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' Abstract. The first part of the paper surveys results on f-vectors, flag vectors and h-vectors of
convex polytopes. These are combinatorial parameters that have been characterized for simplicial
L polytopes. Many of the results known in the general case depend on the connection between
- convex polytopes and toric varieties. The second half of the paper looks at polyhedral subdivisions
of convex polytopes. The effect of subdivision on the h-vector is studied. The paper discusses the
;. secondary polytope, which encodes the regular subdivisions of a polytope. Fiber zonotopes and
 the corresponding hyperplane arrangements, called discriminantal arrangements, are studied.

ps on a surface of genus 3, Canadian J. Math. 11

Spherical Type and Finite BN-Pairs, Lecture Notes Fm

Key words: convex polytope, f-vector, h-vector, subdivision, triangulation, secondary polytope,
E fiber polytope, hyperplane arrangement, discriminantal arrangement

{6,3,3}, Geometriae Dedicata 203

" The combinatorics of convex polytopes is an active area of research. The most
bimportant reference in the subject, in spite of its age, is still Griinbaum’s book
£ [19]. Highlighting the accomplishments since then are two recent survey articles, by
‘Klee and Kleinschmidt [26], and by Bayer and Lee [8]. In addition Ziegler has a
} preliminary version of lecture notes on polytopes [43]. All these offer much more
extensive bibliographies than is contained here. This paper focuses on three topics
Fin the combinatorial study of polytopes: numbers of faces, subdivisions, and relation
{0 hyperplane arrangements.

s with toroidal cells, Discrete & Computatio

t Curvature, Publish or Perish, moﬁo.mr 1974.

1. Numbers-of Faces

£1.1. f-vECTOR HISTORY

A polytope is the convex hull of a finite point set in R%. A d-dimensional polytope
has faces of dimension 0 (vertices), 1 (edges), and so on, up to d —1 (facets). Write
E f; for the number of i-dimensional faces. The f-vector of a polytope is the sequence
(fo, f1,- .-, fa-1). This has been the subject of much study in this century and
 before. The characterization of f-vectors of d-polytopes for all d is a major open
E problem.

At the turn of the century Steinitz [41] gave the complete characterization of
| f-vectors of polytopes of dimension three.

' Theorem 1 (Steinitz) An integer vector (fo, f1, f2) is the f-vector of a three-
f dimensional polytope if and only if

L fo—fi+tfa=2
2 fo<2fr—4
3 f2<2f0—4

155
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No characterization is known for polytopes of any dimension greater than three. The h-vector is important not only because it gives a convenient way to write
e it is the counting vector for several different se-

For 3-polytopes more detailed combinatorial information has been studied. If P ig 3 down the conditions, but becaus:

wmw.evoqpovn- let pn(P) be the number of ».,monm of P which are n-gons, and call the 4 . quences of objects associated with the polytope. The discoveries of these fueled
rn or Q.vu. Pa, s, - - ) the p-vector. Much is r.:oi: about p-vectors of 3-polytopes; : & much research in polytopes. Some of them have analogues in the nonsimplicial case,
though it falls short of a complete characterization. The basic theorem is due to . and we turn to that now.

Eberhard in 1891 [15].

1.2. FLAG VECTORS

1t quickly becomies clear
pot the right object of s

in looking at the general polytope case that the f-vector is
tudy. It carries too little of the combinatorial information.
We introduce instead the flag vector of a polytope, defined as follows. Consider a
sequence of distinct proper faces ordered by inclusion, Fo C FCcFRC--CFe
This is called an S-flag, where S is the set of dimensions of the faces Fi. The number
of S-flags of a polytope is written fs, and the vector of all such flag numbersis called
the flag vector of the polytope (here S ranges aver all subsets of {0,1,...,d— 1}).
For example, a square based pyramid has flag numbers fs = 1, fo=f2 =5, nh=_s,
for = fo2=ha=16 and fo1,2 = 32.

The big enumeration problem for polytopes is then: characterize the flag vectors
of d-dimensional polytopes for all d. The problem is trivially solved for dimension
at most 3 because the flag vector then depends only on the f-vector. Also, the
flag vector of a simplicial polytope depends only on its f-vector, so there is nothing

interesting to say in this special case.
The first general result for flag vectors of polytopes is known as the generalized

i Dehn-Sommerville equations [5].

