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Abstract. The first part of the paper surveys results on f-vectors, flag vectors and h-
vectors of convex polytopes. These are combinatorial parameters that have been charac-
terized for simplicial polytopes. Many of the results known in the general case depend
on the connection between convex polytopes and toric varieties. The second half of the
paper looks at polyhedral subdivisions of convex polytopes. The effect of subdivision on
the k-vector is studied. The paper discusses the secondary polytope, which encodes the
regular subdivisions of a polytope. Fiber zonotopes and the corresponding hyperplane
arrangements, called discriminantal arrangements, are studied.
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The combinatorics of convex polytopes is an active area of research. The
most important reference in the subject, in spite of its age, is still Griinbaum’s
book [18]. Highlighting the accomplishments since then are two recent survey
articles, by Klee and Kleinschmidt [25], and by Bayer and Lee [7]. In addition
Ziegler has a preliminary version of lecture notes on polytopes [42]. All these
offer much more extensive bibliographies than is contained here. This paper
focuses on three topics in the combinatorial study of polytopes: numbers of
faces, subdivisions, and relation to hyperplane arrangements.

1. Numbers of Faces

1.1. f-vecToRr HISTORY

A polytope is the convex hull of a finite point set in R%. A d-dimensional
polytope has faces of dimension 0 (vertices), 1 (edges), and so on, up tod—1
(facets). Write f; for the number of i-dimensional faces. The f-vector of
a polytope is the sequence (fo, f1,..., fg—1)- This has been the subject of
much study in this century and before. The characterization of f-vectors of
d-polytopes for all d is a major open problem.

At the turn of the century Steinitz [40] gave the complete characterization
of f-vectors of polytopes of dimension three.

Theorem 1 (Steinitz) An integer vector (fo, f1, f2) is the f-vector of a
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three-dimensional polytope if and only if

1 fo-fH+fa=2
2. fo<2fa—4
3. f2<2fo—4.

No characterization is known for polytopes of any dimension greater than
three. For 3-polytopes more detailed combinatorial information has been
studied. If P is a 3-polytope let Pn(P) be the number of faces of P which are
n-gons, and call the vector (ps, pq, ps, - . .) the p-vector. Much is known about
p-vectors of 3-polytopes, though it falls short of a complete characterization.
The basic theorem is due to Eberhard in 1891 [14].

Theorem 2 (Eberhard) There ezists a 3-polytope with py, n-gons (n > 3,

n # 6) and some number of 6-gons if and only if the integer 2(6 — n)pn is
n>3

even and is at least 12.

In the 1970s and 1980s Jendrol’ and others studied the possible values of pg
(see [20]).

A polytope is called simplicial if all its faces are simplices. For simplicial
polytopes Sommerville [33] first observed a useful invertible linear transfor-
mation on the f-vector. Extend the definition of f-vector by writing f_; = 1.
Then the h-vector of a simplicial d-polytope is (hq, k1, ..., ha), where

b= pymif
j—g(—l) d—j fi-1-
In 1971 McMullen [29] conjectured a characterization of h-vectors of simpli-
cial d-polytopes (for all d). The necessity of the “McMullen conditions” was
proved in 1980 by Stanley [34], and the sufficiency the same year by Billera
and Lee [9]. In 1992 McMullen [28] gave a new proof of necessity, avoid-
ing the algebraic geometry used by Stanley. (Sommerville [33] proved (2)
of the theorem below; these equations are known as the Dehn-Sommerville
equations.)

Theorem 3 (Stanley; Billera and Lee; McMullen) An integer vector
(ho, b1, ..., hg) is the h-vector of a simplicial d-polytope if and only if

1. hi = hg_; for alli _

2. ho=1andh; <hiyy foralli,0<i<d/2-1

3. hiy1 = hi < (hi— hi21)® foralli, 0< i< d/2— 1.

The superscript (i) represents the pseudopower operation, defined via bino-
mial coefficients as follows. For any positive integers n and i, n has a unique

representation
n= <".‘) + (."“1) 4ot ("’)
1 1—1 7
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where n; > n;_y > .- > n; > j > 1. The ith pseudopower of n is then

G — n;+1 ni.1+1 nj+1
n <i+1 L U R W

We also define 0¢? = 0 for any positive integer i.

TFhe h-vector is important not only because it gives a convenient way to
write down the conditions, but because it is the counting vector for several
different sequences of objects associated with the polytope. The discoveries
of these fueled much research in polytopes. Some of them have analogues in
the nonsimplicial case, and we turn to that now.

