COMBDIHIAEOIRAl ASPTLLy UL LUHYLA & Uy RS

Margaret M. BAYER*
Dcpnrlmen! of Malhunarlcs, Unlvemty of Kansaa anrence, KS 66045 USA

o - Carl W. LEE™ ‘ ,
Dépaﬂment of Mdrhenmtics,‘ -University of Kentucky, Lexington, KY 40506-0027, USA

Contents ~ : o ,

1. Definitions and fund’lmcntal results .. ... e e T e Lol 487
10 Tatroduction . . oo ile i e P D R S 487
120 Faces. a0 v s R SRR SRR PR Wi Lo 487
1.3, Polarity “and QUANTY c 0w e PR eeliat 488
14 OVerview ...l S S e L e T 488

2. Shellings. .~ . 0o R S DLV A FIRERU ) e iy e I S S o488
2.1: Introduction ool Lo el e sl B P P R 12131

2.2, Euler'sfrelmion s e e T P TN L 489
2.3, Line shellings. .. .......ooonie PRIV SR R e LT a8
" 2.4, Shellable simplicial co)np]exes ................ e RN 490
2.5. The Dehn-Sommerville equations. .. . el L RN e 490
2.6: Complx_tc]v unimodal numberings and oncmdhom R N 492
2.7. The upper bound theorem ... ........ e e e o493
2.8, -The lower bound theorem & . o v el o it i e e e e L e 493

2.9, Constructions vsing shellings +. . ... ... PR I N S SN 494
C2T0NOLES v e P e T e e e 495+

3. Algebraic methods ©. ..o ovt. AT R S Ll Co. 496
3.1. . Introduction . .. .. .. L vl L [ el IR P .. 496
3.2, The Staniey—Reisner ting . 0. ... ... Cl BT S I R P 496
3.3, Toric varieties * ..... L. 498

Supporlcd i part-by NSF Oram DMS SSO] 078.
- Supported in: part; by NSF grant DMS-8802933, by NbA grant “MDAS04-89- H—"O-nS and by

DIMACS (Ccmer for Discrete Mathematics -and ‘Theoretical Computer Science), a. National Science’ - -

Foundation Science -and Technology Center. NSF-STC88-09648.

HANDBOOK OF CONVEX GEOMETRY

- Edited by P.M: Gruber and J.M. Wills

©- 1993 Elsevier Sucnct, Pubhshers BV All rlghts rnscrvcd

485



UJlllCllhlUll wud R I R R ST B S AR L SR AL I S S SR AL AR SR e TR
Tntersection homology ..\ vu oot s ud o u Ll e R B SRS
).-Kalai’s convolutions ....... B GNP KNS ST S
. Other parameters T R O T T
. -Algebraic shifting ... ... oen i e Gl oav e A ST
3. Rigidity and stress .. ... ..o 00 e e

[etransformsanddlagrams ....... R S S PR ORI KRS EE

Introduction ......... SER S Viea il
Polytopes with few vertices ...... A e e e e N T
Subdivisions and triangulations: ... ... ... TP R R A

Oriented matroids w. ... ... 0w L IrE O FIR N e L I e e o
Lawrence polytopes ....... T RTETRRE i e R :

iphs, o[polytopes..........'. ......... e - RPN [P R S
Introducnon ..... N R D LA - S R

Diameter ............ .. SR IR SOUTCAPE T i
nbinatorial structure ... ..o oo e I [

Introduction . ....0 et io RV e O e

-Regular polytopes +. ... e STd ool SUTTUORU I Ll e e
Numbers of combm'\inn'ﬂ 1vpes ....... L B
ISOLOPY o v D e s P I
Realization ... ... ... S O PP A O A SRR P |
Barycentric subdivisions . . .... e el R S R S ..
p-vectors of 3-p01vlopcs B T S AP i e e 3

ICES L Lo e PR e e HEE e FERNIRE

=

1.2, Faces

A convex polyhedron is a subset of R that is the intersection of a finite number of
closed halfspaces. A bounded convex polyhedron is called a convex polytope. Since
most polyhedra under consideration will be convex, this adjective will usually be -
omitted. Space limitations prevem a-comprehensive survey of the entire theory of

: polytopes; therefore, this chapter will concentrate pnmarﬂy upon.some techniques

that have been successful in analyzing their combmatonal properties. Other-aspects
of the role of polytopes in convex1ty are treated in some of the other chapters of
this volume. , :

The following rnay be regarded as the fundamental theorem of convex polytopes

Theorem 1.1. P C Rd isa polytope if and only ifitis the convex hull ofa ﬁmte set .

of points in R4,

The pt’oblem of developing algorithms to convert from one deSériptiOh of a poly-

e tope to the other arises in mathematical programming and computational geome-

try. The above theorem and related results are foundational to the theory of linear.

- programming duality, and one of the central themes of combinatorial optimization
~is'to make this conversion for special polytopes related to specific programming

problems.-See, for example, Edelsbrunner (1987). Preparata and Shamos (1985),
and chapters 2.7 and 2.8 in this handbook. R

The dimension, dim P, of a'p_olyhe'dron Pis the dimension of its affine span, and
a'k-dimensional polyhedron is called a k-polyhedron for brevily. The faces of P

R are @, P, and the intersections of P with its supporting hyperplanes. The empty.... .
set and P itself are improper faces thé other faces are proper. Each face of P is

itself a polyhed1 on, and a face of dimension jis called a j -face. If dim P = d, faces

~of P of dimension 0, 1, d -2 and d — 1 are called vertices, edges, subfacets (or
- ridges), and facers, respectively. A po ytope equals the convex hull of its vertices.

The f-vector of P is the vector f =(fo, fl,
numb01 of ]—faces of P.

.yfa=1), where fJ = f;(P) denotes the

Theorem 1.2. The collectton of all t/ze faces of a polyhed; on P ordered by mclu-
sion; is-a lattzce

This lattice is called the face lattice or boundary complé;x: of P,and two polytopes

-are (combinatorially) equivalent if their face lattices are-isomorphic. Suppose F C

G are two distinct faces of a polytope P. Then the interval [F,G] is isomorphic to

- the face lattice of 'some polytope O, called: a quonent polyfope of P. In the case
~that G =P, we write Q P/F :
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1.3. PoIal ity and dualzty

Supposeé P CRY is‘a d-polylope contammg the’ orrgm oin'its mtenor Then P*=
{x.€ R {x,y)<1forally e P} is also.a d—polytope called the polar of P (with
respect to 0). ; i

: Theorem 1.3, The face lattices of P and P* are antz-tsomorphzc

Two polytopes with antl—lsomorphrc face lattices are said to be dual; T\NO impor-: ", '

~_tant'dual classes of d-polytopes are the class of simplicial_ d-polytopes, those for

which’every proper face is'a simplex, and the class of simple d—po]ytopes, those

+for:-which every vertex is mcxdent to exactly d edges:
14. Overwew

"Our survey begins with a discussion of shellability (section 2), ‘an influential no-
tion ‘which links early results-in polytopes to-some of the most important recent

_achievements. In section'3 we discuss the powerful tools in commutative algebra "

" and algebraic geometry which have so successfully and dramatically enriched the
theory of polytopes; see also chapter 2.6. Gale transforms, another eatly tool, and

- their relationship to ‘the blossoming theory -of ‘oriented matroids, are treated in:
~section 4 (see also chiapter 2.5). Section 5 considers problems centered around the .
graphs (1- sl\cletons) of polytopes, and we conclude with section 6 which dlscusses .

some issues of realizability and combinatorial types.
“The standard reference for the foundation of the theory of polytopes and re-’
~sults through 1967 is the influential book by Griinbaum (1967).- McMullen and

Shephard (1971) and Brgndsted (1983) are briefer introductions that also contain

‘more information on face numbers: For more on regular polytopes, see Coxeter

(1963)..Klee -and Kleinschimidt-(1991) give ‘a-comprehensive. survey of results-in’

the combmatonal structure of polytopes

Lo iae uapr:u.) vy RURvLA pE MRS

‘ordered Fy;Fs;.0 . Fy such tlmt for-all j 2<] gn=1, F; ﬂU’—lF is-the union’ of
the first k facers of Fj in some shellmg of Fj, for some k 0<k <fis(F; )

2.2, Eulers relatzon

Euler s relation is the generalization of the familiar equation fy — fi + fo = 2: for~
-polytopes and provides a necéssary condition for the f-vector.’

1 Theorem 22 (Eulers relation, Poincaré 1893 1899) If Piisad- polytope, then ;

dod
Z( 1)’f/_1 (1)'1 o

.j=0

: ‘Moreover thzs is the only affine relation satzsﬁed by all f-vectors.of d-polytopes :

Refer to Griinbaum (1967) for the hlstory of this resu.lt Though there now exist

-elementaty combinatorial proofs of Euler’s relation, the fact that the.first. real
-proof, by Poincaré, involved algebraic techniques foreshadowed the recent frurtful

ifiteraction among polytopes, commutative algebra, and algebraic geometry.
In three dimensions, Euler’s relation with some srmple inequalities charactenzes

- f-vectors of 3-polytopes.

Theorem 2.3 (Steinitz 1906). A vector (f(), f1, ) of nonnegative mtcgers is the f--
vector of a 3-polytope if and only zf the following three condiiions hold.
D) fi=forfz-2
(i) 4<fHo<2h—4 e : W ‘
(i) 4<f<2fo—-4 - . ‘ : i

On the other hand, for no d >4 has the set of all f~vectors of d-polytopes been

- completely characterized, though considerable progress has been made in the case

d =4, see section 3. 8

2.3, Line shellmgs :

2.-Shellings

2.1 . Intfoductioﬁ )

~

“ A shelling -of ‘the boundary complex of a polytope is ‘an ordering Fi, Fa,.:., Fy
- -of its facets.such that F;n U’ F; is homeomorphic to ‘a-(d —2)-dimensional ball
- or- sphere for all j, 2< j<n. Many early “proofs” of Euler’s relation explo1tedv
‘the intuitively appealing and seemingly obvious property that every polytope is
_ shellable (see Griinbaum 1967), but this was not established until 1971, and until

““then-examples of nonshellable simplicial 3-balls had suggested that in fact it might

‘be false. See also Danaraj and Klee (1974) ‘McMullen and Shephard (1971) and

Stillwell (1980)
. Theorem 2 1 (Bruggesser and Mani 1971) The facets of any d-polytope P can be

To sketch the proof that apolytope P is shellable without loss of generahty assume

CoUP ={x € R (a;,x) < Lfor alli; 1 <i<n}, with ¢; normal to facet F;. Choose vector

¢ € R? such that the inner products {c,q;) are:all distinct. Relabel the facets, if
necessary, 50 that {¢,a).> (¢, @) > --+ >(c,an). Then Fy, Fp, ooy Fy is‘d shelling
order, and is called a line shelling. Geometrically, one begins at the origin, travels
along a line Lin the direction ¢, and lists the facets of P in'the orderin which they
become visible, i.e., in the order in whicl the corresponding supporting hyperplanes -

" are crossed. Then one returns from the opposite direction, listing the facets on the

other ‘side of P in the order in which they disappear from:view, This idea can
be generalized to curve shellmgs in Wthh one travels along an appropnate curve -
instead. of a straight Line; - )

That not all shellings are curve shelhngs is perhaps behevable In fact Smilansky
(1988) ‘proves ‘that there exist shellings of some d-polytope  P-such that for no
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polytope o comblnatonally equwalem lo P are the correspondmg shellmgs of Q ‘

curve shellings.

By exploiting line shellmgs Sexdel (1986) obtams an algonthm to compute the 5

~convex hull of a ﬁmte set-of points in afﬁnely general posmon in logarlthmlc cosl
per face.

2.4. Slzellable szmplzczal complexes

" The deﬁnition of shellability can be extended to 'moreéeneral compleXés A Slf’ilpll-v

.~cial complex Ais a uonempty collection of subsets of a finite set V such that G €. A "~
- 'whenever G C F for some F € A. Members of A-are its faces and the dimension’

‘dim F of'a face F is {F| ~1. The dimension of A, dim4,is max{dimF+ F € 4}. So
the boundary complex of a simplicial d-polytope is a simplicial (d—1)-complex. As
-with polytopes, faces of a simplicial (d = 1)-complex of dimension 0, 1,.d =2 and

d 1 are called vertices, edges, subfacets (or ridges), and facets of A, respectively. -

“To say Ads shellable means that all'of its maximal faces are facets and the facets
can be ordered Fy,Fy,..., By such that ‘ :

m=-1 K :
Fpn U Fi= U Gy forallm, 2<m< 1,
j=1 1—1 ’ g .
'where Gyup, Gy ony G, ate ky, > 0-distinet subfacets of A-(facets of ]’,,,5 for all

m, 2.&m < n. Taking ky = 0, thé numbers 4, readily ‘determine the f-vector of 4,
For, let'h; =card{m: k= z} Then McMullen and Walkup (1971) show

: ]+l - S . A .
d- .
]} Z(d i 1)11 forallj, 1_ <j<d-1. e

Because thése‘ equations are mver’uble

Aubabbhindebintinbhathdtuner S AR NS S

~then it contnbutes to-hgz;in the second As a consequence of the invariance- of
the A-vector, 1t must be symmeétric. '

: Theorem 24 (Dehn—Sommervﬂle equatxons Sommervdle 1927) For a szmplzczal
d-polytope, - Ll

hy=hg; foralli, 0<i<d.
Equivalently, e
: Cd=1

fi=Y= 1)d~1—1(’+1)f, foralll, S1gigd=2.

o=

i Moreover, any afﬁne relation satisfied by all f- vectors of smzplzcml d polytopes is
'an affine combination of the above equations. R )

Hence the affine span -of the set of all f—vectors of 51mphc1a1 polytopes has‘
dimension |}d]. Note that 1= hy-= Jy is equivalent:to “Euler’s relation. The
transformation of the f-vector into the h-vector-and the above formulation of
the Dehn-Sommerville equations in terms of the f-vector was already -known.to
Sommerville, although he was not aware of the alg bram interpretation of the

" h-vector (discussed in section 3).

It is an easy matter to-verify that if A is a'shellable simplicial {d — 1)- complex
such that every subfacet is contained in exactly two facets, then such a complex P
must be a pl-sphere and every shelling of A is reversible. So'it is easy to see that
the, Dehn-Sommerville equations hold for. shellable spheres as well. In fact, the

- first proofs of the Dehn-Sommerville equations did not depend upon shellability

and show. that these equations hold for homological (d —1)-spheres as well as for

someé more general simplicial complexes. See Griinbaum' (1967).. . .
Although f-vectors of s1mphc1al polytopes are-not’ always ummodal some in- =

_equalities are a ‘consequence of the Dehn-Sommerville equations. - . !

