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We describe what it means in terms of one
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concrete representation of the matroid, the Gale transform. The reader may
consult [4, 9, 14] for background on Gale transforms. A Gale transform of a
polytope P is the set of columns of a matrix A whose rows form a basis for the
affine dependencies on the vertices of P. A Gale transform D of a d-polytope
P with n vertices is thus a set of n (not necessarily distinct) points in R*—9-1,
To each vertex v of P there corresponds naturally a point ¥ of D. A circuit
of P corresponds to the complement in D of the set of points contained in a
linear hyperplane spanned by points of D. The set of points of a circuit having
coefficients of one sign in the affine dependence corresponds to the set of points
on one side of the hyperplane. Thus a circuit of P is balanced if and only if
there is an equal number of points in either open half-space bounded by the
corresponding hyperplane of D.

Some triangulations of a polytope can be constructed using the Gale transform
(see Lee [7]). Let V be a Gale transform of a d-polytope P and Z a point of
R"~?~! on no linear hyperplane spanned by elements of V. The maximal subsets
$ C V such that 0 is in the relative interior of the convex hull of 5°u {z} are the
d-simplices of a triangulation. We call this the Gale triangulation induced by z.
A triangulation obtained in this way is called regular. Note that multiplying the
points of the Gale transform by positive scalars does not change the sets § U {z}

that capture 0. Thus we can (and often will) normalize the Gale transform to be
a subset of S"~4-2y {0} C R*—4-1,

THEOREM 1: If a polytope is equidecomposable, then all its circuits are
balanced.

Proof:  Suppose the d-polytope P with n vertices has an unbalanced circuit,
X =Xt UX~, where X+ is the set of points of X having one sign in the affine
dependence, X~ the other, and |[X*| = k < m = |X~|. Consider the Gale
transform D of P with scts X' and X  in the open half-spaces, HY and H~,
bounded by the hyperplane H. If the points of D in H capture 0 (in the relative
interior of their convex hull), choose one of these points z. Otherwise, since the
points of D in H span H, there exists a point Z of H (not in D) such that 0
is in the relative interior of the convex hull of (DN H)U {z}. Choose points
z* and 7~ close to 7 in H+ and H~- (here “close” means that the line segment
conv{z*,z~} does not intersect any spanned hyperplane of D other than H ).

Let A% and A~ be the triangulations of P induced by z+ and Z~. The minimal



304 M. M. BAYER Isr. J. Math.

cofaces that differ for the two triangulations are those for which z+ (or z7) is
the only point in its open half-space H* (or H™). That is, they are of the form
AU {b,z*} (or AU {c,z7}), where 4 is a minimal set in H such that AU {7}
captures 0, and b€ X (c€ Y+). For each such A there are m of these cofaces
for A* and k for A™, so A* has more facets (d-faces) than A~. Thus P is not

equidecomposable. |

It is not clear whether the converse to Theorem 1 holds in gencral. For d-
polytopes with more than d + 3 vertices, not all triangulations of polytopes are
regular. The balanced circuit condition cnables us to argue only about regular

triangulations.

PROPOSITION 2: If all circuits of a d-polytope P are balanced, then all regular

triangulations of P have the same f-vector.

Proof: Any two regular triangulations, A and A’, can be connected by a se-
quence of triangulations, A = A, Aq,...,A; = A’, where each adjacent pair
Ai_; and A; is related as AT and A~ are in the proof of Theorem 1. If all
circuits are balanced then A;_; and A; have the same f-vector for cach ¢, so all

regular triangulations have the same f-vector. |

By [7] all triangulations of a d-polytope P with at most d + 3 vertices are

regular. Thus we get

COROLLARY 3: If P is a d-polytope with at most d + 3 vertices and all circuits

of P are balanced, then P is equidecomposable.

We close this section with a few examples. The regular octahedron and the tri-
angular prism are both equidecomposable polytopes (whose triangulations have
f-vectors (6,13,12,4) and (6,12,10,3), respectively). Note, however, that the
octahedron is combinatorially equivalent to polytopes that are not equidecom-
posable. The bipyramid over a triangle is not equidecomposable: it has one

triangulation using two tetrahedra, one using three.

3. Shallow subdivisions and h-vectors

In this section we show how the f-vectors of certain triangulations of a polytope

can be computed from combinatorial invariants of the original polytope (or vice

versa). The combinatorial invariants form the h-vector of the polytope. The
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h-vector was first defined for simplicial polytopes (its origins go back to Som-
merville’s 1927 paper [11]). More recently Stanley extended the definition to
Eulerian posets [12]. The form of Stanley’s definition comes from algebraic ge-
ometry: the h-vector of the boundary 9P of a rational polytope P is the sequence
of intersection homology Betti numbers of the associated toric variety.