1.2. FLAG VECTORS

It quickly becomes clear in looking at the general polytope case that the f-
vector is not the right object of study. It carries too little of the combinatorial
information. We introduce instead the flag vector of a polytope, defined as
follows. Consider a sequence of distinct proper faces ordered by inclusion,
Fo C F; C F5 C --+ C Fy. This is called an S-flag, where § is the set of
dimensions of the faces F;. The number of S-flags of a polytope is written
fs, and the vector of all such flag numbers is called the flag vector of the
polytope (here S ranges over all subsets of {0,1,...,d — 1}). For example,
a square based pyramid has flag numbers fy = 1, fo = fo = 5, fi = 8,
foq = fo2 = f1,2=16,and fo;,2 = 32.

The big enumeration problem for polytopes is then: characterize the ﬁag
vectors of d-dimensional polytopes for all d. The problem is trivially solved
for dimension at most 3 because the flag vector then depends only on the
f-vector. Also, the flag vector of a simplicial polytope depends only on its
f-vector, so there is nothing interesting to say in this special case.

The first general result for flag vectors of polytopes is known as the gen-
eralized Dehn-Sommerville equations [4].

Theorem 4 (Bayer and Billera) The affine dimension of the flag vectors
of d-polytopes is e4—1, where (eq) is the Fibonacci sequence, eq = €q_1+e4_3,
eo = ey = 1. The affine hull of the flag vectors is determined by the equations

Z (=177 foun(P) = (1= (1)) f5(P),
j=i+1

where i < k—2, i,k € SU{-1,d}, and S contains no integer between i and
k.

The proof that these equations hold for flag vectors of polytopes is the
same as Sommerville’s proof of the Dehn-Sommerville equations for simplicial
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polytopes. That they determine the affine hull of flag vectors was proved
by exhibiting a basis of polytopes. This was first done in a complicated
calculation in [4], and was later done more elegantly by Kalai [23]. In that
work Kalai also found the affine hull of flag vectors of k-simplicial d-polytopes
(polytopes all of whose k-faces are simplices).

Stanley’s proof of the McMullen conditions for f-vectors of simplicial poly-
topes depends on a connection between rational polytopes and toric varieties.
A polytope is rational if all the coordinates of its vertices are rational num-
bers. Every simplicial polytope is combinatorially equivalent to a rational
polytope, but this is not true for nonsimplicial polytopes (see [18, page 94]).
For a rational polytope, the affine dependencies among the vertices can be
generated by a finite set of affine dependencies with rational coefficients.
These are used to define a toric variety. (For an exposition of toric varieties
and polytopes see [31].) The h-vector of a simplicial polytope is the sequence
of Betti numbers of this variety. For rational, nonsimplicial polytopes, how-
ever, the usual Betti numbers no longer depend only on the combinatorial
structure of the polytope. The appropriate definition of the h-vector comes
from the middle perversity intersection homology. When the polytope is
simplicial this definition agrees with the previous definition of A-vector.

A way of calculating the h-vector for general rational polytopes was found
independently by several algebraic geometers: Bernstein, Khovanskii and
MacPherson. Stanley [35] introduced the formula to combinatorialists; he
gives in these proceedings [39] a definition that applies more generally to
Eulerian posets. Here is that definition of the h-vector of a polytope as a
recursion on the face lattice.

For a d-polytope P, from the h-vector (ho,h,...,hq) € Nt is defined
the g-vector (go, g1, - - .,ng/QJ) € Nld/2/+1 by go = ho and g; = h; — h;—, for
1 < i £ d/2. The generating functions A(P,t) = "% o hit%* and g(P,t) =
Z‘Lilozj git' are defined recursively by

1. g(9,t) = h(0,t) =1, and
2. h(Pty= > g(G,t)(t— 1)i1-dmC,

G face of P
G#£P

It is easy to check from this recursion that for a fixed dimension d and
any i, h; is a linear function of the flag vector. Fine [16] has a combinatorial
interpretation of the coefficients of the flag numbers in this linear function.

IfSC{0,1,...,d—- 1} the S-template consists of d spaces with a vertical
bar after the (j + 1)st space for each j € S. An admissible pattern of weight
r for the S-template is a placement of an z in each of r spaces so that to the
left of each vertical bar (all the way to the left) there are more blank spaces
than zs. The unsigned coefficient of fs in h; (for d-polytopes) is the number
of admissible patterns of weight d — i for the S-template. The sign of the
coefficient of fs in h; is (—1)4=+ISI+1,
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As an example we compute the formula for the A-vector of a 3-polytope.
Here are all the admissible patterns, with signs indicated.