' Theorem-Z.S-(B]c)rnPr 1981).-The f-vprmr of. a_smzplzcml (d __l).spheze_satzsﬁes..____.‘w

h,—T( 1)"’(d ]\f:1 foral]z 0Ligd, ‘ (2.2

K 1_0

the quantmes h; are mdependent of the shellmg order, and can in fact be deﬁne(l via
eq.'(2.2), even for nonshellable simplicial complexes or for more general collections’
of subsets-of a finite set. The vector k = {fiy, A, .. hy) is the h-vector of A and

‘contains the same information as the f-vector. The ‘above discussion shows that

-h-vectors of shellable simplicial complexes are nionnegative.
. 25 The Dehn-Sommerville equations

Let P be a simplicial H-poljtope ‘containing o in’its interiof, bandtake’ a liné‘slxl‘ell-‘

ing Jf‘l,Fz,...,F,, of P induced by a direction c. Then the vector ¢ induces the
shelling F,;, F,,21;. .., Fy, showing that the shelling is reversible. Since each subfacet:

- is.contained in exactly two facets, if facet F,, contributes to /; in the first shelling,

h<h< <f|_d/2_|—1 Ay
and -
f[s(d—I)/A] > > g > fate

It turns out, however that the h—vectors of smlphmal polytopes are unimodal,
see section 3. .

_The equations imply that the f~vector of. the boundary of a trlangulated ball is
determined by the f-vector of the bail itseif (section 4:3). Let O be any unbounded

-simple’ d-polyliedron’ with at least one: vertex. Then there exists a sunphcwl d-r

polytope P :with-a vertex v such that the lattice- of the nonempty faces of Q is
anti-isomorphic to the lattice of faces of P that do not contain-v. The next result
isa A consequence of this duahty, and is mentioned in Bﬂlera and Lee (1981a).
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Theorem 26.IfQisa szmple d- polyhedron Wlt/l at Ieast one ver tex, then the number :

of unbounded k- faces of O equals

fk—2(~1)f(j:,’;)ﬁa 1§k<4—1-
=0 :

2.6. Completely ummodal numbermgs and orientations

Returmng to. P and the line shellmg mduced by ¢asin sectlon 2. 3, let Q ‘be the
simple”d-polytope ‘that is-the polar of P. Any given acyclic:orientation of the

‘edges of Q ard any given numbering of the vertices of Q from 1 to'n are said -

“to be consistent provided the edges are oriented from lower-numbered vertices to

" highér-numbered -vertices. Associated with any nurhbering isa unique consistent.
" -orientation, and associated with any acyclic orientation is at least one consxstent

numbering.
Our indexing of the facets of P implies that (c, a;) > (c,a;) if and only ifi<j.

Label the vertex a; of Q with the number i, i'= 1,...,#n, and consider the associated

consistent orientation. Then /; equals the number of vertices of Q having in-degree
‘i, as well as the number of vertices having out-degree i.
This numbering of vertices also has the property that for evéry IL face’ of a,

2k <d, the restriction of the associated consistent orientation to that face has:a*

unique vertex of in-degree zero. Any numbering of the vertices of O possessing
‘the above property will be called completely unimodal, and an acyclic orientation
is said to be completely unimodal if any (equivalently, all) consistent numberings

are complétely tnimodal. Such numberings and orientations may be regarded as

abstract ob;ectxve functions. See also Brgndsted (1983).

Theorem 2.7 (Wﬂhamson Hoke 1988) The followmg are equzvalent for a given
" numbering of the vertices of Q:

LUinuiaicinitd dopetis Uy LURFRA pAR)yipto. R

Theorem 2.8 (Kalai 1988c) The fol[owuzg are equzvalent for an acycllc orientation
0*
(i) O* is'completely’ unzmadal
(i) FO" niinimizes O over all acyclic orientations.
(iii) fO equals the total number of nanempty faces of Q.

‘From this Kalai obtams a new proof of a result first estabhshed by Blmd ‘and

,Mam—Lev1tska

Theorem 2.9 (Blmd and Mam—Lev1tska 1987) ‘The edge-graph of a szmple poly-
tope completely determmes its entire combinatorial structure.

2.7. The upper bound theorem

* Given integers d 22 and n>d +1; take the convex hull of any n distinct points

on the moment curve (¢, ¢%,:..; t") The combinatorial structure of the resulting

- simplicial d-polytope C(i1,d) is independent .of the actual choice of points, and
- this polytope is referred to as the cyclic d-polytope with n vertices. It turns out that

every subset of k < §d vertices of C(n,d) forms a face (C(n,d) is neighborly), so it
was conjecmred that this polytope has the largest number of faces of all dimensions

of all'convex d-polytopes with n vertices. Explicit formulas for f;(C(n,d)) can be

found in Brgndsted (1983) Grunbaum (1967) or McMullen and Shephard (1971);
we mention that

= faea(Cln, d));< L:(ddﬂ“l)J) (’I;El%id;z)b)-

. Theorem-2.10 (Upper Bound Theorem, McMul]en 1971) Let P be a d- -polytope
. with n vertices. Then f;(P)< fj(C(ll d)) forall j, 1€j<d -1

A perturbatlon argiment shows that it suffices to prove: this result for sim-
p11c1a1 d-pélytopes. McMullen -uses properties  of -line shellings .to show that
1 (P) < ("1 for all i, 0<i<d. But the fact that &;(C(n,d)) = (”"‘“‘"l) for

(i)~ Tienumberingis completely unimodal:

(ii) “h; equals the number of vertices having i) in- degree (out- degree) iin the asso- .

. ciated consistent orientation.

(iii) For all k' 1<k<n, and any face F, the edge-graph induced by the set of

-vertices on'F numbered less than (greater than) k is connected.
(iv) The induced ordering of the facets of P is a (not necessarily curve). shelling.
(v) Inevery k<face of P, 2<k <d, there is a unique vertex of in-degree (out-
degree) zero with respect to the induced consistent orientation of the edges of that
face. : - S

Kalai characterizes completely unimodal orientations in-the case that the edge-
graph of a simple d-polytope Q is given, but otherwise its facial structure is un-
known. For any acyclic orientation O of the graph; let ho be the number of vertices
with in-degree k. Define f° = hg +2h0 +4RG +- -+ 2‘1[10 : :

all i, 0<i<|Ld], together with the Dehn-Sommerville equations, imply that
Chi(PY< hi(C(n,d)) for-all'i, 0<i<d. The result’ ow-follows .immediately from

‘the observation that the fj are nonnegative combinations of the /z;: See McMullen
and Shephard (1971) for an account of the solution of the Upper Bound Conjec-
ture. The proof can also be found in Brgzmdsted (1983)

2.8. The lawer bound theorem

‘Starting with 2’ d-simplex, one can add new veitices by ‘building shallow pyramlds’

" over facets to obtain a simplicidl convex d-polytope with # vernces calleda stacked
. polytope It P(n d) is such a polytope then :

]

£ (d)n—— ‘j’:})], : 1f0<]<a' 2,
Y @=1n—=(d+1)d- 2), ifj=d—1.
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It was- conJectured that no sxmphcxal d-polytope with vertices can have fewer

faces than P (n,d),and 4 cértain reduction implied that it-was sufficient {o'show this -
- result for fi. Barnette proved this conjectire about the same-time that McMullen”
established the Upper Bound Theorem. Barnette’s argument does not use the full
. strength of shellability, but relies upon'a weaker ordering of the facets of the dual '
s1mple polytope The proof also appears in Brgndsted. (1983) :

5 Theorem 2.11 (Lower Bound Theorem, Barnette 1971 1973) Let P bea szmplz-"v
- cial d-polytope with n vértices and P(n, tl) bea stacked d- polytope with nvertices.
. Then ‘ :

~f,~(P)>fj(P(r'zd)) fo—azzj,1<j<d Lot e (23) .~

Mareover ifd>4 and equalzty occurs in (2.3) for any one value of tlzen P omust

itself be stacked.

- 'The case of equality for j=d—1 was proved by Barnette and for the Temaining -
" values of j by Billera and Lee (1981b). Connections between the Lower Bound*

Theorem and rigidity were discovered by Kalai and will be' discussed in section 3. 13.

Another type of lower bound" theorem was proved by Blind and Blind: Write - »

C? for the d-cube.

~Theorem 212 {(Blind and Blmd 1990) Let P be a d- polvtape wnh no trmngulaz :

faces Then

H(P)=f(CY forallj,0<]<d Lo Sy '(24)'

. Moreover, if equalzty occurs.in (2.4) for any one value of i then P must itself be a

d-cube

2.9. «Constructians using Shellings

vaen any two posmve integers s and i, there is'a umque sequence of integers -
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is the h-vector of some shellable simplicial (a' 1) camplex tf and only ifhg=1and
I1,+1<h<‘>forallt, 1€igd= 1 e : :

“‘The algebralc methods that 1rnply the necessity of these conditions are discussed

-in section 3.2. But the sufficiency is ‘much more stralghtforward Given 4 satisfying’
“the pseudopower conditions; let 7 = hj+d and V = {1,2," ..yn}. Take % to be the
_collection of all subsets of 'V of cardinality d;and %; to be those members F of F
. such that d+1-i is the smallest element of V niot in F. For two members F and G

of &, say F < G if the largest element of V in their symmetric difference is‘in G.

‘Por each i,0<i <d, choose the first (in'the given ordering) #; members of %;. The

resultmg collection @ consists of the facets of the desired shellable complex, and
the given ordering induces the shelling order. This result and the accompanying
constriiction are reminiscent of the charactenzauon of the f-vectors of arbitrary
simplicial complexes by Kruskal (1963) and Katona (1968): -

Now suppose we have a-vector 1 = (hg, k.- ., hy) of nonnegative mtegers such
that ity = h,.; for alli, 1 <i < d;and hiy—H; s(h —h )< foralli; 1< <]_7d 1]
These are known as the McMullen conditions; see-section 3.4. Billera and Lee
(1981b) show how to extend the above construction to obtain ‘a shellable d-ball
whose boundary is a'simplicial (d — 1)-sphere having-fi-vector /. Set w=h; +d,
V = {1,2,...,n}, and regard 'V as the set of vertices of a cyclic (d + 1)-polytope
Clin,d+ 1) wnh n vertices. For all i, 1<i €| }d], define F; to be the collection of
all subsets-F-of V of cardinality'd +1 corresponding to facets of the cyclic polytope
C(n,d+1)such that d+2-2i is the smallest element of V not inF. For two members -
F and G of F;;say F < G if the largest element of V in their symmetric difference
is in G. For each i, 0K <|_ d], choose the first (in' the given ordering) A; — ;-
members ‘of &; (with.the convention that h_; = 0).: The resulting ‘collection €
consists of the facets of a-d-ball A which is shellable in the given ordering. Further,

h(A) = (Hgyhy=hg B —hy; . Sshyapy— Biaya) 43 0,0,-4.,0), whence the h-vector of -

the boundary 84 of 4 équals (ho,hl, syhy) (see Theorem 4.9). In fact, 84 can be
realized as the-boundary of a snnphcxal convex d-polytope;see section:3.4. -
Kalai generalizes this construction to prove -that .there ‘are many  simplicial

spheres:

TS n,_1 >- > n; 2] 21 such that.

() (2)- ()

The ith. pseudopower of h is then deﬁned as

h<,>=(n;,+1>+(n,_1+1 ++ lej+1 -
SN+l i Jj+1

For.convenience we -define 0™ to be 0. for any positive mleger L

Stanley characterized the h-vectors (and hence the f- vectors) of shellable sxm- )

plicial complexes

v'vl“hem"em 213 (Stanley 19’77); A vector h = (hos .. 3 hy) of nonriegative integers

Theorem 2.14 (Kalal 1988a). For fixed d the number of cambmatorzal types of
triangulated (d — 1)-spheres with n vertzces is between e”"“d Y2 and ne™ ) where b

.and ¢ are positive constants,

A companson with Theorem 6.3 shows that there are many more simplicial
spheres than polytopes .

2.1 0.: Notes

Geometric analogues of Euler’s relation and the Dehn-Sommerville equatlons can

- be found in Griinbaum (1967). Lawrence (1991) uses relatives of these ‘to-show

that the volume of a polytope described by rational mequah‘ues is not polynomially ‘
expresmble in terms of the descnbmg data. :




496 - P M.M. Bayer, C.W. Lec"

* The class of ‘boundary complexes of simplicial polytopes is contained in the
class of shellable spheres, which-is contained in:the class of pl—spheres which'is

. contained in" the class of .topological spheres which is contained in the class"of

homological spheres. ‘All'inclusions ‘are proper. For exaniple; there exist shellable
spheres that are not polytopal- (Danaraj and Klee 1978b), and the- nondemdabduy

- result of Volodin, Kuznetsov and Fomenko (1974) for determining whether or not

-a‘given complex i is a pl—sphere 1mphes that’ nonshellable pl—spheres must exist (see

Mandel:1982). :-

In two dimensions the 51tuat10n is somewhat sunpler see Danaraj ‘and; Klee

~ (1978a), Gritmbaum (1967), and section 5.2.

g Theorem 2.15. The following conditions are. equzvalent fora 2—complex §

(i) The complex is polytopal.
- (i) The complex is a sphere..
(m) The complex is-a shellable clased pseudomamfold

In three dlmensmns all 51mphc1al 3-spheres with at most 9 vertices are shellable
(Danara] and Klee 1978b)

3. Algebraic methods

“ 3.1 Introduction’

In this section we explore the developing rélationship between techniques in com-

mutative algebra and algebraic geometry and results in the combinatorial structure

of polytopes. This intéraction was launched by Stanley’s use of the Stanley-Reisner
ring to extend.the Upper Bound Theorem to simplicial spheres, and was further

propelled by Stanley s short and dramatic proof of the McMullen conditions based - '

upon ‘connections’ between the Stanley—Rexsner ring of a polytope and the colio-
mology of an associated toric vanety ; .
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Let R,; be the vector subspace of RA generated by. the monormals of degree .

--m in"R4. This'gives a grading of the Stanley=Reisner ring, Rs'= B, 5 ¢ Rim- As

a k-algebra Ry is generated by the monomials”of R1, that is, by the variables.’
Xy, %5; .+ ., x, themselves. The graded componert R,;-is spanned by ‘the degree:
m monornials whose supports ‘are in the  compléx: The number of monomials of
degree m with given support depends only on the size of the support. Thus we can -
write the Hilbert function of the graded algebra in terms of the: f-vector of ‘the
complex The Hilbert Junction of the graded algebra Ry is the functxon H:N-=N
given by H,,, = H(Ry;m) = dimy R;: If Aisa simplicial complex 6f dimension'd—1~

' l(for example the boundary complex of a sunphmal d—polytope) then (Stanley 1975)

o g5t L ifm=0, :
W -1 ‘ S
- - : : 31
HH(RA,m) Z (m )f,, 1fm> 0. ! e - (ERY)
) =0 - : . [

Macaulay essentially glves a numerical characterization of the Hilbert functions
of graded algebras generated by their degree 1-elements. Recall the deﬁmtlon of
pseudopower given in section 2.9. " ‘ . .