Theorem 2 (Eberhard) There ezists a 3-polytope with p, n-gons (n >3, n# ew,
and some number of 6-gons if and only if the integer MUA@ —n)pp is even and s at ]
least 12. - ' 4,

G:Hv: the 1970s and 1980s Jendrol’ and others studied the possible values of ps Awoo
A polytope w.m called simplicial if all its faces are mva:oomP For simplicial poly-;3
topes Sommerville [34] first observed a useful invertible linear transformation on 4.row
\-<momo_.. ﬂxﬁ:a the definition of f-vector by writing f-1 = 1. Then the h-vecto
of a simplicial d-polytope is (ho, b1, ..., hg), where

hj = WT:I Guwv fio1.

i=0

In 1971 McMullen [29] conjectured a characterization of h-vectors of simplicial mxm
polytopes (for all d). The necessity of the “McMullen conditions” was proved ing
1980 by Stanley [35], and the sufficiency the same year by Billera and Lee [10].
1992 McMullen [30] gave a new proof of necessity, avoiding the algebraic geometry;
used by Stanley. (Sommerville [34] proved (1) of the theorem below; these equations
are known as the Dehn-Sommerville equations.) .

Theorem 4 (Bayer and Billera) The affine dimension of the flag veclors o\m-

b polytopes is ea — 1, where (eq) is the Fibonacci sequence, eq = €d—1 + €d-2, €0 =
b ¢, = 1. The affine hull of the flag vectors is determined by the equations

k-1 .
Y (1 feun(P) = (1= (CDFT) Ss(P),

Theorem 3 Stanley; Billera and Lee; McMullen :
j=idl

An integer vector (ho, by, ..., ha) is the h-veclor of a simplicial d-polylope if and;
only if :
1. hy = hg—i Hoq. all s 4
2 ho=1and hi < hiyy foralli, 0<i<d/2—1
8. hip1 —hi < (hi — hicy)¥) for alli,0 < i< df2-1.

wherei < k—2,i,k€SU {-1,d}, and S coniains no integer between i and k.

The proof that these equations hold for flag vectors of polytopes is the same
as Sommerville’s proof of the Dehn-Sommerville equations for simplicial polytopes
3 . That they determine the affine hull of flag vectors was proved by exhibiting a basi:
E of polytopes. This was first done in a complicated calculation in (5], and was late:

done more elegantly by Kalai [24]. In that work Kalai also found the affine hull o
flag vectors of k-simplicial d-polytopes {polytopes all of whose k-faces are simplices)

Stanley’s proof of the McMullen conditions for f-vectors of simplicial polytope:
depends on a connection between rational polytopes and toric varieties. A polytop
is rational if all the coordinates of its vertices are rational numbers. Every simplicia
polytope is combinatorially equivalent to a rational polytope, but this is not tru
for nonsimplicial polytopes (see (19, page 94]). Fora rational polytope, the affin
dependencies among the vertices can be generated by a finite set of affine depen

dencies with rational coefficients. These are used to define a toric variety. (For a

.E:.w superscript (i) represents the pseudopower operation, defined via binomial
coefficients as follows. For any positive integess n and i, n has a unique representa

tion
n= A:...v + Aw:l_v ot Auuv
1 i—1 i)’

where n; > nj_y > --- >n; > j 2 1. The ith pseudopower of n is then

W :.(:v A:..L.: n; +1
= (7 + 5
An.*; i oot ji+1)

We also define 0} = 0 for any positive integer i.
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mvamEOJ of toric varieties and polytopes see [32].) The h-vector of a simplicia] }
polytope is the sequence of Betti numbers of this variety. For rational =o=£5v:%w—
vo_w_wwvom, however, the usual Betti numbers no longer depend only _o= the nosm_‘
natorial structure of the polytope. The appropriate definition of the h-vector com . :
EE the middle perversity intersection homology. When the polytope is simpli o
this definition agrees with the previous definition of h-vector. phcial
A way of calculating the h-vector for general rational polytopes was found inde-
pendently by several algebraic geometers: Bernstein, Khovanskii and MacPherson
mgu_ow [36] introduced the formula to combinatorialists; he gives in these Edoooa.
ings TS_ a definition that applies more generally to Eulerian posets. Here is nrmm
definition of the h-vector of a polytope as a recursion on the face lattice. !
For a d-polytope P, from the h-vector (ho,hy,..-, ha) € Nd+1! is defined the g-

vector (90,91, -+ 914/2}) € NL4/21+1 by go = ho and g; = hi —hi—y for 1 i< d/2. 3