(+) x x x +) x _ _ ) __ _
(<) xx _ (+) _x _ +) _ | _ _
(-) x _x (+) __x ) __ | _
(-__xx ) _ I x_ +) ___1
+ _ 1 xx ) _ |l _x ) b

) __|Ix ) 1|

) x _ _ | ) __1_1

-) _x _ | ) _ L _1_1

) __x1|

) _ 1 _1x

) _1x_|

) _ 1 _x|

() __ 1l x1

) 1 _ 1 x|

From these we get the following formulas for the h-vector.

ho = fg

h1 = fo—3f

h2 = —foz+ for +2fo2 + fiz—2fo— fr —3f2+ 3fs
hs = forz— foo— foo— fiz+ fo+ A+ fa— fa

In summary, associated with any rational d-polytope P is an h-vector
h(P) = (ho, k1, ..., ha), which depends linearly on the flag vector of P. As
in the case of simplicial polytopes, this h-vector is positive, symmetric and
unimodal. We don’t know if the nonlinear inequalities satisfied by simplicial
h-vectors hold in general. Note that the flag vector cannot be computed just
from the h-vector; the flag vector contains a Fibonacci number of pieces of
information (exponential in dimension d), while the h-vector contains only
d/2 pieces of information. The unimodality of the h-vector or, equivalently,
the nonnegativity of the g-vector gives d/2 linear inequalities satisfied by flag
vectors of rational d-polytopes. It is believed that these are sharp and that
they are satisfied by flag vectors of irrational polytopes. It should be noted
that the first two inequalities are known for irrational polytopes as well: one
is trivial (fo > d + 1), and the other (fo2 — 3f2 + f1 — dfo + (d'gl) > 0) was
proved by Kalai [22] using rigidity.

Kalai [23] made a wonderful observation that enabled him to extend the
h-vector to a vector linearly equivalent to the flag vector, and to get many
more linear inequalities on flag vectors. This is that the convolution of two
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linear forms on flag vectors is also a linear form on flag vectors. First we

define the convolution of two flag numbers. For S C {0,1,. -1}, T C
{0,1,...,e—1},and P a (d + e + 1)-polytope, let
fs*fr(PY= " 3 fs(F)fr(P[F) = fsutayu(rsasn)(P)-
F d-face of P

(Here P/F is the quotient polytope of F, an e-polytope whose face lattice
is the interval [F, P] in the face lattice of P.) Repeat to get the convolution
of any finite sequence of flag numbers, and extend linearly to define the
convolutlon of a sequence of linear forms in flag numbers. In the following
we write g for the linear form in ﬂag numbers that calculates g; ( = hi—hi—1)
for d-polytopes.

Theorem 5 (Kalai) The following linear forms on flag numbers form a
length eq vector linearly equivalent to the flag vector:

9oy ¥ 9g2 %+ % gyt
whered =k —1+37s;, 0< £ <s¢/2 and for 1 <i<k, 1< <s;/2.

The convolution of a sequence of linear forms that are nonnegative for
all polytopes is itself a linear form that is nonnegative for polytopes of the
appropriate dimension. Thus convolutions of g;s are nonnegative for rational
polytopes, and hence give linear inequalities on flag numbers that hold for
all rational polytopes.

Here is an example. Consider the convolution g# x g for 5-polytopes; here
93(Q) = fo(Q) — 3 > 0 for a 2-polytope Q. Then for any 5-polytope P

g*gi(P)= Y (fo(F)=3)(fo(P/F)-3)20.

F 2-face of P

This is equivalent to the linear inequality

fo23(P) — 3f23(P) - 3foa( P) + 9£2( P) > 0,

which holds for all 5-polytopes P. (Note: the inequality fo — 3 > 0 holds
for all 2-polytopes, so the resulting inequality holds for irrational as well as
rational 5-polytopes.) Each linear form in the flag numbers has a dual linear
form, obtained by replacing fs by fz, where $ = {d~1—-5s:5 € S}. By
polytope duality the dual of a linear form that is nonnegative for all (rational)
d-polytopes is also nonnegatlve for all (rational) d-polytopes. We thus can
use the duals of the g¢ in convolutions to generate nonnegative linear forms
in flag numbers. The following appears in [23].

Conjecture 6 (Kalai) The nonnegativity of convolutions of the g; and their
duals imply all linear inequalities on the flag numbers of polytopes.
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Meisinger [30] showed that the conjecture is false, because starting in dimen-
sion six these inequalities do not imply all the following trivial inequalities:
fi > (‘fill) (that is, the fact that every d-polytope has at least as many i-faces
as the d-simplex).