Theorem 3.1 (Macaul'ly 1927). HU,Hl,Hz. o I8 the Hilbert flmctioﬁ of a deed
algebra generated by dégree'1 elemems lf and only if Hy = 1 and, far m >0,
0 <I_Im+l \H<m>

We could apply Macaulay’s Theorem to the Hﬂbert function of the Stanley—
Reisner.ring to get inequalities on the f-vectors of simplicial complexes. We are
interested primarily in polytopes (or spheres); and in this case the inequalities say
little, Instead we wish to apply Macaulay’s Theorem to a quotxent of the Stanley—
Reisner ring.

A graded ring is called Cohen—-Macaulay if its Krull dunensmn equals its depth
‘We do not have the space to elaborate on.this; for more information see Stanley

(1975). We note only the following property of Cohen-Macaulay rings,-If a.graded ...

~3 2 The Stanley—Rezsner ring

The Stanley—Relsner ringofa sxmplieial eomplex enicodes the simplices of the com-

- plex as monomials: Reisner’s Theorerni allows a translation of topological proper-
ties of the complex into algebraic properties of the ring. In particular, the Stanley—.
Reisner ring of the boundary complex of a simplicial convex polytope is Cohen- - -

Macaulay. This is what enabled Stanley to’prove the Upper Bound Theorem for
simplicial spheres. He also used it in his proof of the necessxty of the McMullen

 conditions. In what follows % is a fixed mﬁmte field.
Let A be a simplicial complex with vertices vi; ;... ; Uy, €ach simplex (face) be-

ing identified with its set of vértices. In the polynomial ting k[xy; X3, ., x,], let 14

be the ideal generated by all monomials X Xi; -+ -X;,-such that {v,,,u,,, ,u,J} 'é ‘
A. The Stanley—Reisner ring (or face /mg) of ‘A ‘is the quotxent rmg Ry =

kixyyx; <oy xn) /14 See Stanley (1975).

* k-algebra R of the above form is Cohen-Macaulay of dimension d, then R has

linear (degree. 1) elements 81,65,:+., 64 such that R is a finitely penerated, free

module over. k[6;; 6, .., 85 In tlns case-the Hilbert function & of the quotient -~
' algebra R/(61, s, 9,1) is related to the Hilbert function / of R by the following

simple relationship: .= e s

Zh il = (1 = t)"ZH it

We apply this to the Stanley-Reisner ring of a sunphmal sphere.- The theorem

- of Reisner (1976)-gives a topological criterion for the face ring of a simplicial com-

plex to be Cohen-Macaulay. In ‘particular, the Stanley-Reisner rmg of a:sphere is
Cohen~Macaulay. The.same is true-for a sllellable complex; see Kind and Klein-
schimidt (1979) for a more elementary-proof. The Hilbert function of the quotient -
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- f-vector of the simplicial complex. The Hilbert function of the quotient turns out

1o be the A-vector, and in fact is given by eq. (2.2) of section 2.4.Recall that the
Dehn-Sommerville equations for simplicial convex polytopes have ‘the simple form

hi= Ty -

- Now Macaulay’s Theorem can be applied to the ‘qﬂ@tieht algebré R /(01, 0,000
6,), whose Hilbert function is the hi-vector. This gives the relations /iy = 1 and; for.

m>0, 0 by SHSM> i . I EIE Oy e
These inequalities imply ‘ the following: for ‘a’ simplicial d-polytope “and- for
0<i<id, o , Sl - o :

~Ju<<"’d:"f>

‘These inéq‘ualities imply the'Uppér Bound Theorem for simplicia‘l spheres.rTh‘é

Upper Bound Theorem was first proved by McMullen for simplicial polytopes (see ‘

section 2.7). It was proved for arbitrary simplicial spheres by Stanley (1975).using
.. the' method outlined here. : ST

3.3. Toric.varieties

s

per Baund Theorem:for simplicial spheres, Stanley learned of a connectioni with
algebraic geometry. .. - e . ) :

- A certain- type of algebraic variety, a projective ioric variety, comes equipped
with a' moment map into real Euclidean space. The image of this map is a rationial
.convex polytope (rationality here refers to the coordinates of the vertices). When
‘the toric variety has only relatively mild singularities, the corresponding polytope,
is simplicial. From the combinatorial viewpoint, rationality places no restriction

on.simplicial polytopes — every simplicial palytope is.combinatorially équivalent ..

to-a rational polytope; This is not the. case for nonsimplicial polytopes — there

_algebra R/(6;, 6,...,8,), like that of R itself, can be expressed ‘in terms of ‘the

After he introduced, the face ring ‘of a’simplicial comiplex and prcﬁled the Up- -
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Tp to be Ep\ {0} modulo the relation x ~ y.if and only if x = Ay for some L eC*
This is'the toric variety associated ‘with the polytope P (though not precisely the -

-“variety disciissed by Danilov 1978). ,

The ‘cohomology ring. of -Tp* for simplkicialk* (rationalj polytopes P is com-

_-puted by Danilov ‘(1978). It turas out to be isomorphic ‘to the quotient A =

Ri/(61, 6,0, = @D, > o Anm of the Stanley-Reisner ring modulo a‘certain lin-
ear system of parameters (here A'is the boundary complex of P): Later Saito (1985)
proved that the Hard Lefschetz Theoremi holds for:the varieties Tp-(P.simplicial):
This ensures the existence of an'element » € A;, called a hyperplane section, such
that the maps A; <% A;;; “are injective for all i Ogig%(d —1). ' Thus Asfw is a

graded algebra with Hilbert tunction H{(As/w,m) =k~ by, for O<m <ld.

3.4.. The McM ullen: canditibns

" We are now able to state the major theorem, conjectured by-McMullen (1971) and -

proved by Billera and Lee (1981b) and Stanley (1980b). -

Theorem 3.2 (The McMullen conditions). A vecior (hg o g) € NP s ghe b
vector of a'simplicial polytope:if and only if :

LGyl =hy_; for alli, 0<i<d. L

(i) o =1, and hi Shig for all i, 0<i

. <3
) B = b <0y ki)Y forall i 1<

d=1." -
<id-1
Since the si-vector and f-vector are linearly equivalent, this theorem characterizes
the f-vectors of simplicial polytopes. Of course, it also characterizes the f-vectors

“of simple polytopes, which are ‘obtained by reversing the f-vectors of simplicial

polytopes. : . : R :
‘The . “sufficiency” was ‘proved constructively by Billera and Lee. They use a

. ‘monoinial algebra with Hilbert function #; — h;_y to select a certain ‘subset @ of

facets of the cyclic polytope C(n,d + 1) as.described in section-2.9. Then they
show.that by s_el,e,cting.p.oints’;(t;,.L,?,;....,.,-t,f"il-)-on—the—mement'curve'such~that—rr<<“

are.combinatorial types of polytopes not realized. by any rational polytope_(see..
sections-4:2-and-6:5): T ; o s

- The toric variety. can be described’ explicitly in terms of the convex ‘polytope.

See Fine ((1985) and chapter 2.6. Let P be a convex d-polytope with vertex- set
Vo= {vv5,00 0,1 € QL Any affine dependence on V with' integer coefficients -
‘can ‘be written in the form’ Yo b= Sty civy, where for all 4, biyc;€ N and
Dot bi =30 ¢ Let slp be the set of pairs (b, c) of coefficient vectors arising
in this manner. Using the notsdtion +* = xf‘xgz -<x" with the convention 00 — 1,

~ define Ep to be” . : : : :

: Ep={xeC':x"=x"for all (b;c) e dlp}.

- Although dp is an infinite sét, for a rational polytope P it is a finitely generated -
semigroup. Thus Ep is'a subset of C" defined by a finite number of polynomial
equations, hence is an algebraic variety. Finally ‘Ep is “projéctivized”: we define !

I €.+ < 1, one can place a new point v beyond precisely the facets in 6. The
construction is completed by taking the convex hull Q of C(x,d + 1) ard v and
passing to.the vertex figure of v (the Intersection of Q with a hyperplane strictly .~
separating v from the other vertices of Q). : * : :

" .-The “necessity™ of the McMullen conditions, i.e., that all #ivectors of simplicial

polytopes satisfy-(i~iii), was proved by Stanley using toric varieties, ‘as ‘outlined

~in section 3.3. Note that condition (i) (the Dehn=Sommerville equations) reflects

Poincaré dnality of the cohomology of the toric variety, but we have seen much

simpler proofs (section 2.5). :

Stanley’s proof of the necessity of the McMullen conditions is unsatisfying for
several reasons. One reason is that:the Hard Lefschetz Theorem, which is cru-

. cial to the proof, lies well beyond :combinatorics. The proof depends heavily on )
the specific geometry of the polytope’s embedding, not just on its combinatorial -

structure. In particnlar, it does not prove the McMullen conditions for h-vectors.of
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simplicial s‘phe‘feé that are ‘not pol}?topal' (see section 6.5).. McMullen ,himsel'f did

‘not know of the toric variety conrection when:he made his conjecture. His idea,

arose. from. consideration: of the geometry:of polytopes: coded in‘Gale diagrams ..

(see section 4).- e
3.5, Polytope pairs

The McMullen conditions provide a characterization of the f-vectors of simiple
polytopes; which arise naturally in optimization. In this context it is also natural to

‘ask about unbounded polyhedra. Just as duality establishes a’correspondence be-

~ tween simple polytopes and simplicial polytopes, 50 also is'there a correspondence’
‘between unbounded simple polyhedra and simplicial polytope pairs.. 0
A (simple) polytope pair ‘of type (d,v,d';v') is a pair (P*;F*), where P* is a
“simple convex d-polytope with v facets and F* is a d'-face of P* with v’ facets.

Associated with a polytope pair (P*; F*} is an unbounded simple d-polyhedron

=¥, obtained by applying a projective transformation ‘that sends a supporting hy-

*.-perplane for F* onto the hyperplane at infinity. The polyhedron Q" has recession ..

cone of dimension ' + 1 Conversely, every simple, pointed convex d-polyhedron
with (d' + 1)-dimensional recession cone can'be associdted to some polytope pair
*- of type (d,uyd’;v'), for some v and v, L ' S
‘Methods for facial enumeration in simplicial polytopes were used by Klee (1974),
Billera and Lee (1981a), Lee (1984), and Barnette, Kleinschmidt and Lee: (1986)

to develop bounds on the numbers of faces of polytope pairs. The pairs are first

dualized.- [ R o :
o Letk=d—d andr=d= d' +v'. The dual of a simple polytope pair (P*,F*)
of type (d,v,d',v") is‘a simplicial polytope pair (P;F ). of type -(d,v,k,r), where

P is a simplicial convex d-polytope with v vertices; and F is-a (k= 1)-face of P -

contained in'r.— k k-faces of P. Let I' = 8P\ F, the simplicial complex obtained

y (u—A;\i—l)f

LAFIUIRU T Ragsv L Uy LU LA pp A IV . bl

i O<ick =1,

it ik PR R
(u ;»l l)_jy(u d“‘k" l), lf k‘\<1<”,

k

‘max Iz;(l")'= i il G

d-i -
Uiy
S ) —r+d,
0,

(i) If L(d—1) <k <d—2 then

: maxlz)(P); e
SUNEER B (i B /8
(u—d;'n‘—l)’ S
i1
d—i 11
o maxk(D) =9 -1
(i =r+d,
0,

Moreover, for each of the parts of
achievable. - - . v

Theorem 3.4 (Lower Bound Theore

L) fa+lgicd—k=1, ‘
Lif d=kgigd =1,
ifi=d.

{0, if 0gign,

+1gigd.

“if Ogign,.

ifnrlgigk =1,

ifi=k,
iFh+igicd=1;
if i=d.

() and -(ii); the maxima are simultancously

m for polytopé pairs),.‘Let 4<d < r<v and

2<k<d=2 Putn="1{3d| and m= |3(d=k)|. Let (P;F) range over all (simplicial).

o palytopg pairs of type (d,v;k,r), taking I = 8P \'F.

" by  deleting the-face F (and all faces containing F } from the simplicial complex min/y;(P)= { L If L= 9’ (32)
8P, the boundary of P. The faces of the boundary oI" of I correspond to the ~ L v_fd’ JfIsisn. ST
unbounded faces of O*. Thus to estimate the numbers of bounded and unbounded ( o o '

faces of O* we use estimates on the numbers of faces (or h-vectors) of P and I A if-i=-0;
‘ , : o L < | v=dy o ifILISk-T, , ,
Theorem 3.3 (Upper Bound Theorem for-polytope pairs).-Let 3 d < r<v and mink(N)y=4{ v—d=1, ifi=k S (33)
1<k <d =2 Put n=\3d|. Let (P, F) range overall (simplicial) polytope pairs.of AT [ ik <i<d-1 ‘ )
type (d,v,k,7), taking T =8P \F. R 0 2 ‘ifi—~d\' SR
v =d.

@ 1<k %(d," 1) then

¢, L o Oigh,
: e ol . poedii—kidy ) redti—k=ly ar . .
maxh(P)=d C 0T RN R (TR i ke+l<isn, “
f ~ v Bl Qi B (ivarg B fn+lgisd—k=1""
i, S Fd-ksicd

Fork=1and3<d< r <v, €g- (’3.2), siays the same, but (3.3) becq:ﬁés

1,7
v-—d-1,
lli—)',

0,

minfy(IN) =

. All bounds can be achieved.

ifi=0,

‘l:fi=1)

if 2€igd=-1,

ifi=d
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Theorems 3.3 and 3.4 are proved in Barnette, Kleinschmidt and Lee (1986) and

Lee (1984), respectively. Theorem 3.3 applies as well to the case when P dsan.

arbitrary simplicial sphere, but the lower bounds of Theorem 3.4 depend inan

essential way upon the,McMullen conditions. - ‘ 3 i
36. Centrally syﬁzmetric simplicial polytopes .

A d-polytope P in R is centrally symmetric if for all points v in'P, —vis'also in
P. Bjorrer conjectured (unpublished) that the h-vector of any centrally symmetric
“simplicial polytope satisfies the inequality ;= ;5> = () forall i, 1<i g id.
Stanley (1987b) proves this conjecture using the connection with toric ‘varieties.

This also proves lower bounds on the f-vectors of centrally symmetric simplicial

polytopes, conjectured earlier by Bérany and Lovdsz (1982).