Define polynomials h(C, z) for all polyhedral complexes C and ¢(5,z) for all
spheres S by the rules:

1. h(d,z) = g(d,z) =1, o

9. ifdim $ = d—1 and h(S,z) = S0, kiz', then g(S, z) = T o (ki—ki—1)2’,
where m = |d/2| and k_; =0, b

3. if dimC = d, then W(C,z) = ¥ g(0F, z)(z ~ 1)?~4™ F where the sum is
over all faces F of C.

Keeping in mind that the g-polynomial is defined only for spheres, we will
often abbreviate g(dP,z) to g(P,z) for a polytope P. (Note, however, that we
distinguish between h(8P,z) and h(P,z); the latter is defined for the polyhedral
complex having a single maximal face P.) For a d-complex C' with h(C,z) =
T4 kiot, write hi = kgy1-; and call B(C) = (ho, b1, ..., has1) the h-vector
of C. I C is a d-sphere the h-vector satisfies the Dehn-Sommerville equations:
hi = hgyy_; for all i. The vector of coefficients of g(S,z) (in standard order) is
the g-vector of the sphere S. Both the h-vector and the g-vector of the boundary
of a rational polytope are nonnegative; the only known proof of this uses the Betti
number interpretation of the h-vector.

If F is a simplex then g(8F, z) = 1. So for a simplicial complex C, the h-vector
is a function of the f-vector, namely the usual function defining the h-vector of

a simplicial complex:

i ld—j
e S ()i
This relation is invertible, so the h-vector of a simplicial complex determines the
f-vector. In general the h-vector is a linear function of the flag vector (but not
vice versa) [1]. However, this fact does not lead to a natural interpretation of the
h-vector in general. The next theorem may provide a step in that direction.
Generalizing the notion of triangulation, we define a (polyhedral) sub-
division of a d-polytope P to be a polyhedral complex whose vertex set is that
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of P and whose underlying space is P. If ¢ is a face of a polyhedral subdivi- let

sion A of P, the carrier C(o) of o in P is the smallest face of P containing
o. A polyhedral subdivision A is shallow if and only if for each face ¢ € A,
dimC(c) < 2(dim o — deg g(o,z)). In particular a triangulation A is shallow if
for each 0 € A, dimC(s) < 2dimo. - |

Stanley {13] showed that if P is a rational polytope, then for any subdivision
A of P, h(A) > h(P). We show shallowness gives equality.

THEOREM 4:
(1) If A is a shallow subdivision of a d-polytope P, then g(0P) = h({(P) =
h(A) = g(8A).
(2) If A is a subdivision of a rational d-polytope P and h(P) = h(A), then A
is shallow.
We first list some identities satisfied by h-vectors and g-vectors. The second

and third are straightforward generalizations of results of [10] for triangulations.

LEMMA 5: L\ o ’\Y -
(1) IfC is a (d — 1)-sphere, then

(z — 1)A(C,z) = 21 g(C,1/z) — ¢(C, ).
(2) If Q is a polyhedral ball of dimension d, then
MQ,2) ~2*'h(Q,1/z) = 2*+14(8Q,1/z) - 9(8Q, z).
(3) If A is a shallow subdivision of a d-polytope P, then
h(A,z) = z?tg(dA,1/2).

We also need the concept of an acceptable function, defined in {12]. Let C be
a polyhedral complex, and v a function that associates a polynomial y(F,z) to
every face F of C. The function v is acceptable if for all faces F of C

Z ’7(G,.’E)(.’l: _ 1)dim F—-dim G _ xdim F+17(F,1/11).
G face of F
The g-polynomial is the unique acceptable function 4 on the polytope such that
¥(#,z) =1 and for all other faces F, degy(F,z) < dim F/2 [12].
Now we define a new polynomial for the faces of a polytope relative to a fixed

subdivision. For any polytope P, any subdivision A of P, and any face F of P,

Vi

o) n

ya(F,z) = Z g(o,:
aEA
C(o)=F

For a face F of P, write A|f for the su
OA|F for its boundary complex (which st

PRrOPOSITION 6: If P is a polytope anc

acceptable.