The generating functions h(P,t) = d phgd=iand g(Pt) = /2y g
recursively by )= Li=o and g(P,t) = 3 =g 9it’ are defined -
1. g(8,t) = h(9,t) =1, and

2. h(P,t) = MU
G face of P
G#FP

. It .mm easy to mronw from this recursion that for a fixed dimension d and any %, k;
is a linear function of the flag vector. Fine {17] has a combinatorial interpretation

of the coefficients of the flag numbers in this linear function. 3

IfScC *.o_ i,...,d — 1}, the S-template consists of d spaces with a vertical bar
after the (j + 1)st space for each j € S. An admissible pattern of weight r for

the S-template is a placement of an z in each of r spaces so that to the left of

each <o_..$nm_ bar Aw_.n the way to the left) there are more blank spaces than zs.
,Hrm. :um_mm& .noommo—oi of fs in h; (for d-polytopes) is the number of admissible
MVWH vohw..m%m_ Mwm.&rn d — i for the S-template. The sign of the coefficient of fs in h; is

As an mxm.a.vrw. we compute the formula for the h-vector of a 3-polytope. Here
are all the admissible patterns, with signs indicated.

(#) x x x +) x _ _ )
(-) xx _ +) _x_ A+VH._..I,
(-) x _x (+) _ _x +) _ HI
(=) _xx ) _lx_ & ___1
A.fvl._NN A|VI|_‘IN AIvH.._IH_
() - lx i1
-)x__ | ) __1_1
) _x_ 1 (+) _ 1 _ 1 1}
=) |
(+) I

QAQ.SQ - valul&in. u

£ et

PACH IMBERS AN S

From these we get the following formulas for the hi-vector.

ho = fo

hy = fo—3fe

hy = |.?5+>:+w?n+bulw?lblw?+w?
hy = .?;\?._I.§|>u+?+>+?|b

ith any rational d-polytope P is an h-vector h(P) =
QSL:. ..., ha), which depends linearly on the flag vector of P. Asin the case of
simplicial polytopes, this h-vector is positive, symmetric and unimodal. We don’t
know if the nonlinear inequalities satisfied by simplicial h-vectors hold in general.
Note that the flag vector cannot be computed just from the h-vector; the flag vector
. contains a Fibonacci number of pieces of information onvosmsat in dimension d),
E. while the h-vector contains only d/2 pieces of information. The unimodality of the A~
vector or, equivalently, the nonnegativity of
satisfied by flag vectors of rational d-polytopes. It is believe
and that they are satisfied by flag vectors of irrational polytopes. 1t should be noted
that the first two inequalities are known for irrational polytopes as well: one is trivial
(fo2 d+1), and the other (for — 3fz+ fr —dfo+ (44Y) 2 0) was proved by Kalai
[23] using rigidity.

Kalai [24] made 2 wonderful observation that enabled him to extend the h-vector
to a vector linearly equivalent to the flag vector, and to get many more linear inequal-
ities on flag vectors. This is that the convolution of two linear forms on flag vectors
is also a linear form on flag vectors. First we define the convolution of two flag num-
bers. For SC {0,1,. L d=-1},TC {0,1,....e~ 1},and P 3 (d+e+ 1)-polytope,

In summary, associated W

the g-vector gives d/2 linear inequalities
d that these are sharp

fsxfr(P)= 2 fo(F)fr(PIF) = Fsutaucr+esn(P):

: F d-face of P

[ (Here P/F is the quotient polytope of F, an e-polytope whose face lattice is the
interval [F, P) in the face lattice of P.) Repeat to get the convolution of any finite
sequence of flag numbers, and extend linearly to define the convolution of a sequence
of linear forms in flag numbers. In the following we write g¢ for the linear form in

flag numbers that calculates gi (= hi — hi_;) for d-polytopes.

Theorem 5 (Kalai) The following linear forms on flag numbers form a vector of

length eq linearly equivalent to the flag vector:
g5l * 96 *ok g
3 ' whered =k — 1+ Si 0< &y < 5kf2 and for 1 <i <k, 1< 6 <sif2

that are nonnegative for all poly-
for polytopes of the appropriate
for rational polytopes, and
|l rational polytopes.

The convolution of a sequence of linear forms
topes is itself a linear form that is nonnegative
convolutions of gis are nonnegative

dimension. Thus
inequalities on flag numbers that hold for al

hence give linear
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m 7 (Blind and Blind) IfPisa cubical d-polytope, then for alli, fi(P) >
lity in a single i implies that P is a d-cube.

k- Theore
%Q-Q&&. Equa

Here is an example. Consider the convolution g+g? for 5-polytopes; here ¢7(Q) =
fo(Q) = 3 >0 for a 2-polytope Q. Then for any 5-polytope P

d+rg3(P)= Y. (fo(F)-3)(fo(P/F)-3)20.