“-Any-¢entrally symmetric-simplicial d-polytope is combinatorially equivalent to
a centrally symmetric simplicial d-polytope with rational vertices, The associated
‘toric variety T and'its cohomology ring inherit the action of the group ‘of ‘order 2
on the polytope P by virtue of central symmetry. Furthermore, this group action
on' the cohomelogy ring commutes with niultiplication by the hyperplane section
@ (see section 3.3). So the cohomology ring decomposes as a direct sum of two
-graded vector spacés (one of which is a ring, the other-of which is a module over

this ring), on each .of whiclh multiplication by w is injective. This' gives Stanley’s -

““theorem.

Theorem 3.5 (Stanley 1987b). If P'is a centrally symnie/ric simplicial d-pOlytope, S

then : -
d

1i(P) -—]1,-_1(P)2i(i> - (i 41) Joralli 1<i<id.
We summarize some ébnsequences of this theorem. 7

Corollary 3.6. Ler P bé a centrally symmetric “simplicial - d-polytope, and let
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define the h-vector.of a nonsimpliéial pofytope by the same linear transformation

~of ‘the f-vector; but nione of the interpretations' of ‘h-vectors ‘would ‘continue to -
hold. In fact the vector so defined has negative components for some :nonsimpli-
“cial polytopes: Furthermore, the f-vector captures much less of the combinatorial =

structure  of ‘a :nonsimplicial than of ‘a éimplicial polytope.: Thus in the study of
arbitrary polytopes, attention has focused on other parameters.: R T
The one that most directly generalizes the f-véctor is the flag vector, Let P-be -
a.d-polytope. A chain of faces'of P, ) C Fy C F,'C.+:+'C Fy -C P, is called an
S-flag, where S = {dim F;: 1 <i <k}. The number of S-flags of P is denoted fs(P),

- and ‘together these flag numbers form the flag vector, Fs(PYscon..a=1y €

N?'. When writing a specific flag number we will drop the set brackets from the
subscript. The f-vector is the projection ‘of thé flag vector onto the components
with singleton indices: A flag number f of a d-simplex is a product of hinomial

“coefficients depending only on'd and §. Thus a flag number f5(P) of a simplicial
‘d-palytope P depends only onthe number of faces whose dimension is the largest

element of § (and on d and §). - o . 7
The problem of characterizing the f-vectors of polytopes extends to the problem

~of characterizing the flag vectors-of polytopes. The main result on this problem is
- the specification of the affine hull of the flag vectors of polylopes of fixed dimen-

sion.

Theorem 3.7 (Bayer and Billera'1985). The affirie dimension of the flag vectors of
d-polytopes.is e, — 1, where (e;)-is the Fibonacci-sequence, ey =y i+ ey-n, €g'=

ey = 1.. The affine hull of the flag vectors is determined by the equations -

k=1 :
T s () = (1= (1R (),

J=i+l

where i<k =2, i,k eSU{~1,d}, and § contains no i)irege}' between i and k.

...~ These_equations are called the generalized Dehn-Sonimerville-equations;-their

(g, iy iy g be s hevector. oo

() hiz (), forall i, 0<i<d. e ;
() 22y 2n = d) (Y, for all i, 0<i < d=2.

- Y fa 22w 2(n ~d){d=1).

(i) Jf forsome §, 3 €1 el Lon{#) = (',.'), then /Jj(P) = (‘I') Jor all j; and P-is’

affinely equivalent 10 a crosspolytope.

Part (i)/ of the cdro]]ary was first conjeélure’d by Bj'o'rner; parts (ii) and (ﬁi) are

the conjecture of Bdrdny and Lovisz.
37 Flag vectors

- In"the previous sections of this chaptér, the results on f—veéfors of simpiicial poly-~
.-topes stemmed from interpretations of the hi-vectors of the polytopes. One could

proof is' similar to Sommerville’s original proof of the Dehn-Sommerville equa-
tions for simpliciil polytopes. For polytopes of dimension three, the generalized
Dehn-Sommerville equations imply that the flag.vector depends linearly -on the

“[-vector. Thus Steinitz’s characterization of the f-vectors of 3-polytopes (Theo-

rem2.3) extends toa characterization of the flag vectors of 3-polytopes. ‘
Some inequalities aré known to hold for the flag vectors: of all polytopes. The
most important of these was proved by Kalai using stress (see section 3.13).

Theorem 3.8 (Kalai 1987). for‘ all d-polytopes P o
i P d+1\_ .
- JoP)=3L(P)+ filP)—dfy(P)+ (=, ") 20. |

k Th'e-ﬁa'g 4‘yector of a d-polytope :P is a refinement of the f-vector of a simpli:
cial d-polytope A(P); called the barycentric subdivision of P (see section” 6.6);
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““the relationship is f; (A(P)) = zls‘_,ﬂ fS(P) The McMullen conditions applled to

.the ‘barycentric subdivision: thus give inequalitie$ on the ﬂag vector of the origi--

nal polytope, but these are not sharp.-The barycentric subdivision of ‘a polytope

.is ‘an ‘example of ‘a completely balarnced sphere, studied in Stanley (1979) There
Stanley defined a refined or extended li-vector of a completély balanced sphere .

(see:sections 3.11 and 6.6). This extended A-vector is-the Hilbert function of the

Stanley-Reisner ring with: respect to a fine grading. Unforturately, no analogue'

of the Macaulay theorem (Theorem 3.1) is known for the extended h-vector. The

extended k-vector of a shellable completely balanced sphere can‘also be calculatcd '

froma shellmg

3.8.-Dimension four

“Four is the Jowest dimension for which f-vectors of polytopes have not been char-

. acterized, and the same is-true of flag vectors. In the late sixties and-early seventies,
.- f-vectors. of 4-polytopes. were studied intensively, resulting in the characteriza-
tions of the projections of f-vectors of 4-polytopes-onto all pairs-of components

(Griinbaum 1967, Barnette and Reay 1973, Barnette 1974). By duaht) only Tour -

‘projections need be determined.

'lhemun 3. 9 (i) There exists a 4~polv/ape P with (fo(P) j,(P)) = Uo,fﬂ if (rml‘

only 1[ fo and’ 1 are.integers satzsfwng
mom@a(ﬂ
and (fi. 1) € {(6,12),(7,14);(8,17), (10,20)}.

(ii). There exists a 4-polvtope P w:rh (ﬁ,(P) ﬁ(P)) = (f),f-,) if and only-if fo-

mid Jr are integers satisfying
;ﬁﬁwa+(h¢%”)<ﬂ>ﬁ—ﬁmv

Vo J2) € LR, 126, 19007, ]w) 7 h) (\ b) (h M (9 16

(P = (7[, 73) 1/ and onfv if i

), (16,15), (17,15); (17 16) (1& lb), (Lo 17), (21,19),

o 20)’ (24'20), (26, 21)}
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The ongmal proofs that the mequalmes are satisfied by :the f—vectors of 4--.

polytopes used arguments about chains of faces. The mtroduchon of flag vectors
thus simplifies the exposition of the proofs :

Here are the ‘inequalities known-to hold for the ﬁag vectors of all 4-polytopes
(Bayer 1987). .

Theorcm 3.30. Let fy, fi, fz and fm be ﬂag numbets of a4 polytope Then
() fa—3H20, . .
Sl f=3fi 200

(i) foo—3fa+fi—4f+10> 0 :

(iv) 6fi—6fo—Fn20- -
W h-520 |
M) o=fi+tfo—=520,

(vi) 2(fee = 3f) + i< (),

(viid) 2(fie —3fi) + o< (70,

(ix) fie ~4f2+3fi ~2h < E)

) foz+fo=2f = MAW%W

The lincar mequahhcs (i) and (v) are obvious: m(,qual!ues (i) and (vi) are their

inequalities are in Bayer (1987).

The projections of the incqualities of Theorém 3.10 onto f—VCC(Olb give a 1 11 the
inequalities appearing-in Theorem 3.9, and one other linear inequality. Tlm in-
equality was con;eclured by Barnette (1972). -

Theorem 3. 11 If (fo,fl,f f3) is'the f—veataz of a 4+ polylope then
. —3f+7f —10fa+1020.

T

.- duals. Inequality (iii) is Kalai’s inequality (Thcorem 3.8); The plOOf\ of the other =7

!

‘of ke

“in B’wcr(]‘)??’) the tightness of the inequalities is analyzed:

Phow Sy proved the M “"1”11*,11

or ashomology ranksfora‘toricva
polytope even if itis not simpdicial,
wse. Different geometric realizations
ial polytope;have toric varietics with
oloay ranks. This is no-longer the case for nonsimplicial polytopes.
{ cwed that the torie varieties associated with twe different (ra-
temal) peomenic red h,unons of the rhombododecahedron have di{'fcreht regular
homology ranks. : oE

The middle perversily intersection homology Betti numbers of-a toric varxcly

Lirivies: can the worse in - Uis
sinatorial type ol sinip

bt the

are; however, combinatorial irivariants. A formula for these Betti numbers in terms -
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of the face lattice of the associated polytope was given independently by Bérnstein.‘ :

- Khovanskii and MacPherson (see: Stanley 1987a). Stanley generalized these Betti

-number formulas to Eulerian posets. He and ‘several other authors have applied: -
them to_the studyof convex polytopes (Bayer and Klapper 1991, Kalai 1988b..

Stanley 1987a).-Here the coefficients f; are defined to agree with the original /i
vector in the simplicial case: /i; represents’ the rank of the (2d~2i)th intersection
- homology group. : Tl : : ’ !

“For any d-polytope P are-defined a généralized h-vecior {hgshyyoos gy € R

with generating function 1(Pt) = Z}L(,Ixir"'i. and- g-vector (ga:g1,-++,8.am) €

- . Ny T o B
MU with generating-function g(P.0) = D g, related by g = hy and
gi=h; =M=y for 1.0 s[%d]. The generalized fi-vector’and g:vector are defined
by the recursion ) k i

M g(@,yt)=/1(@'1)=l. and : o
(11) N Il(F,t): Z vg(G.,f)(f—l)"“‘“’“‘Gr

G fage of P
- tiep .

We -summarize  the -known' results ‘on generalized “s-vectors in -the following
theorem. : Lo ) '

Theorem 3.12. (i) Thé generalized h-vector of d rational polyiope is the sequence

- of middle perversity intersection” homology - Betti. nuimbers of the. associared toric
variety. . - : v ; .

(ii). The generalized h-vector of o simplicial polviope is'the same. ds.its h-vecior;

‘hence- it satisfies the McMullen conditions. : e

(iit) ‘For any d-polyiope, hy= 1 and forall i, 0<i<d, hy =hyp -

(iv) For any rational d-polytope and any i, 0<i < _%d =1, hy <l o

(v) There.is'a linear funétion from Q@ 1o Q' that takes the flag vector of any
d-polvtope to the generalized h-vector.of the polytope. ;

Continents on “the -theorent.*(i) Note that Stanley’s 'definition of ‘the generalized
h-vector makes sense_for-all polytopes-(or. more generally, for Eulerian posets).
but the toric variety is only defined for rational polytopes. (ii) For the toric variety
“-associated with a'simplicial polytope. the middle perversity intersection homology
is isomorphic to the ordinary homology. (iii) Stanley gives-a purely combinatorial
proof of this duality result. Thus it-applies.even when-the toric variety.is not
defined. (iv) The proof of the-unimodality of the generalized /i-vector -depends

on-the existence -of primitive homology groups for:the ‘toric variety, henice on -
the rationality hypothesis. The' first inequality holds trivially for all polytopes: the

““second is Kalai’s Theorem 3.8. It-is not known-whether: the other- inequalities
~hold for nonrational polytopes. (iii). (V) According to"(v), (iii) gives approximately

%(I linear equations satisfied by the flag vectors of all d-polytopes. Theorem 37
however. gives all such’ linear-equatioss. ol which there are an exponential: (in:

d) number. This suggests that the generalized. /i-vector should be embedded in a
larger set of parameters equivalent to'the flag vector. Kalai found one suchset.
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3.10.-Kalai's convolutions

Kalai‘(l9SSbj creates new parameters by applying the ‘g-vector: transformiation .

*_simultaneously to- different intervals of a polvtope.  First we ‘give  his extended

definition.of the g-vector as alength d + 1 vector. Write F; for the real vector
space with basis {f5:.S CH{0,1,.0.yd = 1}}. An element of F,; (a “linear form™)
defines a real-valued function: on the set of d-polytopes. . o

For d 20 and 0< i <d, define linear functions G;’ on the set of d-polytopes by

. the following recursion: G4(P) =1 for all P and

’ Sde 1y LT d =il
,,.G;’<P)=(—1)'( * )+. ,Z(-w( i )
= : 7 o 2; s=lt N Y

fuce of P
—frysl

xS G

Fa
dimF

The functions G¢_have a natural representation as elements of Fy. :
Kalai defines the convolition operation on the set F = Ui> ¢ Fa as follows: tor
>

T80, I,..‘.;(l =1}and T.C{0,1;:...e < 1} let fe *fr\=fsU(d)uT+(d+l), where by +
T+(d+1)ismeant {r+d+1:t €T} Thus extending linearly, the convolution - .

of any linear forms.is a linear form, Note that if P is a (d +e + 1)-polytope.
SC{01,..d = 1_}, and T C {0,1;:..,e =1}, then the convolution of fy and fy is
FsxfriPY= 3" flF)fr(P) F).
F fuce of P i
’ dimF =d , i
Now  consider .the subset Mg of Fy, Myj= {G;f' * G“.f’ EREREY G}i‘: k1.0 <
[<dplor 1<j <k =1,0<0 <dy, and k— 1+ d; =d}. ~
Theorem 3.13 (Kalai-1988b). (i) |M,] = 2. -
(it} ‘M,.is a basis'for Fy. R . )
(iii) “Every element of M defines a nonnegative function on’ the set of rational
d-polvtopes., . ] :
- (iv). Exactly 24 =~ ey of these functions are the zero: function. -

* Thus Kalai's convolutions extend the -g-vector of a polytop;e to 4 vector thit

- completely: encodes: the flag . vector and incorporates the generalized’ Dehn- '

Sommerville equations. Note ‘that.among these are .the equations G¢ =0 for
i > |4d|, whichare exactly the equations /t; = A;_;.

The nonnegativity of the convolutions provides linear inequalities on'the flag
numbers. For any d-polytope P and its dual P*, define 6}’(P) = G¢(P*):Tt is easy
to see that\G;f can be represénted-by an element of F,. and that it is a nonnegative
function on rational d-polytopes.-Kalai suggests the following conjecture.

~“Conjecture 3.14. Every linear ineduality on the flag numbers of polytopés is eciuiV-

alent to the nonnegativity of some nonnegative linear combination of convolutions

of the G¢ and the G¥.*
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3 1 1. Other paranletérs

There are two other sets of parameters that e‘rtend the generahzed h-vector of a

~d-polytope. The first is to be found i in Stanley (1987a) where he ﬁrst introduced
the generalized h-vector. Let T'C {0,1,...,d = 1}; T = {0,1,. —1}\T:The

funct1ons ¢ are certain linear forrns in the flag numbers

Theorem 3. 15 (Stanley 1987a). x“”c{:T(P 1/x) = é7(P, x).