A particular choice of convolutions of ¢g¢ form a Fibonacci-length vector
linearly equivalent to the flag vector. Another such vector, called the cd-
index, was introduced by Fine (but was first published in [6]) Stanley [38]
proved that the cd-index is nonnegative for shellable regular CW-spheres
(thus proving an extended version of a conjecture of Fine). The resulting
inequalities on flag numbers are in particular true for polytopes, but we
can expect them to be weaker than the g-vector convolution inequalities,
which are special to (rational) polytopes. See the paper by Stanley in these
proceedings [39] for more information about the cd-index.

Finally let me observe that the intersection homology picture only tells
us linear inequalities. We know by convexity considerations that the flag
vectors (in dimension four and higher) cannot be characterized only by linear
equations and linear inequalities. But we have no conjecture for a set of
nonlinear inequalities that are tight and hold for all d-polytopes.

We end this section with a brief look at two special classes of polytopes.

1.3. CuBICAL POLYTOPES

A polytope is called cubical if and only if all its proper faces are combinatori-
ally equivalent to cubes. As in the simplicial case, the flag vectors of cubical
polytopes depend linearly on the f-vectors. Also, the f-vectors of cubical
polytopes satisfy [d/2] linear equations, analogous to the Dehn-Sommerville
equations {18]. Adin (in work as yet unpublished) has defined a special
h-vector for cubical polytopes (different from the “toric variety” h- -vector),
which is symmetric, nonnegative, and computable by shelling the polytope.
The symmetry of Adin’s h-vector gives the linear equations on the f-vector
mentioned above.

A seemingly basic fact was proved only recently by Blind and Blind [12].

Theorem 7 (Blind and Blind) If P is a cubical d-polytope, then for all i,
fi(P) > fid-cube). Equality in a single i implies that P is a d-cube.

Several people had conjectured that a cubical polytope always has at least as
many vertices as facets. This has been disproved recently by Jockusch, who
constructs a sequence of cubical polytopes of increasing dimension for which
the ratio of number of facets to number of vertices increases without bound
[21]. Jockusch also conjectures a lower bound on f; for cubical polytopes in
terms of the number of vertices and the dimension.



8 MARGARET M. BAYER

1.4. CENTRALLY SYMMETRIC POLYTOPES

In 1982 Barany and Lovédsz conjectured lower bounds on the number of faces
of simplicial, centrally symmetric polytopes {2]. This conjecture was later
strengthened by Bjorner. The stronger version was proved by Stanley by
studying the effect of symmetries on h-vectors [36]. '

Theorem 8 (Stanley) If P is a simplicial, centrally symmetric d-polytope,
thén for alli, 1 <i<d/2,

hi = hiy (d) - <if1)'

Adin has given analogous results for rational simplicial polytopes with
other types of symmetries [1].

We mention finally a conjecture of Kalai [24] on centrally symmetric poly-
topes, nonsimplicial as well as simplicial.

Conjecture 9 (Kalai) For any centrally symmetric polytope
fo+t it o+ fao 2341

2. Subdivision

We now turn to polyhedral subdivisions of polytopes. Initially we will be
interested in the effect of subdivision on flag numbers. It is easy to see that
as you subdivide the faces of a polytope the flag numbers increase. Also the
boundary of an arbitrary polytope can be subdivided to get (combinatori-
ally) a simplicial polytope. This can be done, for example, by barycentric
subdivision, but it can also be done without adding any new vertices. The
f-vectors and flag vectors of simplicial polytopes are characterized. How can
we use a simplicial subdivision to give conditions on flag vectors?

Define a polyhedral subdivision of a d-polytope P to be a polyhedral com-
plex whose vertex set is that of P and whose underlying space is P. Note that
here we’re considering a subdivision of the solid polytope, not of its bound-
ary, but the subdivision of P induces a subdivision of its boundary. Also we
assume that no new vertices occur in the subdivision. The subdivision is a
triangulation if all its faces are simplices. Earlier we defined the h-vector of
a d-polytope. More properly we should have called this the h-vector of the
boundary complex P of P, i.e., the polyhedral complex consisting of the
faces of the boundary of P. The computation of an h-vector from a flag vec-
tor can be performed for any polyhedral complex. When this is done for the
polyhedral complex consisting of the boundary complex of P plus the one d-
face P itself, we find that ho(P) = ho(dP) = 1, hi(P) = hi(8P) — h;—1(8P)
for 1 < i < df2, and hi(P) = 0 for ¢ > d/2. (This is the g-vector of the
boundary of P.) Stanley showed the following [37].