Proof: Fix the polytope P and subdivisic

e. Consider the sum
SA(Fa :L‘) = Z e
G face of F
By the definition of v4,

Sa(Fe)y= Y ) g(o,7)

G face of F _7€A
c(0)=G
(1)

= 3 g(o,a)a— 1)

c€A
Cc(s)CF
Interpreting this sum for the polyhedral

Sa(Fz)= > g(c

(2) sEA|P
= h(A|f,z

On the other hand, by separating the face

Sa(F,z) = z g(o,z)(z

cE€A
C(o)=F

+(x-1) )

g€AA|
= 7a(Fz) + (z -

By Lemma 5, parts (1) and (2), we get

Sa(F,z) = ya(F,z) + 2%
=va(F,z) + h(A|,

(3)

= frce I
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let
dim F—di
va(F,z) = Z glo,z)(z — 1)Hm T —dme,
cgEA
Cc(o)=F

For a face F of P, write A|p for the subcomplex of A that subdivides F and
OA|F for its boundary complex (which subdivides the boundary 9F of F).

PROPOSITION 6: If P is a polytope and A is a subdivision of P, then v, is
acceptable.

Proof:  Fix the polytope P and subdivision A. Let F be a face of P of dimension
e. Consider the sum

Sa(Fz)= Y 4a(G,z)(z —1)4mG,
G face of F

By the definition of ya,

SA(F,J:) = Z Z g(a,:c)(x _ l)dim G-dim 0(:1: - l)e—dimc
(1) G face of F c(dﬁ)ic
= Z g(O’,CL‘)((D _ l)e—dim o
TS
C(s)CF

Interpreting this sum for the polyhedral complex Alp,
Sa(F,z) = E g(o,2)(z — 1)edime

(2) oEA|p
= h(A|r, z).

On the other hand, by separating the faces of A|p carried by F in expression (1),

Sa(Fiz)= Y g(o,0)(z - 1)=dime
015

+z-1) Y g(o,a)(z —1)s"1mdime

a'EaAIp
=va(F,z) + (z - 1)h(DA|F, ).

By Lemma 5, parts (1) and (2), we get

Sa(F,z) = ya(F,z) + a;"Hg(aAlp, 1/z) — g(0A|F, z)
= ya(F,z) + h(Alp,z) — xe+lh(A|F, 1/x).

(3)
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So, combining (2) and (3),
va(F,z) = 2 h(AlF, 1/z) = a1 SA(F, 1/2)
or
Sa(F,z) =zt ya(F,1/z)

So va is acceptable. [}

COROLLARY 7: Let A be a subdivision of a d-polytope P. Then A is shallow
if and only if for every face F of P, ya(F,z) = g(¥F, ).

Proof: As mentioned above, ¢ is the unique acceptable function with value 1 at
and degree at most dim F/2. Thus ya = g if and only if deg ya(F,z) < dim F/2
for all faces F of P. This holds if and only if dim C(o) — dimo + degg(o,z) <
dim C(0)/2 for all faces o of A. 1

Proof of Theorem 4: (1) Suppose A is a shallow subdivision of P. Since each
face of A is carried by some face of P (possibly P itself),
h(B,z) = Y g(o,z)(z —1)F"4me

och

= Z E g(a,z)(z . 1)dim F—dim (z — 1)d—dimF

F faceof P _¢€A

Cc(e)=F
= ¥ aFEae-niinr
F face of P
By Corollary 7
A, z) = S g(Fa)(z-1)iinf
F face of P
= h(P,z).

Applying Lemma 5 (3) gives g(dP) = h(P) = h(A) = g(8A).

(2) Now suppose P is rational and the triangulation A of P is not shallow.
Then for some face G of P, degya(G,z) > degg(G,z). (This is equivalent to
va(G, ) # g(G,z).) For any face F of P, write r(F) = d—dim F 4 deg ya(F, z).
Let r = max{r(F) : Fis a face of P with degya(F,z) > degg(F,z)}. The
coefficient of z* in h(A,z) — h(P,z) is the coeflicient of z* in

Z (va(F,z) — g(F,z))(z — 1)?74™ F

F face of P
1<r{F)<r
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Thus the coefficient of z° in h(A,z) — k
h(P,z)) < r. The coeflicient of z" in h(A

Y (aFz) gl
F face of P
r(F)=r

which is

Z coefficient of z™—1

F face of P
r(F)=r

F faceof P
r(F)=r

Z leading coe;

F faceof P
r(F)=»

coefficient ¢

If P is rational, each term in the last sun
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|py1/z) = :z'“SA(F, 1/z)