“When T = () the theorem gives the equatrons hi= h,,_, on the generahzed h-"

vector of a.d-polytope. Presumably, as T ranges over all subsets of {0,1,...,d~1},

the equations of the theorem are equlvalent to the generahzed Dehn—Sommervrlle 8

equations. :
Another set of parameters comes not so dlrectly from the h-vector. Thrs is the

“cd index of a‘polytope. It was introduced by Fine, and ClBI'lVES from the extended’;
" h-vector of a polytope, mentioried in section 3.7. ‘

Suppose (fs(P))scion.n=1y € N2 is the flag vector of an n- polytope P. The

- extended h-vector of Pis the vector (IzS(P))SL{O ,.,‘,,_1} e N given by ©.

hs(P)= = STy,

TCS e '

Thrs transformatron is 1nvert1ble

fs(P) = Zhr(P)

TCS

~The extended h«vector can be given by a generating function in the algebra of -

- polynomials in the noncommuting variables @ and b. For § € {0,1,...,n =1},

r Write‘w,' =.qif [ ¢ §S-and w;=bifi € S;let'wg = wyw; -+ =w;,_1. The generating -
- function for the extended h-vector is then h(P) = 3~ hs(P)ws, the sum being over-

all §'C {0,1,...5n=1} Now it turns out that for every polytope P, h(P) is in the

_~subalgebra Uenerated by c:=a+band d = ab+ba. This fact is essentially equivalent
to the generalized Dehn—Sommervrlle equations. The coefficients of the cd words
“in h(P) form a vector of length ey; ‘this is called the- cd index of P.
- The cd index can be computed recursively via a shelling of the polytope Like -

the'flag vector and the extended h-vector, the cd indices of a polytope and its dual

-‘have a simple relationship: the ¢d index of P* is obtained by reversing every ed
. word in the ¢d index of P. Fine conjectured that the coefficients of the ¢d index of
any polytope are nonnegative. This was proved for quasisimplicial polytopes and ‘
- their duals by Purtill (1991). In Bayer and Klapper (1991) equations relating the cd -
~.index with the-generalized h-\?ector are computed. They are used to 'grve another -
- proof of a result on' the g-vectors of dual polytopes. This result was orlgmally
proved by Kalai, chrectly from the definition of the generalized /- vector. -

Theorem 3.16. Suppose n'is even and.let P and P’ be a pair of'dual n-polytopes. -~
L ‘Then g,,/7(P) —gn/z(P ) ' E

" of the stress space equals fi—dfy+(";
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312, 'Algebraic’ shifz‘ing' k

: In his characterrzatron ‘of f—vectors of nerves of convex sets Kalai (1984) consid-

ered an algebraic structure analogous to the-Stanley=Reisner ring of a s1mphc1al
complex and defined the notion of algebraic shifting. which we briefly describe. .
‘Let A be a simplicial complex with vertices: Uy, V2., U and let -V obe an ne
dimensional vector space over 4 field 4. "Choose a basis {(31,87, w+,ey} of V. Form
the exterior alﬂebra AV .over V. Constriect the ideal /y spanned-by {ei, ne, NI
ei; {vis vs, - v, } € A} Form the quotient algebra A(2) = A V/I,. From another

" basis.of V that is “generic” with respect to the first, another simplicial complex A’

can be obtained that has the same f-vector as A but s * shrfted” with respect. to

- an appropriate partial' order on subsets ‘of {vl,vq, LUk

- Studying A(4) has led to an impressive array of other results, mcludmg a simpler

proof of the Upper Bound Theorem (Alon and Kalai 1985) and a complete char-

-acterization of (f- vector, Betti sequerice) palrs for srmphcml complexes (Bjorner
and Kalai 1988).

3. b Rtgzdu‘v (md stress

Let VI, V2, U, be the vertrces of a d-polytope P CRY An mﬁmtesmml motion of

. 'the verttces is a set of vectors uy, ita, ... ; 1, such that d(||(vi+t;)— (vj+tu)||?)/dt =
"0 when ¢ = 0 for all edges vivj. Equwalently, ((wi=vjy{uy= u,)) 0.for all edges.
+“Dehn (1916) ‘proves that there are'no infinitesimal motions for convex simplicial
‘3-polytopesapart from the rtgld motlons and this extends to arbrtrary dz3 (see’
Whiteley 1984) : :

Theorem 3. 17 For d >3, simplicial convex d- polvtopes are mﬁmtesznmlly rzgzd

Grven d-polytope. P with vertex setV and edge set E a siress is an assrcnment

-of numbers Ay to its edaes uvekE such that the. follomng equ1hbr1um conchtlons

hold: : )
» Z s /\,,,‘(v—u)zo' for allv EV.’

L{ueV: vuek} - -

" The-set of stresses forms a-vector space called the stress space

Dehn’s Theorem is equ1va1ent to the followma .

- Theorem 3.18. Let P ‘bea szmpltczal convex rl-polvtope' d>3. Then the dimension :
) In parncular lfd = 3there are no nontrivial -~

d+1

stresses.

Note that the above dimension equals #y—h;. Kalai (1987) observes that the non-
negativity of this quantity immediately ‘yields another proof of the Lower Bound
Theorem for simplicial polytopes, and he also extends the theorem to nonsimpli-
cial polytopes (Theorem 3. S)and: larcer classes of complexes. See chapter 1.7 in

s thls dandbook for more background on stress and rigidity in conve‘oty
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: VKalai"SQbservati'ori provides anew proof of the nonnegativity of Ay~ k; ,foyr sim-
plicial d-polytopes, .d > 3. On the other hand, the connection between the Stanley-

~Reisner ring and toric varieties proves iy —h;_; >0 forall i, 1 <i < |3d]. This fore-- -

- shadowed a stronger connection between the Stanley-Reisner ring and stresses
(Lee 1990,:1992). '

LetRy=R &R, ®+-- be the, Staniey—Reisnéf ring of any simplicial (d —1)-",

_complex A with n vertices. For 6;,6,,...,60,; € R; define B = R/ (61,62, ....6y)

- and give B the grading induced by R,. Then R, is Cohen-Macaulay if and only if -

there exist 6;, 65,7~ .84 €Ry such that B =ByD B P @Bd where h; = dim B; for
all i, 0 <i <d. Regarding multiplication by 6; as a linear map in R4 and dualizing,
“-this condition’can be reformulated. " e

Given 6; = 3  aux; for all i, 1<i <d, define v; € R for all j, 1<j<n by

r N

vj = (aj1,852,-+.,a;4). For monomial m = xpag - x, define supp(m) = {x;:r; #

-0} For all i, 0<i<d, let M; be the set of monomials of degree i. Then for all
i, 1<iKd, a linear .i-stress on A (with respect to vy,...,v,) is 2 homogeneous
- polynomial b = 2 _men; bmm such that the following two conditions hold: |

S (). b= 0cif supp(m) € A. ] .

(i1)->"7=i bumxvj = 0 for every m e M;_y. . G

- An affine i-stress is defined in exactly the same way. with the ‘additional condition -
“that Z}’zl by, = 0 for every m & M;_y. (This condition corresponds to the conjec-
ture that w = X{+x; +---+X, is a hyperplane section.) A linear or affine O-stress

is defined to be any real number.

R ‘Let L; (A;) be the vector space of all linear (affine) i-stresses. In particular, L,

- (Ay) is the set of all linear (affine) relations on the points v

“Theorem ;3-19 (Lee 1990). (i) For simplicial (d — 1)-complex A, Ry 'is Cohen-

‘Macaulay if and only if there exist vi,vs,...,v, such that dimL; = h; for all i,
~0<i<d. e : : 3

(i) kSup'p,ovs'e Als a~si)'7‘1plicz"al"(d‘— 1)-sphere. If dimA; = h; — hy_y for all i, o

1<i<|3d], then h = (hg, hy,. <y hg) satisfies the McMullen conditions. -

‘Condition (i) can be used for another proof that shellable simplicial complexes.
are Cohen-Macaulay. Using the fact that all simplicial pl-spheres can be obtained.
from the boundary of a simplex by a sequence of bistellar operations (see sec-
tion 4.3), (i) leads to a more elementary proof that simplicial pl-spheres are Cohen—

Macaulay.

In the case that A is the boundary complex of a simplicial d-polytope P . R? g

containing o in its interior, the vectors v; can be taken to be the actual vertices of

: P.Then A, is easily seen to be isomorphic to the classical stress-space; and it can-
. be shown that (i) holds.: .~ L e

- The polar of P sheds light on some very interesting relationships among ‘stress,

Dehn’s Theorem, Minkowski’s Theorem;: the Brunn-Minkowski Theorem, the
-~ Hard: Lefschetz Theorem; ‘the McMullen - conditions. - mixed: volumes; -and' ‘the
Alexandrov-Fenchel inequalities. See Filliman (1992) and Lee (1992). -

A
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‘4. Gale transforms and diagrams e B ; o
4.1. Introduction

Given d-polytope P RY with vertices U1, U2y .5 Uy list these vectors‘as columias
of a matrix and append a row of ones to obtain the (d+1) x n. matrix A. Consider
‘the nullspace ‘of A, the space of -all affine relations (A1, 42,.:%7A,) om the ‘set of
vertices; i.e., 370 Ay =0 and ¥ A; = 0. Let A be an (n—d — 1) x n matrix
whose rows form a basis for this space, and-denote its columns by Ui Uay s, U
This collection V. of points in R"=4~'.is a’ Guale transform ‘of V. The natural corre-
spondence between vertices 4; and transform points T; extends to a correspondence
betwee‘nusubsets'of 'V and subsets of V. The key property of Gale transforms is
the following. B : Lo Tt

Theorem 4.1. Let X be a proper subset of V. Then conv(X) is a face of P if and

- only if o.€ relint(conv(V \ X)).

A collection W = {Wl,Wz,..‘.',W,{} is a Gale diagram-of V if it satisfies the
property given:in the abové theorem. For example, Gale diagrams can be obtained
by scaling the points in a Gale transform independently by positive amounts;.

Gale transforms and diagrams are recognized for thair usefulness in establishing
results when n is not much larger than d, but even in the general case they are
helpful tools. Both Griinbaum'(1967) and McMullen and Shephard (1971) contain

~-good introductions: For a‘more extensive survey of results than is presented here,

refer to McMullen (1979). Note that the toiic variety discussed in section 3.3 is the

result of an algebraic analogue of the Gale transform.

Suppose one is given V = {vj,v3,...,v,} C R¢ such that o € int(conv(V)), -
and a spherical simplicial (d = 1)-complex A on these n points. The next result

~characterizes when A can be realized convexly by positively scaling the points.of

V .

- Theorem 4.2 (Shephard 1971). There exist positive numbers Ay, As, .. ;‘,'/\,, such that

Aisisomorphic to the boundary complex of conv({Ajvi. Aava, ..o A )}) if and only :

if
. mrelinit('conv(V\ F)) 20,

where V is a' Gale transform of V. and the intersection is taker over dll facets F of o

following theorem; see Bigdeli (1991).

A direct translation of a theorem of Bérdny via Gale transforms yields ‘the

Theorem:4.3, Giveir 'V = {viva, 5 u ) C R in linearly -general position such

~that o € int(conv(V)). Let m(V) be. the maximum number of facets -of a poly-

tope obtained by scaling the points in 'V _independently-by positive amounts. Then

'm(V)V ;(l/k"‘)(Z) +O(n* 1), where k=n—d.
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Another illustration of the Usefulness of affine relations in the structure of poly-

rtopesis theiindecomposability characteriz‘atio‘n of Smilansky (1987).

4.2, Polytapes with few vertices .

A d-polytope P with'n vertrces has a Gale transform of dunens1or1 n—d— 1,and -

Sturmfels (1988) uses. affine transforms to further reduce the dimension by one.

Gale transforms have gained ‘the (perhaps undeserved reputatron) of being useful -

only when P has few vertices, i.e., when 1< d +3. In this case the Gale transform
is at most two-dimensional and is easier to analyze. This feelingis supported by.
~ the fact that there are many: results that are: easier to prove for polytopes with™
-few vertices, and that quite often these results fail' when n = a' +4 Here isa small .
: sample .

Theorem 4.4. Every-(d —1)- dimemimm‘l‘pl-spheie with at most d+ 3 vertices is ’
- polytopal.. However, .there ertsts asimplicial o-splzeie with 8 vertices that is not .~
. polytopal - ;

The ﬁrst part of the theorem is dug to Maru (197')) for: s1rnphc1al spheres and
Kleinschmidt (1976b) for nonsrmplrcral spheres: The nonpolytopal sphere ‘s dis-

- cussed in Griinbaum.(1967) and is‘due to Briickner, (who, however, thought it

‘was polytopal). Kleinschmidt (1977) proves an analogue of the above theorem for -

(d —1)-spheres with at most 7d vertices possessmo combmatorral mvolutrons wrth :

no fixed, points.
-The followmo theorem is stated in Grunbaum (1967)

" Theorem 4.5 (Perles) Fo; every d-polytope wzth atmost d +3 vertzces there eusts" :
~ a combinatorially equivalent d-polytope P such that every automorphzsm of the - -

boundary complex of P -is mduced by:a geomenzc symimetry of P.

Theorem 4.6. For every d-polytope wzth at most d+3 vertices and &. > 0 t/zele exists
~a combinatorially equzvalenr polytope with rational vertices such that each vertex. is

a distance at most e from the corresponding vertex of P.-However, there eXists a -
6 polytope that is combmator ially equzvalent to-no polvtope with ranona[ vemces

- The first part of the ‘above theorem is’ due to Perles and stated in Grunbaum» :
. (1967), in'which'also a fonrational 8-polytope with 12 vertices discovered by Per- »
les is- descrrbed Sturrnfels (1987a) constructs lower—drmensronal examples (see sec-
“tion 6.5). ) -
-~ One says that'a facet F of a polytope P can be preassigned if, given any poly-
‘tope F' combinatorially equivalent to F, there is a polytope P! comb1nator1ally

equrvalent to P-having F' as a facet correspondmv to F.

‘Theorem 4. 7 (Klernschrrudt 1976a) “If a d-polytope has at most d+3 ver tices, then

the shape of each of its facets car be preassigned. However, there exisis a 4-polytope
with 8 vertices such that the shape of one of its facets cannot be preassigned.

Al
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Gale transforms can be used to count the’ number -of drfferent combmatorral,

“ types of polytopes with few vertices.