FACE NUMBERS AND SUBDIVISIONS OF CONVEX POLYTOPES 9

Theorem 10 (Stanley) If P is a rational convez polytope and A is a (ratio-
nal) polyhedral subdivision of P, then for all i, hi(A) > h;(P) and h;(8A) >
hi(OP).

This gives a limited amount of inequality information. For example, if you
subdivide a rational polytope adding no new vertices and then apply the
upper bound theorem, you get inequalities on the h-vector, and thus the flag
vector, of the original polytope.

2.1. SHALLOW SUBDIVISIONS

To help understand how subdivision changes the h-vector of a polytope, we
study those subdivisions that leave the h-vector unchanged. For ease of
presentation we will restrict the discussion to triangulations. (The situation
for other subdivisions is understood as well but it’s harder to state. See
(3] for details.) Let A be a triangulation of a polytope P. For a face o
of A, define the carrier C(o) of o to be the smallest face of P containing
o. A triangulation A of P is shallow if and only if for all faces o of A,
dimC(c) £ 2dimo. Note that the condition for shallowness applied to
vertices of A says that every vertex of A must be a vertex of P, which we
have assumed anyway. A triangulation of a 3-polytope is shallow if and only
if every edge of the triangulation is contained in a 2-face, i.e., if and only if
there are no interior edges.

Here are a few examples. The bipyramid over a triangle has two trian-
gulations, one into two simplices, the other into three. The first is shallow;
the second is not. The regular octahedron has only one combinatorial type
of triangulation, into four simplices around an edge connecting opposite ver-
tices. It is not shallow. The triangular prism has one combinatorial type of
triangulation, into three simplices. It is shallow.

Shallow triangulations are important because of the following theorem [3].

Theorem 11 1. If A is a shallow subdivision of a polytope P, then h(A) =
h(P) and h(3A) = h(9P).
2. If A is a subdivision of a rational polytope P and h(A) = h(P), then A
is shallow. '

Thus if P has a shallow triangulation whose boundary is polytopal, then the
h-vector of the boundary of P satisfies the McMullen conditions (nonlinear
inequalities as well as the linear conditions). It would be interesting, then,
to have a nice characterization of polytopes that have shallow subdivisions.

A polytope is weakly neighborly if all its triangulations are shallow. (The
triangular prism is an example of a weakly neighborly polytope.) There is
a nice combinatorial characterization of weakly neighborly polytopes [3]; it
explains the choice of the term.

Theorem 12 A polytope P tis weakly neighborly if and only if every set of
k + 1 vertices is contained in a face of dimension at most 2k for all k.
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The three-dimensional examples of weakly neighborly polytopes are not
very interesting: they are just the triangular prism and all 3-dimensional
pyramids. Among simplicial d-polytopes, having a shallow triangulation is
equivalent to being |d/2]-stacked. The only simplicial, weakly neighborly
polytopes are simplices and even-dimensional neighborly polytopes. A large
class of weakly neighborly polytopes is the set of Lawrence polytopes. These
are_the polytopes having symmetric Gale diagrams. Perhaps- weakly neigh-
borly polytopes can be characterized as having nearly symmetric Gale dia-
grams, but a precise statement is known only for polytopes with few vertices
[3]. One other example of a weakly neighborly polytope is the Cartesian
product of two simplices (of any dimension).

Stanley introduced local h-vectors, which serve as measures of nonshal-
lowness at faces of a polytope [37].

The local h-vector of a subdivision A of a d-polytope P is the vector of
coefficients of the degree d-+1 polynomial £p(A, z) that satisfies the recursion

1. (0,z)=1
2. h(A,z)= D). Lr(Alr,z)R(P/F,z).
F face of P
(Here h(P/F,z) is the polynomial whose coefficients form the h-vector of the
solid polytope with face lattice equal to the interval [F, P] in the face lattice
of P.)

The local h-vector of a subdivision A depends on the numbers of flags of
A and on the dimensions of the carriers of the faces; an explicit formula for
the local h-vector reflecting this fact is still lacking.

Here is the most important theorem about local k-vectors, from [37].

Theorem 13 (Stanley) Let A be a subdivision of a d-polytope P, and let
lp(Ayz)=lo+ bz + -+ ld.,.lzd“.

1. If P is rational, then for all i, £; = £441_; and &; > 0.

2. If P is rational and A is regular, then for 0 < i < d/2, £; < £iy1.

The first of these is what is used to prove that the h-vector increases under
subdivision. We will discuss the regularity condition on subdivisions in the
next section.