- r"“’yA(F, 1/z)

sion of a d-polytope P. Then A js shallow

(A(F, :I:) = g(F’ x)

unique acceptable function with value 1 at !
» = ¢ if and only if deg va(F,z) < dim F/2
d only if dim C(¢) — dimo + deg g(o,z) <
|

is a shallow subdivision of P, Since each
' (possibly P itself),

|~dim o
'U, .’L‘)(.’L‘ _ l)dim F—dim a(z _ l)d—dim F

r — l)d—-dim F

g(F, (t)(:t _ l)d—dim F
fp

h(P) = h(A) = g(dA).
the triangulation A of P is not shallow.
,x) > degg(G,z). (This is equivalent to
P, write r(F') = d— dim F + deg Ya(F, ).
with degya(F,z) > degg(F,z)}. The
the coefficient of 2° in

9(F,2))(z — 1)t-dim F,

polytope P in terms of face numbers of an arbitrary triangulation.

Vol. 81, 1993 WEAKLY NEIGHBORLY POLYTOPES 309

Thus the coefficient of z* in h(A,z) — h(P,z) is 0 if s > r. So deg(h(A,z) —
h(P,z)) < r. The coefficient of z" in h(A,z) — h(P, z) is the coefficient of =" in

Y. (1a(Fz) - g(F,z))(z - 1)t-dimF,

F face of P
r(F)=r

which is

Z coefficient of zr—d+dim F ;,, Ya(F, z)

F face of P
r(F)=r

= Z coeflicient of zdeg va(F.z) 3 Ya(F, z)

F face of P . LAV
r(F)=r :

= Z leading coefficient of v (F, z).
F face of P . .

r(F)=r
If P is rational, each term in the last sum is positive, so h(A, z) — h(P,z) # 0.
So the toric h-vector of A does not equal the toric h-vector of P. |

Note that this implies that if P is a rational, equidecomposable polytope, then
P has a shallow triangulation if and only if all subdivisions of P are shallow.
Also, the proof of (1) shows thaf:i?gl‘)‘:%;;:goﬁf A up to dimension k satisfy the
shallowness condition, then R(A) will agree with h(P) up to index lk/2] + 1.

For a simplicial complex A write h(ANOA,z) = (A, 2)—(z — 1)h(8A, z) and
fi(AN0A) = fi(A) ~ fi(DA). A result of [10] shows that for A a shallow trian-

gulation of a polytope P, 9(0A, z) = h(A N 8A, z). Combining with Theorem 4
this gives

COROLLARY 8: If A is a shallow triangulation of a d-polytope P, then
d+1—3

D g(P)= > (-1)HH1-i=i (d+ ! _j)fj_l(A NOA) for 0 < i < df2,
i=d/21+1 ¢
(2) 91as2(P) = fram (A~ 04),

i1 ,

@ sasom= 3 (TN (Prosica
i=[d/2]+1 —J

(4) frajn+1(A NOB) = {d/2)g10721(P) + gtajapms (P). . ——

It would be valuable to extend this to an interpretation of the g-vector of a

) . \.
é/]\.//@ (/(/ A J/"" / ‘,/ / e

7 v
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4. Weakly neighborly polytopes
A polytope P is weakly neighborly if and only if every set of k + 1 vertices

is contained in a face of dimension at most 2k, for all k. Among the weakly
neighborly polytopes are the even-dimensional neighborly polytopes, those 2m-
dimensional polytopes for which every set of at most m vertices is the vertex set
of a face. '

PROPOSITION 9: A polytope is weakly neighborly if and only if all its triangy-

i

lations are shallow. [ ST , s

Proof: The forward implication is clear. The reverse implication follows from

the observation that every affinely independent set of vertices of P is the vertex

set of a face of some triangulation of P. |

COROLLARY 10: Every weakly neighborly polytope is equidecomposable.

Note that by definition, weak neighborliness, unlike equidecomposability, is a
combinatorial property.
The Hirsch conjecture states that for any d-polytope P with n facets, the

edge-distance between any two vertices is at most n — d (see [5]).
PROPOSITION 11: Weakly neighborly polytopes satisfy the Hirsch conjecture.

Proof: We observe, more generally, that for two vertices z and y on a 2-face of
any d-polytope with n facets, the distance, d(x,y), between = and y is at most
n — d. To see this, suppose = and y are on a 2-face F and F' is an m-gon. Then
clearly the distance between z and y is at most m/2. We estimate the number of
facets n of the polytope P. F is the intersection of d — 2 facets of P. Each edge
on F is the intersection of these d — 2 facets with an additional distinct facet.
Thus P has at least d — 2+ m > d+/_Lm/2J facets. So d(z,y) < [m/2] <n—d,
LV

as desired. |

Although we are most interested in using shallow triangulations to study non-
simplicial polytopes, we first look briefly at the simplicial case. A simplicial
d-polytope is k-stacked if and only if P has a triangulation in which every
(d — k — 1)-face is a face of P (see [10]).