"'Theorem 4.8. There are |_4d | dtffelent combmamna[ t»pes of dpolytopes with

“d+2 vertices. There are [,d_I dzﬁ”el ent combznatorml npes of simplicial d-polytopes
< with d + 2 vertices.

‘Perles. (see Grunbaum 1967) and Lloyd- (1970) count the number of srmphcral‘

: f‘and general d-polytopes with d +3 vertices, respectiv ely

43 Subdwzszons mu‘l tr zangulatzans

Grven a d- polytope P w1th vertex set-V,-a subdmsron of P is a collection A of
d-polytopes such-that (1} for every Q) Qs € A, 0N O is a common face (possibly. -
empty) of both Oy and Qs; (2) P is the union of the polytopes in A; and (3) for
every O €4, the vertex set'of Q'is-a subset of V. A subdmsron J isa trzangulatzon
provided every member of A is a d-simplex.”.

The: Dehn=Sommerville equations force relations among the h-vectors of a tri-

angulation 4, of 'the collection of its boundary faces 94, and of the collection of =

its interior faces /_l° which: also hold for general srmpheral balls.

: Theorem 4.9 (McMullen and Walkup 1971). Suppose Ais a stmpltcml d- ball
- Then

(1) lz;(_\) —hy ,+1(J) =h (6A) =h;- 1(84) for alli. 1<i<d.
(u) h; (A) = hy_i.1(4%) for all i 0 <i<d+ 1

A srmple corollary is- mentroned in Lee (1991a)

Corollary 4.10. Suppose Aisa simplicial d- ball Then f,,(A) >lz|,,/7j (BA)

There is'a-wide range of results on subdlvrsrons and tnanoulatrons we mention”.
only a few that relate to Gale. transforms. : :

Theorem411 (McMullen 1979) “Let P be a d-polwope with vertex set V =

{vi,vz, .0}, let Vo C R4 be a Gale trarisform of V, and let 7 € R'=4=1,

Consider the collection. A of ‘d-polytopes- coiiv (S) such that S C-V ‘and o €

relmt(conv((V U{ZN\S)). Then A is a subdivision of P.

vSub‘divisions and triangUlatiOns of the above form are called regular. An equiv-
alent way to generate reégular subdivisions of a d-polviope P ¢ R? with vertex set

vy, 5,00, v s to 'choose real numbers Ay As, . A, and form: the convex hull-Q
- of {(vi,A1)s (v2,42),.

«+.(vii, An) }: Projecting the Iacets in'the upper hull of Q into--
(R%,0) yields a regular subdivision of P.

We need some definitions. The link of a face F in a srmphcxal complex Ads
the set of faces G of 4 such that FN'G = 0 and FuGis a face of A. The stellar

, subd:wston of Fi m Alis obtamed by rémoving F from A and adding a new vertex
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Y along with all sunphces formed from v, a proper subface of F , and a face in the
link of F. A bistellar -opération on a srmphcml sphere is a cértain combination of .

a stellar subdivision and inverse stellar subdivision at the same site. The followmc
is then a conseqdence of a line shelling of the upper hull of Q.

Theorem 4.12 (Ewald 1978) The boundary complex of any szmplzcml d~polytope :
can be obtained from thatof a d-simplex by a sequence of bistellar operatzons such

that at each inter medzate stage the sunpltctal complex is- polytopal

Pachner (1990) proves that a simplicial complex is-a pl-sphere if and only if it is

obtainable from the boundary complex of a simplex by a sequence-of bistellar op-..

erations. In fact, Pachner shows that simplicial pl-spheres are precisely boundaries
of shellable balls. However, the undecidability result mentioned/ in’section:2.10
implies that for simplicial pl-spheres, unlike for polytopes, no ipper bound on

~ the number of such operations needed; can be computed from the given simpli-
cial complex. On the other hand, properties of the h-vector imply that if ¥ isa
{(d —1)-dimensional simplicial pl-sphere, then-at- east-f1y (Z) bistellar\operations

are necessary, generalizing Corollary 4.10.

Let P_be a d-polytope, F bea facet of P with supportrng hyperplane H,and x

_bea point in'R?. Then x is beyond F if x and the interior of P lie in opposite-open
halfspaces: determined by H, and beneath F 1f x and the interior of P lie in the
- same open halfspace determined by H. Now suppose that x lies beyond precisely
~-onefacet F of P and beneath all the others. Let € denote the boundary complex

of P excluding F. Projecting € onto H centrally through x results in a polyhedral
(d —1)-complex 1sornorphlc to @, called a Schlegel dmgram of P. See Griinbaum

(1967).-Gale transforms pr0v1de a characterlzatxon of Schlegel dragrams

Theorem 4.13 (Sturmfels 1986) Let A be a subdzvzszon ofa convex (d—1) —polytope

P, this time-allowing the vertex set'V of A to be a strict superset of the vertex set W
“of P, but on the other-hand requiring that proper-faces ofP be faces ofA Then A
s the Schlegel dmgram of some d- polytope if and only if ;

(ﬂ rehnt(pos(V \ F))) n ( rehnt(pos(V \ W))) 7& (Z)

where V is a Gale tr ansform of vV and the ﬁ;st intersection is taken over all (d 1)-
~polytopes F of A = ‘

Not all subdivisions A of a (a'—l)-polytope P satisfying the conditions in the first

* . sentence of the theorem are Schlegel diagrams, even when Pis two-dimensional.’

However, if P i§ two- dimensional, then A is 1somorph1c to the Schlegel dlagram of
“some 3- -polytope (Griinbaum 1967).

For polytopes with few vertlces all- subd1v1s1ons are reuular but thxs is nottrue .

‘ m general

Theorem 4.14 (Lee 1991a) If Pis a d-polytope with at most d +3 vet'tiees,r then .
every. subdivision of ‘P is regular. However,. there exist.3-polytopes with 7 vertices

- that possess nonregular triangulations.

¥
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On the other hand the collectron of all reeular subdmsxons of a grven poly- ‘

tope has a-nice structure, discovered by Gelfand, ‘Kapranov,.and Zelevinskif in

corinection with their work on generalized discriminants and determrnants

‘Theorem 4 15 (Gelfand, Kapranov and Zelevrnskn 1989Y.The collectzon of all reg-
ular subdivisions of a given d-polytope P with n vertices, partially ordered by reﬁne k
ment, is combinatorially equivalent to the boundarv complex of some (n—d < 1)-
polwope 0. ; -

This polytope Q is called the seconda) 'y polytope of P, and can be constructed as -

- follows: Let {vy;vy; .. ., U } bethe set of vertices of ‘P. and for any triangulation A

of P (whether regular or not) define z(4) = (zy.21,...,2,) € R" by z; = Y_vol(F),
where the sum is taken over all-d-simplices F contarnmv vi. Then O = conv({z(4):
‘A is a triangulation of P}). In particular, the vertices of O correspond to the regular
triangulations of P. Alternate constructions are described'in Billers, Filliman and
Sturmfels (1990). For example, Q can be expressed ‘as a discrete .or continuous
Minkowski sum of polars of polytopes corresponding to- various ‘translates of a
~Gale transform of P. Generahzatlons of the, secondarv polvtope appear in Billera
and Sturmfels. (1992).

In section 3.4 we learned that the A-vector of a srmphmal d- po[ytope P satisfies
g zhi_y for all k, 1<k<[7dJ From the Lower Bound Theorem 2.11 we also
know that fi; = h; if -and only if P isstacked. In general, P is‘called. k-stacked
if P has a triangulation such that there is no interior face of d1mensxon less than
d — k. The McMullen conditions and Theorem 4.9 imply that if P is- k-stacked,
then /i = ;- MeMullen and Walkup conjectured the converse as part of their
- Generalized Lower Bound Conjecture :

Conjecture 4 16 (McMullen and Walkup 1971):.Let P be a-simplicial d- polytope
Forall k, 1<k <|_,dj he=nh;_ 1 if'and only ifPis (k = 1) stacked

The followmcr isa consequence of the constructlon in Brllera and Lee (1981b).
Theorem 417 (Klemschmldt and Lee 1984) Let P be a-simplicial d-polvtope such
that hy = hpZy for some k, 1 <k<[,dJ ‘Then there exists a k-stacked sunplzczal a'- :
polvtope O with the same h-vector as-P. .

A few cases of the conjecture have been resolved bv 1nterpret1ng the drfferences
hk —hy_4 as winding numbers in Gale transforms, but as-a whole the conjecture
remains unresolved Sy ‘

Theorem 4.18 (Lee 1991b) Conjectme 4.16 holds lffo <d+3 orifk < fo/(fo —d).

“Suppose P is'a d-polytope Some partrcular regular 'tnanculatrons of P, called -

pullzng tnanoulatrons can be obtained by first ordering the vertex set of P, V=" -

Hvivasvo, vy} For every j-face F of P let v(F) denote the vertex of smallest index
that is n F A full ﬂag of P is'a chaln of faces Fo CF c Fy €+ C F;= P such



516 S .M. Bayer, C.W.

thatdme =j forallj,0<] <d andv(F) gFi.
each full ﬂag the simplex conv({v(Fp),v(Fy);..

all d-dimensional and together determine a tria
in Hudson (1969) in a more general contekt and

Lee '
S u{F}). Then‘these simplices are

ngulation of P. This idea appears
has been‘frequently rediscovered

| for all j, 1 <j <d. Associate with -

“in various glllSCS

Write J(P,t) =1+ X iP, n)t" where- z(P ny denotes the number of pomts

“x € Psuch that 7ix € Z¢. Stanley uses pulling trianigulations to prove the followmg
: which strengthens earlier work of Ehrh'lrt and- \/Ic‘\/Iullen

Theorem 4.19 (Stanley 1980a). Suppose every ver tet of P is mtegral Thend (P, t)

WP,/ (L= 1)* where W(P,1) is a polynomia of deg)ee at most d wzth nonneg-

ative lllf€g€) COEfﬁClEI'lfS

For integral d-polytope P, call an ordering o of:its vertices compressed if ev-.

ery d-simplex in the associated pulling triangulation has volume 1/4l7 P itself is

compressed if every ordering ¢ is compressed. For example, the unit d-cibe is

Compressed.ﬂ

Theorem 4.20 (Stanley- 198021) If P is an mz‘egr al d-polvtope with compressed or-
de: mg o, then = : ‘

z'(P‘,n)—'{Zi( | )f,(A)

—0

'mzd W(P t) = ho(A) +lzl(._\)t + - l.—h,,(A)»t", where A is the pulling tria)zgzzlatiorl ‘

induced by o. ‘ _ e i

;

(Compare the above W1th eq. (3 1) of section'3.2.)

Corollary 4.21 (Stanley 1980a). IfP is.a complessed mtegral d-polytope’ and o s
an ordering, then the f -vector of the tr zangulanon induced by o depends only on P,

110[ on o.

The Cartesian p‘roduét’T’" 7" of two siniplices of any dimension is compressed,
but-unlike the d-cube has the property that all of its triangulations have the same

f-vector, whether induced by an ordermg as above or not; see Billera, Cushman, '
and Sanders (1988). Any polytope with this property is called equidecomposable. A
weakly neighborly polytope'is one Tor which every set of k+1 vertices is contained

_in a face of dimension-at most 2k, 7" x T" is also weakly nelghborly The followmg
- results are drawn from Bayer (1990) and Stanlev (1991)

‘Theorem 4.22. (i) If P is a rational d—polvtope and A'is any-subdivision of P, then
“hi(A)2H(P), where his the generalized h-vector, and P is regardéd.as a d-complex.
(ii) If P is.a weakly ‘neighborly d-polytope, then P ‘is equldecomposable and - -

h{A) = h{P) forany tr zangulatton 4 of P.

(i) -If P is-a rational weakly nezghborly d-polytope and A'is any subdzvzszon of

P, then /1(_\) = h(P)

4.4, Oriented matroids -
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(i) IfPisa rational d polytope and h{4) = h(P) for all tllangulanons of P,

i t/wn P is weaklv nezghborly

Baver (1990) uses Gale transforms to characterize equxdecomposable and weakly
neighborly d-polytopes with at most d + 3 vertices. All 7-polytopes are weakly
neighborly. A 3-polytope is weakly neighborly iff it is a prism over 4 triangle ora -

- “pyramid over apolygon. A-simplicial polytope is weakly neighborly iff it is a sim-
- plex or an even-dimensional neighborly polytope. Other classes of weakly neigh-

borly polytopes include pyramids over weakly neighborly polytopes, sybpolytopes:
of weakly neighborly polytopes, and Lawrence polytopes (section 4.5).

B

Matroids and oriented matroids provide a setting for a combinatorial abstraction

.-of convexity, including analogues of Carathéodory's Theorem, Radon’s Theorem,

Helly’s Theorem, and the Hahn-Banach Théorem; generalizations of point-and
hyperplane arrangements, convex polytopes; and Gale transforms; as well as a
combinatorial derivation of linear programming. See chapter 2.5 in this Handbook
or-Bjorner et al. (1991) for details. Sturmfels (1986) discusses- the relatlonshlp
between oriented matroids and Gale transforms. :

A mairoid -M .is a pair (E,) consisting of a finite set 'E and a collectlon of
nonempty mcomparable subsets € of £ (called the circuits -of M) satisfying the
following property: C,,Cs €6, e € C; N Cy, and'e’ € Cy \ Cy implies the existence
of C3 € € such that ¢ € C3 C (C,UG) \ {e}. For example, the collection of

-Supports of elementary vectors in’ a-subspace V of R" forms the circuits of a

matroid on £ = {1,2,...,n}. Given:matroid (E, C),let €~ be the collection of all
minimal nonempty subsets C* of E such that |C* N C| 3 1 for all C.€ 4. Then

_M* = (E,%*) is also a matroid, called the dual of M, and members of €* are called '
“the eocircuits of M. In the preceding example, € is-the collection of supports of

elementary vectors in V*,-When a matroid can be derived from a subspace of R”,

~ “ltis called representable (over R). So matroids provide a generalization of un51gned,
‘patterns of dependences of finite collections-of vectors. :

-Oriented matroids, on the other hand generalize signed patterns of dependences.
Let E be a finite set. A signed set X is an ordered pair (X*,X~) of disjoint

~“subsets of E.-The set X = X* U X~ is called the underiving set of X, and by
- —X is meant (X, X"). Two signed sets X, Y are said to be orthogonal if either
+their underlying sets are disjoint or else both (X*NY*)U(X-NY~) 0 and
; (X* NY7)U(X~NY*) #0. Let 0,0* be two collections of signed sets in E. Then

= (E,0) and M* = (E,0%) is.a dual pmr of orzented manozds provided - the
followmu conditions hold: = . -
(i) The ‘underlying sets of the members of 0 (respectrvel\ O*) form the circuits -

- (respectively, cocircuits) of a matroid (called the underlying matroid M ).