2.2. SECONDARY POLYTOPES"

A polyhedral subdivision of a polytope can be obtained in the following way.
Given a d-polytope in R%, embed R%-in R4*+!, and “lift” the polytope by
assigning heights A(z) to each of the vertices z. Thus we get a set of points
{v € R¥™! : 2= (y1,72,...,%a) is a vertex of P and yg;; = h(z)}; call its
convex hull ¢. Let Q.op be the subcomplex of 8Q that is visible from way
out on the (d+1)-coordinate axis. Projecting Qop onto R? gives a subdivision
of P. A subdivision obtained in this way is called regular.
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Consider the partially ordered set (poset) of regular subdivisions ordered
by refinement. The following remarkable result is from [17].

Theorem 14 (Gel’fand, Kapranov and Zelevinsky) Given any poly-
tope P there exists a polytope Z(P) whose face lattice is isomorphic to the
poset of regular subdivisions of P.

The_polytope E(P) is called the secondary polytope of P. Note that its
vertices correspond to regular triangulations of P. The case where P is 2-
dimensional was proved independently by Carl Lee [26] and Mark Haiman
[19]. They called the secondary polytope of a polygon an associahedron.
For example, the pentagon has five subdivisions into a quadrilateral and a
triangle, and five triangulations. The refinement poset is easily seen to be
the face lattice of a pentagon. Thus the secondary polytope (associahedron)
of a pentagon is a pentagon. The secondary polytope of a hexagon is a
simplicial 3-polytope with 14 vertices, 36 edges and 24 2-faces. See [8] for
several equivalent descriptions of secondary polytopes.

The secondary polytope can be constructed from a projection of a sim-
plex onto the polytope P. This construction was generalized by Billera
and Sturmfels in their definition of fiber polytopes [10]. Given polytopes
P C R* Q C RY and a projection 7 : P — @, consider all measur-
able functions + : Q — R™ such that for all z, # o y(z) = z. Define
%(P,Q) = {for(z)dz} € R™ Thus £(P,Q) is an average of the fibers
7~1(z), as z ranges over the points of Q; it is called the fiber polytope.
Billera and Sturmfels proved that (P, Q) is a convex polytope of dimension
dim P — dim @, and that its face lattice is isomorphic to a poset of certain
kinds of subdivisions of @ induced from P. We will look at the special case
where P is a cube and @ is a zonotope.

2.3. FiBER ZONOTOPES AND DISCRIMINANTAL ARRANGEMENTS

This section contains joint work with Brandt [5]. A zonotope is the Minkowski
sum of a set of intervals [—a;,a;]. A zonotope has a natural dual object, the
central hyperplane arrangement whose hyperplanes have normals a;. The
face lattice of the hyperplane arrangement is dual to the face lattice of the
zonotope. We'll study the fiber polytope of a zonotope and see what it says
~ about the hyperplane arrangement.

Fix a set of n nonzero vectors a; in R?, no two parallel. Let Z be the zono-
tope generated by the corresponding intervals [—a;, a;]. Billera and Sturmfels
give an explicit description of the fiber zonotope [10].

Theorem 15 (Billera and Sturmfels) The fiber polytope £(Cr,Z) is an
(n — d)-dimensional zonotope,

1
%(Cn, Z) = m%j[—EJ,EJ],
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where the sum is over all (d+1)-subsets of {1,2,...,n}, and for J = {j1,jas ., jd+1}

d+1
Ej= Z(—l)'det(ajl,. e @gi 1y Qhipyy e or Bhgyy ) " €5

=1

The face lattice of T(Cn, Z) is isomorphic to the poset of regular zonotopal
sulzdz'visions of Z.

Note that the vectors E; do not have to be nonzero and nonparallel, so the
fiber zonotope may have fewer than (,},) zones.

It remains to define regular zonotopal subdivisions. A zonotopal subdivi-
siori of the zonotope Z is a polyhedral subdivision of Z each of whose edges
is a translation of one of the intervals [~a;,a;]. Zonotopal subdivisions of
Z are ordered by refinement. The most refined subdivide Z into (combi-
natorial) cubes. Some zonotopal subdivisions of Z can be obtained in the
following way. “Lift” the zones of Z by assigning each of them a height h;.
Thus we get a set of vectors (a;, ;) € R, and we take, in addition, the
standard unit vector ezy;. Let Z’ be the zonotope defined by these vectors,
and let Z;,, be the subcomplex of §Z’ that is visible from way out on the
(d + 1)-coordinate axis. Projecting Z,op onto R? gives a subdivision of Z. A
zonotopal subdivision obtained in this way is called regular.