PROPOSITION 12: Let P be a simplicial d-polytope. Then P has a shallow
triangulation if and only if P is |d/2]-stacked.
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Proof: = Let A be a shallow triangulation of the simplicial d-polytope P. If
dimo < d/2, then the carrier of ¢ is some proper face F of P. This face F'is a
simplex, because P is simplicial, so every subset of its vertices determines a face
of P. Thus o is a face of P. So every face of A of dimension less than d/2 is a
face of P, so P is |d/2]-stacked.

<= Suppose the simplicial d-polytope P is |d/2]-stacked. Then P has a trian-
gulation A for which every face of dimension less than d/2 is a face of P. The

triangulation A is clearly shallow. |

PROPOSITION 13: A simplicial polytope is weakly neighborly if and only if it is

a simplex or an even-dimensional neighborly polytope.

Proof: Simplices and even-dimensional neighborly polytopes are clearly weakly
neighborly. Now suppose P is a simplicial weakly neighborly d-polytope. Then
every set of m = |(d + 1)/2| vertices of P is contained in a facet. The facets are
all simplices, so any sct of m vertices of P is the vertex set of an (m — 1)-face of
P. Thus P is m-neighborly. If d is even, this says that P is neighborly; if d is

odd, it implies P is a simplex. ]

Among nonsimplicial polytopes there are two classes known to be weakly neigh-
borly. The first of these is the class of Lawrence polytopes [2]. A Lawrence
polytope is a polytope with an even number of vertices and a centrally sym-
metric (normalized) Galc transform. Equivalently, it is a polytope with vertex
set {t1,...,Un,V1,...,Vs} such that the complement of each pair {u;,v;} is the
vertex set of a face. The flag vector of a Lawrence polytope depends only on
the underlying matroid. It is open whether this is true for all weakly neighborly
polytopes. We shall return to this question in the next section.

Another example of weakly neighborly polytopes is given by the Cartesian
product of two simplices (of any dimension). Billera, Cushman and Sanders
[3] showed that these polytopes are equidecomposable. They described certain
regular triangulations of the product 7™ x T™ of an n-simplex and an m-simplex,
and computed the h-vector of such a triangulation. This gives the g-vector of the
product of two simplices: gi(T™ x T") = (') (}) for 0 < k < (m + n)/2.

Which operations on polytopes preserve weak neighborliness?

PROPOSITION 14: Let @ be a weakly neighborly polytope. Then
(1) The pyramid PQ over Q is weakly neighborly.




312 M. M. BAYER Isr. J. Math.

(2) Any subpolytope (that is, the convex hull of any subset of the vertices
of Q) is weakly neighborly. In particular, any face of Q is weakly neighborly.

Proof: (1) Let S be a set of k+ 1 vertices of PQ. If S'is contained in the vertex
set of Q, then S is contained in a face of @ of dimension at most 2k. This face
is also a face of PQ. Now suppose S contains the pyramiding vertex v of PQ.
Then S ~{v} is a set of k vertices of @, and hence is contained in a face F of Q
of dimension at most 2k — 2. Then § is contained in the pyramid over F, a face
of PQ of dimension at most 2k — 1.

(2) Let P be a subpolytope of @, and let S be a set of k+ 1 vertices of P. Then
S is contained in a face F of Q of dimension at most 2k. Now let G = F N P; G

is a face of P containing S and of dimension at most 2k. |
This section closes with the charactcrization of weakly neighborly 3-polytopes.

THEOREM 15: The only weakly ncighborly 3-polytopes arc the prism over a
triangle and the pyramids over 2-polytopes.

Proof: Suppose P is a weakly neighborly 3-polytope, and hence is equidecom-
posable. Then every set of five vertices, being dependent, contains a circuit of
size four. The affine span of these four vertices is 2-dimensional; its intersection
with P is a quadrilateral. The endpoints of a diagonal of this quadrilateral must
be in a 2-face, so the four vertices are in a 2-face. Thus, if P is a weakly neigh-
borly 3-polytope, then every five vertices contain four that arc contained in a
face of P.

Recall that the only simplicial weakly neighborly 3-polytope is a simplex (which
is a pyramid over a triangle). Suppose now that P has a face with k > 6
vertices, uj,uz,...,u in cyclic order. If P has only one other vertex, then P
is a pyramid over a k-gon. If P has at least two other vertices, v; and vy, then
{uy,us,us,v1,v2} does not contain four vertices in a 2-face. This contradicts the
weak neighborliness of P.

