where f* is the
homogenization of the polynomial f with respect to the variable zo. I* is
the homogenization of 1.

Extend the order > of the monomials of R to the monomials of S by
setting zgz4 > 2§z 8 if and only if 24 > zB or 24 = 2B and a > b. It is well-
known (and easy) that if {g1,...,¢s} is a Grobner basis of I with respect to
>, then {g?,...,g"} is a Grobner basis for I*. Furthermore, since the lead
monomial of g; always has the highest degree of any monomial in g;, in(g;) =
in(g?). Therefore (I") = (in(I*)) = (in(I)). Notice that, in particular, (1) is
well-defined. By the definition of (I), we see that (I*) = (I), and similarly
for J.

If
I—"—‘Qlﬂ...ﬂQp

23

is an irredundant primary decomposition of I, then
"=@hn...nQk

is an irredundant primary decomposition of I; the components of I and I*
correspond in a 1-1 manner. Also, the codimension of I in R is the same
as the codimension of I* in S. Therefore, I and J have the same primary
components in codimension < ¢ if and only if I* and J* have the same
primary components in codimension < ¢. By the above proposition, this
holds if and only if (I*) — (J*) is divisible by (1 — t)¢, which in turn holds
if and only if (I) — (J) is divisible by (1 —¢)°. O

Notice also that the codimension of I in R is exactly the codimension of
the monomial ideal in(I) of R.

References

[AtMa 69] M. F. Atiyah and I. G. MacDonald, Introduction to Commuta-
tive Algebra, Addison-Wesley Series in Mathematics, 1969.

[Bay 82] D. Bayer, The division algorithm and the Hilbert scheme, Ph.D.
thesis, Harvard University (1982). Order number 82-22588,
University Microfilms International, 300 N. Zeeb Rd., Ann Ar-
bor, MI 48106.

[BGS 90] D.Bayer, A. Galligo, and M. Stillman, Computation of Primary
Decompositions, preprint, 1990.

[BaSt 87a] D. Bayer and M. Stillman, A criterion for detecting m-
regularity, Invent. Math. 87, 1-11 (1987).

[BaSt 87b] D. Bayer and M. Stillman, A theorem on refining division or-
ders by the reverse lexicographic order, Duke Math. J. Vol. 55,
No. 2, June 1987.

[BaSt 89] D. Bayer and M. Stillman, On the complezity of computing
syzygies, in “Computational Aspects of Commutative Algebra”,
ed. L. Robbiano, Academic Press, San Diego, 1989.

[BaSt 90] D. Bayer and M. Stillman, Macaulay: A system for compu-
tation in algebraic geometry and commutative algebra, avail-
able for Unix and Macintosh computers. Contact the authors,

24

[BaSt 91]

[Buch 65]

[Buch 85]

[EK 89]

[Gal 74]

[GaJo 79]

(Ka 72]

[Mac 27]

[MaMe 82]

[MoM& 83]

[St 78]

or ftp 128.103.1.107, Name: ftp, Password: any, cd
Macaulay, binary, get M3.tar, quit, tar xf M3.tar.

D. Bayer and M. Stillman, Upper bounds on the betti numbers
of graded ideals, in preparation.

B. Buchberger, Fin Algorithmus zum Auffinden der Basise-
lemente des Restklassenringes nach einem nulldimensionalen
Polynomideal, Ph.D. Thesis, Universitat Innsbruck (1965).

B. Buchberger, Grébner bases: An algorithmic method in poly-
nomial ideal theory,in: (N.K. Bose, ed) “Multidimensional Sys-
tems Theory,” D. Reidel Publishing Co., pp. 184-232, (1985).

S. Eliahou and M. Kervaire, Minimal resolutions of some mono-
mial ideals, J. Algebra 129, 1-25 (1990).

A. Galligo, A propos du théoréme de préparation de Weier-
strass, Fonctions de Plusiers Variables Complezes, Lecture
Notes in Math. 409 (1974), 543-579.

M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and
Company, San Francisco, 1979. ISBN 0-7167-1044-7, 0-7167-
1045-5 pbk.

R.M. Karp, Reducibility among combinatorial problems, in R.E.
Miller and J.W.Thatcher (eds), “Complexity of computer com-
putations”, Plenum Press, New York, (1972), 85-103.

F. S. Macaulay, Some properties of enumeration in the theory of
modular systems, Proc. London Math. Soc. 26, 531-555 (1927).

E. Mayr and A. Meyer, The complexity of the word problem for
commutative semigroups and polynomial ideals, Adv. Math 46,
305-329.

F. Mora and H. M. Méoller, The computation of the Hilbert
function, Lecture Notes in Computer Science 162 (EUROCAL

'83), 157-167. QA |55,7. £ £85 1983 .00

R. Stanley, Hilbert functions of graded algebras, Adv. in Math.
28, 57-83 (1978).

25