Example 1. Take four vectors in R2. The zonotope is an octagon. It has
eight “cubical” subdivisions, having six quadrilaterals each. It has eight
subdivisions into one hexagon and three quadrilaterals. All zonotopal
subdivisions are regular. Thus the fiber zonotope is also an octagon. A
portion of the face lattice of the fiber zonotope is shown in Figure 1.

Fig. 1. Portion of face lattice of fiber zonotope
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Example 2. Consider the five vectors in R%: a; = (1,0,0), a; = (0,1,0),
az = (1,1,0), ay = (0,0,1) and a5 = (1,0,1). The zonotope Z = Z(A)
is a 3-polytope with four hexagonal faces and eight quadrilateral faces.
The drawing in Figure 2 shows the combinatorial structure of one side
of this polytope, with half of the 2-faces showing. (Since zonotopes are
centrally symmetric, this shows enough to determine the whole polytope.)
The fiber zonotope £(Cjs, Z) is a hexagon. The original zonotope has
“twelve regular zonotopal subdivisions. Four of them each cut Z into two
hexagonal prisms and two cubes. Two of them each cut Z into a twelve-

sided zonotope and four cubes. Refining these are six cubical subdivisions
of Z.

Fig. 2. 3-dimensional zonotope

Write A for the central hyperplane arrangement, A = {H?, HY,..., H%},
where HY = {z € R?: ¢; - = = 0}. There are two lattices associated with A.

The lattice of intersections L(A) consists of all distinct intersections ﬂ HY?,
i€l
ordered by reverse inclusion, with a least element 0 adjoined.
To describe the face lattice of A, consider the complement of A, that is,
n

R4\ U HY. This is a set of open cones. The face lattice F (A) consists of all
i=1 :

faces of the closures of these cones, ordered by inclusion, also with 0 adjoined.

The face lattice of A is dual to the face lattice of the zonotope Z.

For example, for the standard unit vectors e;, €3, ..., e, in R®, Z is
the n-cube, L(A) is the Boolean lattice, and F(A) is the face lattice of the
crosspolytope.

How does the fiber zonotope relate to the hyperplane arrangement? Define
a new central hyperplane arrangement B(.A) by taking as normal vectors a
maximal set of nonzero, pairwise nonparallel vectors among the E; (the
vectors of the fiber zonotope). Thus B(A) is the hyperplane arrangement
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dual to the fiber zonotope. It is an arrangement of hyperplanes in R™ but
it is of essential dimension n — d (that is, all the hyperplanes intersect on a
d-dimensional subspace) In the case where the original vectors a;, ag, ...,
an are in general position, this is the discriminantal arrangement introduced
by Manin and Schechtman; we will extend that term to the case of arbitrary
a;. We study the complement and the intersection and face lattices of the
discriminantal arrangement.

Consider all affine hyperplane arrangements that have normal vectors a;.
These can be parametrized by points of R*. An easy way to do this is
as follows: for b € R", let A, be the affine arrangement with hyperplanes
H; = {z € R" : a; -z = b;}. Call A, a parallel translation of A. It is in
general position if and only if for all I C {1,2,...,n}, ﬂ H;=0if |I| > d,

i€l
and dim ﬂ H; = d—|I| if I < d. The central arrangement A is generic if
i€l
and only eif some parallel translation A4, is in general position. This is the
case treated in [27].

Theorem 16 (Manin and Schechtman) If A is generic, then the com-
plement of the discriminantal arrangement B(.A) is the set of b for which A,
is in general position.

To see what the complement is for an arbitrary arrangement A, we need a
definition. The affine arrangement A, is in relatively general position i and
only if for all 1 C {1,2,...,n}, (Hi =0 if |I| > d, and dim [ | H; < d - ]|

iel i€l
if I < d. (The idea here is that the high dimensional intersections, but not
the parallelisms, of a nongeneral position arrangement can be eliminated by
parallel translation of the hyperplanes.)

Theorem 17 The complement of the discriminantal arrangement of A zs
the set of b for which Ay is in relatively general position.

Now a hyperplane of the discriminantal arrangement has a vector

d+1
E;= Z(_l)i det(aji, ..y Q543 @jiprs-- -y Qjgyr) * €5

as normal. Such a vector represents a minimal dependency among the a;.

Corresponding to a minimal dependency among the a; is a minimal possi-

ble violation of relatively general position in the parallel translations of A.