So let k be the maximum number of vertices of a face of P, k = 4 or k = 5. Let
u,uz,...,ux be the vertices of the face Fy of P. If P has only one other vertex,
then P is a pyramid over a k-gon. Otherwise, let vy and v, be two other vertices
of P. Then {u1,uz,us,v1,vz} contains four vertices in a 2-face. This 2-face F;
cannot contain both u; and uj, so without loss of generality say the four vertices

are uj, uz, v;, and ve. Let w (respectively, wz) be the vertex of F3 other than

uy (respectively, other than u;) adjacent to u; (respectively, uz). See Figure 1.
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Figure 1: Two 2-faces of a weakly neighborly polytope

Now suppose P has another vertex wj, not in F} or F,. Consider the set
{u1,u2,uk, w2, w3}. Neither of the pairs {uz,ur} and {u1,w;} can be in a 2-face
containing four of these. So there is no set of four of the vertices contained in a
2-face.

So all vertices of P are in Fy U F;. Since {u2,us,ug,w), w2} contains four
vertices in a 2-face, and neither of the pairs {us,u;} and {ug,w,;} can be in such
a 2-face, {u3,ug, w;, w2} must be in a 2-face. Such a 2-face cannot contain both
uz and us, so k = 4. Then {uz,uq, w1, ws} is the set of vertices of a 2-face.
Thus P has vertex set {uj,us,us,us,wy,wz} and three of the 2-faces of P are
{u1,uz,us,uq}, {u1,us,wr, w2}, and {us,us, wy,wz}. Clearly P is a prism over
a triangle. 1

5. Weakly neighborly polytopes with few vertices

5.1 DESCRIPTION OF THE GALE TRANSFORMS. In this section we use Gale
transforms to study weakly neighborly d-polytopes with at most d + 3 vertices.
First consider the case of d-polytopes with d + 2 vertices. The Gale transform
consists of d + 2 points distributed between +1 and -1. A Gale triangulation is
induced by adding one more point. If the new point has the sign of the larger of
the two sets, then the induced triangulation is shallow. If the new point has the
sign of a strictly smaller set, then the induced triangulation is not shallow. Thus
all polytopes with d + 2 vertices have shallow triangulations. All triangulations
of the polytope are shallow if and only if the two sets of its Gale transform are
the same size; in this case the Gale transform is centrally symmetric. Thus we

conclude:
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PROPOSITION 16: Let P be a d-polytope with d+2 vertices. Then the following
are equivalent.

(1) P is equidecomposable.

(2) P is weakly neighborly.

(3) P is an r-fold pyramid over a Lawrence polytope, for some r > 0.

(4) P is an r-fold pyramid over an even-dimensional cyclic polytope, for some

r> 0.

We can also characterize the Gale transforms of weakly neighborly d-polytopes
with d + 3 vertices. First we consider equidecomposable polytopes. Recall that
the condition that all circuits are balanced is equivalent, in the Gale transform,
to every spanned linear hyperplane bounds two open half-spaces with the sam

@nber of pomts {counting multiplicity).

THEOREM 17: Let P be a d-polytope with d + 3 vertices. Then P is equide-
composable if and only if P is an r-fold pyramid (r > 0) over a polytope whose
Gale transform satisfies
(1) there exists a nonnegative integer ¢ such that each diameter of the Gale
transform has exactly ¢ more points on one end than on the otlher; and
(2) if ¢ # 0, then the number of diameters is odd, and in the cyclic order
the diameter ends alternate between having more points and having fewer

points.

Proof: = Suppose P is an equidecomposable d-polytope with d + 3 vertices.
Since a pyramid is equidecomposable if and only if its base is, we may assume P
is not a pyramid. The normalized Gale transform of P is a circle with numbers
of points at the ends of the k diameters, at,af,... ,az', ajy,az,...a;. P being

equidecomposable means that for every j, 1 < j <k,

j~1 k j-1 k
) b+ D ar=) e+ ) al
i=1 i=j+1 i=1 i=j+1

For 1 < j € k — 1, subtract Equation 4 for j + 1 from Equation 4 for j. Then
for1<j<k-1, a}LH —aj =aj;, — a;', or a;'+1 —aj}; =a; — aj. Letting
¢ = |at — af|, we get condition 1, and we see that if ¢ # 0, the excess must
alternate between positive and negative. Now observe that Equation 4 for j =1

says ZL?(a?’ —aj) = 0. If k is even, the sum on the left can be 0 only if ¢ = 0.
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< Now suppose conditions 1 and 2 are satisfied. Thus we may assume for
every i, af = a} + (—1)'c. It is easy to check that Equation 4 is satisfied for

every j, so P is equidecomposable. 1

For an equidecomposable polytope P, call the constant ¢ given by Theorem 17
the sign difference of P.