(ii) X € O (respectively, 0*) implies —X € 0 (respectwel\ @*)
(iii) If X,Y € O (respectively; 0*) and X =Y, then ¥ = =X.
(iv) If X €0 and Y €0*, then X and Y are orthogonal,
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As‘inthe unorrented case; members of @ are referred to as the circuits of M and

members of 0*-as the cocircuits.

So, for-example, the signed Supports of elementary vectors inra: palr V V4iof
.dual subspaces of R" form the circuits and cocircuits of an oriented matroxd on

{1,2,:..;n}. Thisis true in particular for the null spaces of A and A used in

, .sectron 4 1 to define the Gale transform of a polytope. and suggests the followrncr :
definition. -
~ . Let O0* be theset of cocircuits of ai or1ented matroid-M on E A cocircuit X is

positive if X~ =@, and M is acyclic if it has positive cocircuits. The facets of M
are the sets-of the.form.E \ C where C is a positive cocircuit-of E. The faces of
M are the intersections of finite numbers of facets of M. The collection of faces

of M, ordered by inclusion; forms a lattice, called the (Las Vergnas) face lattice-

of M. Vertices of the lattice are faces of M that have rank one in the underlying
matroid. M, and M is-a-matroid polytope provided all-one-element subsets of E

are vertices. In the case that M is derived from a dual pair of subspaces of R, M
is called representable (over R) and the face latt1ce of M is 1somorphrc to the face

lattice of a convex polytope. -,
Oriented matroids can alternately be deﬁned by asswnmg sign patterns to or-
dered bases of a matroid (maximal subsets of E containing no circuit) which would

not be inconsistent with.the ‘Pliicker-GraBman relations should thé oriented ma-""
troid be representable. All bases have the same cardinality, called the rank of -
the matroid. Much of the usefulness of oriented matroids in the theory of con--
‘vex polytopes is. related to realizability results, some.of which are-also discussed
“*in section 6.5. Bokowski and Sturmfels (1987) developed algorithms based ‘upon
oriented.matroids to‘test polytopality of spheres, which, combined with other re- -

sults, has led to a complete classification of simplicial nelohborly 3- spheres with 10
vertices into polytopal and nonpolytopal spheres

We mention a few other results that are obtainable by matrord techmqnes All
of themn are quoted from Bjérner et al. (1991).

Theorem 4.23 (Las Vergnas 1986). For az2 there exists a set of (d+ 1){d: +2)/’)
points in general position in R¢ which is not pmjecmelv eqmvalent to the set af

vertices of any-d-polytope.

The next theorem can be found in Cordovrl and Duchet (1987)

o Theorem 4.24_(Duchet and Roudneff). Let n; d be integers:with n > d+1 >3:There

exists an integer N = N (n,d) such that every set of N. points in general position

:in -affine d-space contains the n vertices of .a cyclic ‘d-polytope. Moréover, cyelzc ‘

polytopes.are the only combinatorial types of polytopes with this propetty

Theorem 4. 7: (Sturmfels 1987b) Suppose the convex hull of {vl,va, ,v,,} in R"/

is combmatozmlly equivalent to C(n,d).  Then there exists .a curve C. containing

VLV Un such that every hyperplane z'n‘ R” meets C in at most, d points.

‘Theorem 4.26' (Grunbaum 1967} (i) Let M be a nezvhborly rank 2k + 1 matrozd g

polytope with n <2k +3..Then M is isomorphic to C(n.2k + 1).
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(it)’ Forall k3?2 tlze)e is'a representable nezghbo;ly rank 2k +1 matrotd polytape .
Y wzth 2k +4 ver tzces wluch is not tsomorphzc to a cyclic polvtope '

CA matrord polytope M is called rigid if M is determined. by its face lattrce

: ’Theorem 4.27 (Shemer 1982) Every nezghborly rank 2k + 1 matroid. polytope is

rigid.

Theorem 4.28 (Bokowsk1 and Sturmfels 1987). leere exists a mangulaten.’ 3-sphe)e

_(the Barnette sphere) ‘with-8 vertices which is not t/ze faee lamce of any matrotd -

polytope. .

Theorem 4, 29 F01 all d> 4 and ne d+5 tlzere exists a rank d+1 matroid polytope
whose. face lattice is a nonpolytopal szmpltczal (d—1)-sphere with n'vertices.

4:5. Lawrence polytopes '

Bayer and Sturmfels. (1990)is e good reference for the Lawrence construction,
‘which provides aneffective method" for lifting matroid representability results

- into polytope realizability results. See also Bjérner et al. (1991). A polytope is-
~called a- Lawrerice polytope if it has ‘a centrally symmetric' Gale transform.. Let

{vii0as0 0 ,ﬁ,,} be a Gale transform-of convex d-polytope P with n Vertlces Let
A(P) be a polytope whose Gale transform-is {7),7,.. Sy Uy =V, V2, - T

‘ Then A(P) is'a Lawrence (d +n)-polytope with 2n vertices which contarns P asa
‘quotient polytope. Hence every polytope is the quotient of a Lawrence polytope.

This construction ' can be extended i in a natural way to oriented matroids M ;-so "

thatif M is-a rank 7 oriented matroid on # elements, then A(M)is a rank n+r

oriented matroid on 2n elements It turns out that the combinatorial structure of

: the face lattice of A(M ) depends strongly upon the matroid structure of M.

VTheorem 430 (Bokowskr and Sturmfels 1987). Eve/v Law; ence matroid polytope

A(M Vis lzgza' That is, A(M )is umquely detemuned by its faee lattzce

" Theorem 4.31 (Bayer and Sturmfels 1990). For any orzented matrozd M, the o E

vector and -the. flag vector of the ‘Lawrence polytope A(M) are fzmcrzons of the

" underlying matroid M. In the generic.case where M is a uniform: oriented matroid

of rank r on-n points,.-the f- vector and the ﬂag vectar can'be erp)essed as functions
depending only on nand r,

‘Theorem 4.32 (Brllera and Spellman Munson 1984) (1) The face lattice of A(M )y
.18 polytopal if and only if M is representable. .

(ii) - There exists a rank 12 manozd polytope with 16 vertices whoseé face lamce is

“.not polvtopal.

(iil) “There-exists a rank-12 manozd polvtope M with 16 vertices which does not

-have a polar; i.e., there is no marrozd polytope havirig a face lattice anti- zsomorphzc

to. the face'lattice of M.



- that are not zsotopy eqtuvalent

~In this section we mention only briefly the major
‘schmldt (1991).
52, Steinitz's Theorer

‘. The graplr‘ ofvn polytope:is the set-of vertices
~“earliest. major result on the graphs-of polytope

-of curves (for the edges) which intersect only at

- “Although-oriented mairoids -capture and gene
convex polytopes very well, it is: curious that:t
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he e‘nstence of polars does not

generalize. Other realization problems will be mentioned.in séction 6.5.

Theorem 4.33 (Bajer and Sturmfels 1990). (i) T/

(ii) There exist two combinatorially equzvalem

We will return to the isotopy problem in'sectic

5. Graphs of polyfopes

5.1. Introduction

he convex realization space of the

. face lattice of A(M) is homotopy equivalent to the realization space of M.

Lawrence 19-polytopes P-and Q

) 6.4,

esults on'the graphs of polytopes.

The general subject is covered in Griinbaum (1975), and Klee and. Kleinschmidt
(1987) is an extensive survey of the ‘d-step con]ecture See also Klee and Klein-

graphs of 3-polytopes. Recall that-a graph is d-¢
is connected by d internally disjoint paths or, equ
vertices leaves a connected graph with-at least t

s 'was Steinitz’s Theorem on-the
onnected if every.pair of vertices

it can be represented in R? by a’set of distinct points (for the vertices) and a set

common Vertrces

. See also Steinitz and Rademacher (1934) and

"Theorem 51 (Stemrtz 1927) A graph G is the graph ofa 3- polytope P zf and only
Sifiris plamu and 3- cormected :

Griinbaum:( 1967). :

Mani (1971) showed that P ‘can be chosén so that the isometries of P corre-

spond ‘to the automorphisms of the graph. Steinitz’s Theorem has many other .

consequences on the realizability of 2-dimension
The connectivity eondmon can be extended to

Another connect1v1ty criterion is due to Klee (

al complexes (see section 6:5).
polytopes of arbitrary d1men51on

- Theorem-5.2 (Bahnskl 1961) The gmph of every d polvtope isd- connected

ralize the combrnatorlal flavor of

and edges of the polytope. The

valently, the removal of any'd—1-
wo vertices.-A graph'is-planar if- -

see Grunbaurn 1967). For apoly-,
tope P with at least n +1 vertices, define s, (P) to be the maximum number of
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~connected components that can remain when n vertices ‘are removed from the
“graph-of P, and s(n,d) = ma\:{s,,(P) Pisa d-polytope}.‘

1

: Theorem 53 (Klee 1964) Fo; all n and d,

N fzfn<d -1,
s(nyd) =42, S ifn=d, S
‘ Jai(Cln,d))y fnzd+l.

“Klee then used the above result to show that for’ every d there is.a graph of a d-

_polytope that cannot be the graph of an e-polytope for any e # d. Moreover, stich
. dimensionally zmambzguous graphs can have arbitrarily large numbers of vertices.

The k-skeleton .of a d-polytope is the polyhedral complex generated by the

- k-faces of the polytepe. Thus:the 1-skeleton is thegraph of the polytope. The fol-. .
lowing result; orioinally' observed for graphs, was proved in general by Griinbaum. -

Theorem 5.4 (Grunbaum 1965). The k-skeleton ofa d—polvtope (1 < k <d=1) con-
~tains a subdivision of the k—skeleton of the d-sunpler

When does the graph of a polytope. determlne the entire cornbxnatorlal struc-
ture of the polytope” Steinitz’s Theorem implies that it does when the polytope
is 3-dimensional. In general this is not the case, however. For example all neigh-
borly polytopes with the same number. of vertices have the:same graph; namely,
the complete graph. (For neighborly polytopes, se¢ Griinbaum 1967.) Recall that -

‘Theorem 2.9 of section 2.6 shows that the graph of a simple polytope uniquely de-

termines its face lattice. The same is true for zonotopes (Minkowski 'sums of finite -
collections of line segments) (Bjorner, Edelman and Ziegler 1990). These cases
are quite special. In general, one canrot reconstruct a d-polytope even from its
(d —3):skeleton. The (d — 2)-skeleton does, however, determine the combinatorial
type of any d-polytope, and the same is true for the [Id_l -skeleton of a simplicial .

-polytope See Grunbaurn (1967) and Perles (1970)

. 33 Hamiltonian cucuzts '

" 'An important issue in graph theory is the existence of Hamiltonian circuits (closed
~ paths containing all vertices), which began with Hamilton’s observations about

circuits on the’ dodecahedron. It is natural, therefore, to ask whether graphs of
polytopes have Hamiltonian circuits. Already in the last century Kirkman knew -

~of polytopes without Hamiltonian circuits. Tutte (1946) found the first example

of a simple polytope without a Hamiltonian circuit. His example-is a 3-polytope;
it'is still open whether all simple polytopes of dimension higher than three have

‘Hamiltonian circuits. The'following classes of 3- polytopes are known, however, to"
‘have Hamiltonian circuits: those with 4-connected graphs; simple 3-polytopes with

at. most 36 vertices; snnple 3-polytopes with at most two types of 2-faces: 3-gons,
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: 5.4. Diamez‘er

" polytope with n facets.
(i) Forn>2d>4, A(d,n) is realized as the distance between two ver tices not on*

4- gons or' 6-00ns and srmpl1c1al 3- polytopes with maximum vertex degree six. See :

Griinbaum (1967) and Klee and Kleinschmidt (1991). A Hamiltonian path in a

graph is'a spanning tree’ with maximum degree two. Thus, the following theorem -

is related in a natural way.

Theorem 5 5 (Barnette 1966). The graph of ever y 3-polyt0pe’> has-a spanﬁivngtrée' f

with maximium degree 3.

Given integers n,d such that n > d >3 is tlu.re any 51mple d-polytope with
vertices:that-has a. Hamlltoman circuit? A more basic question is: Does there evern .
~exist a simple d-polytope with n vertices? Of course, the relation f; = dn/2'shows

that n must.be even'if 4 is odd. The McMullen conditions provide other restrictions

_on the possible values of #. Perles and Prabhu (see Prabhu 1991) -address both:
'questrons sunultaneously '

Theorem 5.6 (Perles and Prabhu). (i) There is a constant ¢ such that fo; alln'> .
cd®? (where n is even if d is odd) there exists a stmple d-polytope with n vertices

that has a Hamiltonian circuit.
(ii) -For all d there exists an integer n(d) O(dJ/-) (where n(d) is €V€Il lf dis
odd) such that there is no simple d-polytope with n(d) vertices.

' Probably the most intensively studied questron on polytope graphs is that of the
- diameter (see Klee and Kleinschmidt 1987). The diameter 8(P) of a polytope P s -
_the maximum length of a shortest edge- -path between two vertices of the polytope.

Write A(d,n) for the maximum diameter of d-polytopes with n facets: :
“Much of the interest in diameters of polytopes comes from the search for ef-

ficient linear procrramming algorithms. If the function ‘A(d,#n) is not boundeéd by
" a polynomial in d-and n, then.no edge-following linear programming algorithm
~with arbitrary starting vertex could have polynomial complexrty A proof-of a
- 'polynomial bound for A(d,n) might, on the other hand, suggest an efﬁcrent linear

programming alvorlthm
In-computing A we can restrict the class of polytopes

Theorem 5.7..(i) For > d>2, A(d n) is the maximum dzameter of i szmple d-

a common facet, in a simple d-polytope with n facets

Followmg are e‘qmvalent con]ectures concerning the diameter.

Conjecture 5.8. (i) Hirsch Conjecture (oantzig 1963). For n > d>2, Ad, <

n—d.
(i) d- Step Conjecture (Dantzrg 1963) For d »2, A(d 2d)

¢

- of pivots..
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(iii) 'No"nrevisiting Conjecture (Klee and Wall\up 1967) Between any two ver-

 tices of a simple polytope there is ‘a-path that does not revisit any facet

Remarkably little-is known about these. conjectures They can fa11 for spheres

- (Walkup 1978) and for unbounded pomted polvhedra (Klee and Walkup:1967),
‘though no d-polyhedron with n facets is known with diameter greater than 2n—2d.

- For many values of d and n there are d-polytopes with n-facets with diameter equal

" n'—d-(e.g., d-cubes). Barnette (1969) found an upper bound for 4 for general d

and n that is exponential in d, and then Larman (1970) obtained a better (but still
exponential)-bound. This was recently improved by Kalai (1990b) and further by

~ Kalai and Kleitman (1992). The lower bound below is due to Adler (1974)
‘, Theorem 5.9. For n >d>2, .