Suppose {a; : i € S} is a minimal dependent set. Define Hg to be the set of

points b € R" such that in the affine arrangement 4;, dim || H; = d—|S|+1.
t€S
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Theorem 18 The hyperplanes of the discriminantal arrangement based on
A are the Hg, for all sets S that indez minimal dependent subsets of {a; :
1<i<n}.

This generalizes the observation of [27] that the hyperplanes of the discrimi-
nantal arrangement of a generic arrangement correspond to the (d + 1)-sets
of {1,2,...,n}. ,

We have described the hyperplanes and the complement of the discrimi-
nantal arrangement. We now turn to the whole face structure. Every parallel
translation A, of A has its own face poset, and we can label each open face
with a sign vector in {—,0,+}, which indicates its position with respect to
each of the n hyperplanes of 4;. This gives a description of the face lattice
of the discriminantal arrangement.

Theorem 19 Two points b and b’ are in the same (open) face of the dis-
criminantal arrangement B(A) if and only if the two affine arrangements A,
and A} have the same labeled face poset.

Note that each face of the discriminantal arrangement corresponds to a
face of the fiber zonotope, which in turn represents a regular zonotopal sub-
division of the original zonotope Z. There is a natural way of assigning sign
vectors to the faces of a regular zonotopal subdivision, and under the duality
between the face lattice of the fiber zonotope and that of the discriminan-
tal arrangement, corresponding faces are labeled with the same sign vectors.
The reason for this is that both situations are different interpretations of
the same oriented matroid. The base zonotope Z and hyperplane arrange-
ment A represent a single oriented matroid. Regular zonotopal subdivisions
of Z come from projections of a higher dimensional zonotope. Affine par-
allel translations of A come from sections of a higher dimensional central
hyperplane arrangement. The higher dimensional zonotope and central hy-
perplane arrangement are duals; that is, they are represented by the same
oriented matroid, called a lifting of the original oriented matroid. (See [11].)

Example 1 continued. For the arrangement A of four lines in R? choose
normals a1 = (1,0), a2 = (0,1), a3 = (1,-1), and ay = (1,1). Let
b = (0,0,2,4). In Figure 3 we show .4, with maximal faces labeled, and
the corresponding zonotopal subdivision with vertices labeled.

Manin and Schechtman {27] described the intersection lattice of discrimi-
nantal arrangements coming from arrangements of d + 3 hyperplanes in R4
in the “most generic” case, that is, for an open Zariski dense subset of all
d-arrangements with d + 3 hyperplanes. Falk [15] showed that not all generic
arrangements have an intersection lattice of this type. We conjecture a con-
dition on the a; guaranteeing “most generic” status, and a description of the
intersection lattice L(B(.A)) of the discriminantal arrangement for arbitrary
n.
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Fig. 3. Labeled faces of an affine arrangement and labeled vertices of the zonotopal

subdivision

Forn > d+1 2> 2 let P(n,d) be the following poset. The elements are

sets {51,52,...,5m} of subsets of {1,2,...,n} satisfying

1. foreach 7, |S;| > d+1

2. for each 7,j,i# 7,|S5in S| < d

3. for each I C {1,2,...,m}, ||J Sil > d + D (ISi] - d).

iel i€l

The ordering is given by {51, 85:,...,8n} X {T1,T3,...,T,} if and only if
for each ¢ there exists j such that S; C T;. This is a ranked poset, with

rank{$1,S52,...,Sm} = Z(|S,| - d).

=1
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Conjecture 20 1. If A is a generic arrangement of n hyperplanes in R4
with algebraically independent normal vectors, then L(B(.A)) is isomor-
phic to P(n,d).

2. Among arrangements A of n hyperplanes in R% the number of rank i
elements of L(B(.A)) is mazimized for all i by the arrangements described

in (1).

We mention briefly the issue of freeness of discriminantal arrangements.
Terao [41] defined a central arrangement to be free if its module of deriva-
tions is free (the definition has its source in singularity theory). There has
been much interest in determining which arrangements are free. Manin and
Schechtman [27] computed the M&bius function for the intersection lattice
of the discriminantal arrangement coming from “most generic” arrangements
of d + 3 hyperplanes in R?. From this Orlik and Terao [32] observed that
these discriminantal arrangements are not free. No other general results on
freeness of discriminantal arrangements are known, but we know of no exam-
ples that are free. However, known examples have exhibited a high degree of
formality [13], which is a necessary condition for freeness.

2.4. CONCLUSION

This paper has touched on three interesting topics in the combinatorial study
of convex polytopes: numbers of faces, subdivision, and relation to hyper-
plane arrangements. Results range from the very old to the very new, and
we hope the reader is left with an interest in the many open questions in the
subject.
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