THEOREM 18: Let P be a d-polytope with d + 3 vertices. Then P is weakly
neighborly if and only if P is equidecomposable and the sign difference of P is ()

or 1.

Proof: The theorem follows easily from the case where P is not a pyramid. So
suppose P is a d-polytope with d + 3 vertices that is not a pyramid. Consider
the Gale transform D of P as described in the proof of Theorem 17.

= Suppose P is weakly neighborly with sign difference ¢. Suppose without
loss of generality that a} —a] = ¢, so aj = af + (=1)c¢ for all j. Let S be the
set of Ele a; points on the half-open semicircle of D. Then S is contained in

no proper face of P. Now

k

2) a7 -2
=1

k k

= Zaf-{-Z(af—(—l)'ﬁ)—c——Z
i=1 i=1

= d+3-c—-2=d+1-c

25| - 2

Since P is weakly neighborly, 2|S| -2 > d,so ¢ < 1.

< Assume P is an equidecomposable nonpyramid with sign difference ¢ = 0
or ¢ = 1. Note that P has (possibly) two kinds of facets: simplices (whose cofacets

are two-dimensional in the Gale transform), and equidecomposable

(d — 1)-polytopes with d + 1 vertices (whose cofacets are located on one di-
agonal). Both types of facet are weakly neighborly polytopes. Suppose S is a
set of vertices of P. If S is contained in a facet, then because the facet is weakly
neighborly, S is contained in a face of the facet of at most twice its dimension.
But this face is also a face of P, so S is contained in a face of P of at most twice
its dimension. If S is not contained in a facet, then there exists j such that S
contains {af,af,... ,a;f', aj4yy---50ag ). So
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j k

2152 > 2) af+2 ) o -2
1==1 i=j+1

i i . i ,

af +) (af +(=1)') = Y (-1

= =1 i=1

=1

k k

k
+ D a4 ) (@~ (D)4 Y (~1)e-2

=541 i=j5+1 =341

k k k
doaf +Y ai + ) (—1)e—(-1)c-2
i=1 i=1

1=2
= d+3-(-1Ye-2=d+1-(-1)c
> d+1-c>d.

I

So S is contained in a face of dimension at most twice the dimension of S. Thus

P is weakly neighborly. ]

5.2 SHELLINGS AND h-VECTORS. The h-vectors of weakly neighborly d-poly-
topes with d + 2 vertices are the vectors of the form (1,2,3,...,k,k,..., k, k —
1,...,3,2,1) (here k = 1/2(d — r + 2) if P is an r-fold pyramid). This is the
entire set of possible h-vectors for d-polytopes with d + 2 vertices. We shall see
that this fails for d-polytopes with d+ 3 vertices: not all h-vectors of d-polytopes
with d 4+ 3 vertices are h-vectors of weakly neighborly polytopes.

It is well known that the h-vector of a shellable simplicial complex can be
calculated from an explicit shelling. Lee [8] used this to compute the h-vector of
a simplicial polytope from its Gale diagram. We apply this technique to weakly
neighborly polyﬁopes. R

A shelling of a pure simplicial d-complex A is an ordering F, F,..., Fy, of
its facets so that for each j, 2 < j < m, F;N(Vi¢;F;) is a pure (d—1)-dimensional
subcomplex of F;. If Fy, Fy, ..., Fy, is a shelling of A, then hg(A) is the number
of j such that k is the cardinality of the minimal face of Fj not contained in any
previous F; [9].

Suppose a d-polytope P with d + 3 vertices has a (normalized) Gale transform
D. We say aray r from 0 is in general position with respect to D if —r contains

no point of D and r does not meet the intersection of any two diagonals of D (a

diagonal of D is a line segment connecting two points of D). The pairs {7, 7}
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of points of D such that the open ray r ~{0} intersects the relative interior of
conv {T,y} are the cofaces of the maximal simplices of a triangulation A of P.
(This is the Gale triangulation induced by a point Z on —r ~{0}.)