(i) Ad, n)<m1n{n2d =3, p2+logd},

o (u) Md,n)2|n—d) — rz-d)/[bd/4_|J—1

Precrse values of A(d n) are l\nown only for small & and n (see Klee and Klein--

Aschmldt 1987) . : o
" Theorem 5.10. (i) A(d,n)=|(d= 1))1/dj d+2, 1fd<3 or n<d+4

(i) A(4,9) = A(4 10) =5, A(5,9) =4, and A(5.11) =

Note that when n' —d <d <5, A(d,n) attains the Hirsch bound Ald, n) =n—d.
The final result of this section is an easy" consequence of-a particular class of
reuular triangulations. ,

Theorem 5 11 (Lee 1991;1) Everv simple d-polvtope P withn facets can-berealized

.~ asa facet of a simple (d +1)-polytope Q wzt/z n+1 facets such’ that the dzameter of

Q does’ not exceed 211 - 2d

The proof of the theorern unphes that given any linear program- with bounded

A -feasible region and arbitrary Starting verte‘< by augmenting the problem with one -

variable and one constramt an optrmum vertex can be reached in a linear number

T

6. Combinatorial strtrcture '

6.1. ]ntroduction

Finally.we come to the broadest problem that of classrfymg the cornbmatorlal
types of all polytopes. This section deals with asymptotic formulas for the number
of . combinatorial types, isotopy. and- the realization of types of. spheres-as poly-
topes, rational polytopes and spherical polytopes. We discuss equifacetted. poly- -
topes, barycentric subdivisions. and the numbers of n-gons in a 3-polytope. We v
cover only briefly some topics discussed i in greater depth in- Klee and Kleinschmidt

‘(1991)
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6.2, Regular polytopes

There has been some speculation that the regular or Platonic solids were the

primary motivation for the Elements of Euclid. The symmetry group of P is flag

transitive if, for any two flags of P, there exists a symmetry which maps one flag
onto the other. The polytope -P-is regular if its symmetry group is flag transitive. It
is semzregular if it'is not regular but each of its facets is regular and the symmetry
group of P is vertex transitive. See Coxeter (1963).

In three dimensions, Euler’s relation easily implies that the only regular poly-
topes ‘are the five Platonic solids. The three-dimensional semiregular polytopes

consist of the thlrteen ‘Archimedean solids, tooether with the two mﬁmte classes

of the prlsms and the antrprlsms

 Theorem 6.1. Up to rlgzd motzon and scalmg, there are five regular 3-polytopes
and six regiilar 4-polytopes. For all dimensions d >4 there are only three regular -
Vd—polytopes the d-cube, the d- crosspolytope ‘and the regular d-simplex. o

-~ See Klee: and Kleinschmidt (1991) for a good summary of th1s topic. We brreﬂy
- mention what is found there.

The combinatorial types of 3~polytopes are well- understood By Stemrtz s Theo- -
rem, classifying 3-polytopes is equivalent to classifying 3-connected planar graphs..

Exact numbers of combinatorial types of 3-polytopes with' at most 22 edges are

given in Duivestijn and Federico (1981). Asymptotic:formulas in terms of number *

of edges, number.of vertices-or numbers of facets and vertices are summarized in
Bender (1987); these are the product of several people’s work over 25-years.

* Theorem 6.2. The number of combmatorzal types of 3-polytopes with i +1 vertices
’ and j+1 facets is. asymptotzcally B :

S ey 2i 2]
k 972ij(i+j) \J+3/\i+3

Gale draorams have been used to count the co mbin»atorial types-of simplicial or

3 arbrtrary polytopes with d + 2-or d + 3. vertices; see section 4.2.”A d-polytope is

neighborly if every set of dej vertices forms d face. For even dimension d; every

- neighborly d-polytope with d+2 or'd +3 vertices is equivalent to a cyclic polytope.

The face lattice of a cyclic polytope is specified by Gale’s evenness criterion (see
Griinbaum 1967). For odd d; the numbers of types of neighborly d-polytopes with

at most d +3 vertices are given in McMullen (1974). The numbers of d-polytopes .

and neighborly d-polytopes with d + 4 vertices are known only for d<4.

~.Asymptotic.upper and lower bounds for the number of combinatorial types of :
d-polytopes have been brought surprisingly close in the last few years Let c(n d)

: Theorem 6.3.
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be'the number of types of d-polytopes with n vertlces cs(nm, d) the number of these

~that are simplicial:

1 log log(/r/ti) ))

N ndf : (1m0 L Jogloe(n/d)
(,"dd) <a(n, d)<cn d)< (n/d) (e ("’“("f‘””“"g("/‘“

and

c(n, d) 62113+O(112).

- 'This is based on Shemer's (1982) estimate of the number of simplicial neighborly-
-polytopes, and Goodman and Pollack’s (1986) application to configurations of Betti

number estimates by Milnor, with improvements by Alon (1986). Comparlnc this
with Theorem 214, we see that there are many more spheres than polytopes

6.4, [sotopy

Bjorner et al. (1991) is a'good reference for the isotopy problem. Steinitz (Steinrtz .

and Rademacher 1934) proved the isotopy property for 3-polytopes. Represent a
polytope in R® with n vertices in some-order, vy;vs,:..; v, by a length 35 vector -
(UI; U2yen vy Ull) . : :

'Theorem 6.4. Suppose P and Q are two combmatormlh eqzuvalent polytopes_in

R3 with n_vertices in corresponding order. Then there is a path in R connecting
P with either Q or the reflection-of O, such that each pomr of the path. represents a
polytope combmatorzally equivalentto P.

This isotopy property fails-in- ‘dimensions hlcher than 3 (see section 4.5). Already :

~in R* there is a simplicial polytope with 10 vertices for which it fails. The polytope . -
.~was first-described in Bokowski; Ewald and Kleinschmidt (1984); that it fails the ~ -
“isotopy ‘property is due to Mnév (1988) and Bokowski and Guedes de Ohvelra '
-(1990); fora good account see Bokowski and Sturmfels (1989).

- A-group of mathematicians in Leningrad.(Viro 1988) has worked on a more -

+ general study of realization spaces. The realization space of a combinatorial type of

polytope is the set of vector representations of all realizations of the combinatorial

: o type. A polytope satisfies the isotopy property if its realization-space is connected.

Mnév showed that the general situati’on is'very far from the isotopy property.

Theorem 6.5 (Mnév 1988) ‘For any semi- algebrazc wzrzetv V there exists a convex
: polytope whose realization space is homotopy equivalent to V. '

6.5. Realuanon

Steinitz’s Theorem says that every polyhedralk complex homeomorphic to the 2-

dimensional sphere can be realized convexly. i.e;, as the boundary of a convex
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3-polytbpe.7 In section 4.2 we sawﬂthat the same was true for (d—1)-dimensional pl-

spheres with at most d+3 vertices. There are two simplicial and forty nonsimplicial

3-spheres with -8 vertices that cannot be realized as boundaries of polytopes; see

Altshuler and Steinberg (1985) for a complete list of these. Klee and Kleinschmidt -
(1991) ‘summarize the numbers of polytopal and nonpolytopal spheres of various

types.-

Tarski's decision method (Griinbaum 1967) implies the following. - :
Theorem 6.6. Theré is a decision prbceduré to-determine whether.a given complex
is:polytopal or not. o ‘ : ‘

However, this method is far from efficient. Though the techniques .of oriented

“matroids (section 4.4) are much better, still they cannot handle spheres with large -

numbers of vertices-relative. to. the dimension. Further, Sturmfels proved:that the

- polytopality of a sphere (of dimension at least 5) cannot be determined locally.

‘Theorem 6.7 (Sturmfels 19S7a). For infinitely many different nonpolytopal ; 50
. spheres, every subcomplex on fewer vertices can be extended to the boundary of -
.-a.polytope. ' : : Lo o i

In section 4.2 it was noted that all d-polytopes with at most d +3 vertices can be
realized rationally, i.e., with-vertices in @Q¢. ‘This is also the case for all simplicial

~polytopes, and also for all 4-polytopes with at most 8 vértices ;(A‘ltsh‘uler and Stein-
~berg 1985). Another consequence of Steinitz’s Theoreri is that the same:hLolds for
‘3-polytopes. = : '

“Theorem 6.8. All combinatorial types of 3-polytopes caﬁ be realized with rational

vertices. ..

We do /ndt know if this continues to hold for 4- and 5-polytopes, but it fails in -
~higher dimensions. ‘ L i S

" Theorem 6.9 (Sturmfels 1987c). The décidability of the existence of a rational real-
ization of a lattice as the face lattice of a polytope is equivalent to the decidability -

of the existence of rational roots of polynomials with integer coefficients. :

* Theorem 6.10. (i) All d-polytopes can be realized in AY, where A is the ﬁeld of real

algebraic numbers. . ">

" (ii) For every proper subﬁeld @ of A, there is a 6-polytope not realizable in 5. -

Part (i) of the above the;brefn is due to Lindstrom (1971), and part (i) to Sturm-
fels (1987a). ' ~ , e

There are two main questions ckoncerning the realization’of facets of polytopes.

" One asks whether the shape of a facet F of a d-polytope P can'be preassigned.-In -

section 4.2 we saw this was always-the case if P had no more than d +3 vertices.
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- Theorem 6.11 (Barnette and Griinbaum 1970).’ The ,;hapé ‘of any facet of any 3-°

polytope can be preassigned. :

A polytope is equifacetted if all its facets are of the same combinatorial type.

A d-polytope is facet-forming (or a d-facet) if it is the combinatorial type of the =~
- facets of some equifacetted (d + 1)-polytope; otherwise it is-a nonfacet. It is easy

to classify 2-polytopes using the condition on p-vectors (see section 6.7). The tri-

angle, quadrilateral and pentagon are facet-forming. while the n-gon is.a-nonfacet - -
for every n>6. For higher dimensions no classification is known. See Perles and. -

Shephard (1967), Barnette (1980), and Schulte (1985). Any d-polytope with d +2

~vertices is facet-forming. Facet-forming polytopes with large numbers of vertices.
-are also known. " ) ‘

-Among the equifacetted,pol_\-/t()pes are the (combinat‘briaily) regular polytopes,
for which vertex-figures are also all of the same- combinatorial type. The ‘icosa-

hedron is not yet classified: as facet-forming or.a nonfacet; all other regular 3-

- polytopes are known to be facet-rformin‘gj The simplex and- cube .are “the only
- facet-forming regular 4-polytopes (Kalai 1990a). For general d. the d-simplex and
 d-cube are, of course, facet-forming; the d-crosspolytope is a nonfacet for d > 4.

6.6. Barycentric subdivisions

‘Let-P bea convex d-polytope. Perform a stellar subdivision of P with fespect.td

each of its proper faces in succession, going from high- to low-dimensional faces. :
The result is the barycentric subdivision of P, A(P). a simplicial d-polytope with
‘vertices corresponding to proper faces of P. and faces-corresponding to chains of

faces of P. As a simplicial complex this is also known as the order complex of the -~
.. Tace lattice of. P (with least and greatest elements omitted): If each vertex of A(P)

is labeled with the dimension of the cotresponding face of P, then each facet of
A(P) has exactly one vertex with each of the labels 0,1, 0.,d=1. .

A simplicial (d ~ 1)-complex .4 is balanced if, under some labeling of vertices,
each facet has ore vertex of each label. By connectedness; the labeling is essentially '
unique in the case that A is a balanced sphere. Not all balanced simplicial d-
polytopes arise as.barycentric subdivisions of polytopes. Those that are barycentric

- subdivisions of regular €W spheres have been characterized using flag vectors

{(Bayer .1988). The definition of flag vectors is extended to balanced simplicial
complexes as follows. Let 4 be a balanced simplicial (d — 1)-complex with vertices
labeled by 0,1,...,d — 1. Fot each subset § C {0,1;:0.,d—1} let £5(4) be the

~number of simplices in' A whose vertices have exactly the labels of §. Note that .

for a d-polytope P, and the labeling described above for the vertices of A(P);
fs(A(P)) agrees with the flag number f£(P). Thus the numbers fs(A(P)) satisfy -
the generalized Dehn-Sommerville equations (see section 3.7). For an arbitrary -
balanced simplicial polytope A the numbers f5(4) do not necessarily satisfy these

equatioris. .- T S :

~ For the characterization of barycentric subdivisions we must g6 beyond poly-

“topes. Regular CW spheres share some of the ‘combinatorial .properties of poly-
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* topes. For the -definition and motrvatron for regular cw spheres; see 'Bjorner
7(1984). - ; : :

Theorem:6.12 (Béyer 1988). For'zrny simplicial polvtope A4 is the barvcentrzc, k
subdivision of a regular CW sphere if and onlv-if; for some vertex labeling of A the

~numbers fS(A) sutzsfy the generallzed Dehn-Sonmerville equrmons e

It is:an open problem to dlstmgursh barycentnc subdivisions of polytopes (or
even of polyhedral spheres) among those of regular CW ‘spheres. We know of no
‘e*(arnple of apl regular CwW sphere whose barycentnc subdlvrslon isnot polytopal

6.7, ‘p-vectors 0f3 polytopes
- We conclude our survey with a simple ‘question of the combinatorics of o—polytopes

that remains open. What are the possible distributions of n-gons as facets of 3-
polytopes? A partial answer was given a hundred-years ago by Eberhard (see

Griinbaum 1967). For.a 3-polytope P and an integer#1.2 3, let p;(P) be the number.
of P’s fdcets that are n-gons.- The sequence (p,,) >3 is the p-vector-of P. Call a.
sequence p ='(ps, P4, P35, P7,Ps; - - ) a reduced (srmple) -p-vector if some value of pﬁ

'can be mserted to get the p-vector of some (srmple) 3-polytope

_Theorem 6 13 (Eberhard 1891) A sequence @J,p4 Dsy D7, Ds; ---) Of natiral num-;

bers, only. finitely many ‘nonzero, is a reduced (simple) p- vector rf and only zf
D6 n)p,, is even and is at least (equal to) 12.

The values of Ds that complete a . given reduced simple . p- vector are” now

fairly well understood. The following result is- from Jendrol’ (1983); it incor- :

porates. contributions by .various people. For p="(ps,py,P5,P7;Ps,-+.)" a Te-
- duced simple p-vector, write 0 =3 .¢Pjv p = g (moa 3y L) and ?p) =
‘ {p5 Ds completes P to a 51mple p-vector} : :

Theorem 6.14. Let pbea reduced simple p- vector.

() If p<2, then for some integer m, P (p) contains every: mteger k>m of the

~same parity as o and no integer of the opposite parity.
© (i) If p=3, then for some integer m, @ (p) contains every mteger k >m.
In both cases m-éan be chosen to be at-most’y 1_6 ipj-
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