We describe a shelling order for A (this follows (7], where a certain degree
of affine independence is assumed). First choose an ordering of the points at
each point location. Now order the diagonals in order of decreasing distance
from 0 along r. Let Yf and X; be the points at the two ends of the ith
diagonal. Order the pairs in Yf x X; consistently with the orderings of —X—,i .
This gives an ordering of all pairs {7,y} whose convex hulls intersect r ~{0}. It
is straightforward to check that it gives a shelling of A.

Say that a point v is weakly separated from 0 by {Z,7} if either 7 is in the
open half-space bounded by the line aff {Z,%} not containing 0, or T is in the
same set Yf U X, as T and § and occurs before T or ¥ in the chosen orderings
of 7?: If F is a facet of A with coface {Z,7} then the minimal face of F' not
contained in a previous facet of the shelling is spanned by the vertices v such
that ¥ is weakly separated from 0 by {Z,7}. Thus h;(A) is the number of pairs
{Z,y} whose convex hull intersects r ~{0} and which weakly separate exactly :

points from 0. Applying Theorem 4 gives the following.

PROPOSITION 19: Let P be a d-polytope with d + 3 vertices; let D be a Gale
transform of P; let r be a ray from 0 in general position with respect to D; and
let A be the triangulation of P induced by r. If A is shallow, then g;(P) is the
number of pairs {Z,5} whose convex hull intersects r ~{0} and which weakly

separate exactly ¢ points from 0.

For a weakly neighborly polytope this implies that no diagonal of a Gale trans-
form separates more than d/2 points from 0.

For Lawrence polytopes the flag vector (and hence, f-vector and h-vector)
depends only on the underlying matroid (the affine matroid on the vertices),
not on the oriented matroid. The next theorem gives a partial extension to

equidecomposable and weakly neighborly polytopes.

THEOREM 20: If P and Q are equidecomposable polytopes with at most d + 3
vertices having the same matroid, then all triangulations of P and @ have the
same f-vector. If P and @ are weakly neighborly polytopes with at most d + 3
vertices having the same matroid, then h(dP) = h(0Q).

Proof: For equidecomposable polytopes with at most d 4 2 vertices, the ma-
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troid determines the combinatorial type of the polytope. Now suppose P is an
equidecomposable d-polytope with d + 3 vertices, and let Dp be a normalized
Gale transform for P. Let Q be a polytope with normalized Gale transform Dq
differing from Dp in that two diameters are exchanged (and flipped to preserve
equivariance).

Consider a ray r from the origin in general position, and the induced trian-
gulations Ap and Ag of P and Q, respectively. A straightforward calculation
shows that the diagonals crossed by 7 in the two Gale transforms make the same
contribution to the h-vectors of Ap and Ag.

Since P and Q are equidecomposable, all triangulations of the two polytopes
have the same h-vector. The h-vector of a simplicial complex determines jts
f-vector, so the first statement of the theorem is proved. Finally, for weakly
neighborly polytopes, the h-vector of a triangulation determines the h-vector of
the boundary of the polytope, so the second statement holds. ]

CONJECTURE 21: The flag vector and h-vector of (the boundary of) a weakly
neighborly d-polytope depend only on the underlying matroid.

By examining Gale transforms of 6-polytopes with nine vertices it can be shown
that there is no equidecomposable polytope with h-vector (1,3, 4, 5, 4,3,1). Thus
not all h-vectors of d-polytopes with d+ 3 vertices can be realized by equidecom-
posable or weakly neighborly polytopes.

6. Further problems

Analogues of Theorems 17 and 18 hold only for “generic” d-polytopes with d + 4
vertices. Here we call a polytope generic if the distinct diameters of its Gale
transform are in general position, while any number of points may occur on each
diameter. An equidecomposable generic d-polytope with d+4 vertices has a Gale
transform satisfying

(1) there exists a nonnegative integer ¢ such that each diameter of the Gale

transform has exactly ¢ more points at one end than at the other; and

(2) if ¢ # 0, then the number of diameters is even.

Furthermore, a generic equidecomposable d-polytope with d + 4 vertices is
weakly neighborly if and only if this sign difference ¢ is 0 or 1.

Finally we mention some open questions for weakly neighborly polytopes of

any dimension and any number of vertices.
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. Are all weakly neighborly polytopes rigid? Here a polytope is called rigid

if its face lattice uniquely determines its oriented matroid.

. Can a proper subdivision (with no new vertices) of a polytope be weakly

ncighborly?

. Does every even-dimensional weakly neighborly polytope have f-vector

minimal among polytopes with the same h-vector?

The interpretation of the h-vector for nonsimplicial polytopes is important for

further progress on facial enumeration questions. We hope that the study of

weakly neighborly polytopes will suggest ideas in that direction.
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