F 2face of P

Several people had conjectured that a cubical polytope always has at Jeast as
Finany vertices as facets. This has been disproved recently E uOnrsun.F who con-
4 cts a sequence of cubical polytopes of increasing dimension for which the ratio

ices i i kusch
, to number of vertices increases without bound {22]. Joc
g O ower b ical polytopes in terms of ora.EE.._vm_.

This is equivalent to the linear inequality
fo2s(P) — 3f23(P) — 8f02(P) + 9£2(P) > 0,

which holds for all 5-polytopes P. (Note: the inequality fo = 3 > 0 holds for all
2-polytopes, so the resulting inequality holds for irrational as well as rational 5
polytopes.) Each linear form in the flag numbers has a dual linear form, obtain
" by replacing fs by f5, where § = {d—1—s: s € S}. By polytope duality the d
of a linear form that is nonnegative for all (rational) d-polytopes is also nonnegativ,
for all (rational) d-polytopes. We thus can use the duals of the gff in convolutio
to generate nonnegative linear forms in flag numbers. The following appears in [24 £

o conjectures a lower bound on f; for cub
f vertices and the dimension.

1.4. CENTRALLY SYMMETRIC POLYTOPES - .
Ard 4 Lovész conjectured lower bounds on the number of faces o
ok centrally o ytopes [3]. This conjecture was later strengthened

. wlicial, centrally symmetric pol ;
w“.uw.ﬂm—.:o.n. The stronger version was proved by Stanley by studying erw effect of

: symmetries on h-vectors {371.

. Theorem 8 (Stanley) If P isa &.3&..2.&. centrally symmelric d-polytope, then

or alli, 1 <i<df2, Co s 4 E N
.._.,.‘s.,,_ﬂ_i.mv,.w@w‘olv.. I

o.em-.,ow a«é@m

Conjecture 6 (Kalai) ns«.ae.aa.@i...e..# of convolutions of the g; m*,:m ‘their dua,
imply oll linear inequalities on the flag numbers of polylopes. - - o

Meisinger [31] showed that the conjecture is false, because:starting in dimension}
six these inequalities do not imply all the following trivial inequalities: ‘f; > (§11)]
(that is, the fact that every d-polytope has at least as many i-faces as the d-simplex) 3
. A particular choice of convolutions of gf form a Fibonacci-length vector linearlyj

Jequivalent to the flag vector. Another such vector, called the cd-index, was intro-§
duced by Fine (but was first published in {7]). Stanley [39] proved that the cd-index]
is nonnegative for shellable regular CW-spheres (thus. proving an-extended version; 2 : . L i
of a conjecture of Fine). The resulting inequalities on flag numbers are:in particulai] Conjecture 9 (Kalai) For any centrally symmetric polytope . .,
true for polytopes, but we can expect them to be weaker than the g-vector convolu- ! - ) R
tion inequalities, which aré special to (rational) polytopes. See the paper by Stanley]
in these proceedings [40] for more information about the cd-index.

Finally let me observe that the intersection homology picture tells us only linear:
inequalities. We know by convexity considerations that the flag vectors (in dimen-}
sion four and higher) cannot be characterized only by linear equations and linear
inequalities. But we have no conjecture for a set of nonlinear inequalities that are §
tight and hold for all d-polytopes. B -

We end this section with a brief look at two special classes of polytopes.

3

‘Adin has miou Pr&omo:m results mo:ngE simplicial vouﬁovmu with

of symmetries [1].. Sl - L
w«co mention finally a'conjecture of Kalai [25] on centrally symmetric voﬁw.,novom,

nsimplicial as well as simplicial. | . ..,

fot+ fuk oo fai 2301

£ 2. Subdivision - o - . i
We now turn to polyhedral subdivisions of polytopes. Initially we will be ES—.@%..M&
in the effect of subdivision on flag numbers. 1t is easy to see that as-we m:.o@:: e
the faces of a polytope the flag numbers increase. Also ...Wo v.Q.Emﬁw of an P—Mms.w.uv.
vo_v.no_,vo can be subdivided to get AnonFwaoan:S a m_.Bver_ polytope. T ._mrnE“
E be done, for example, by barycentric subdivision, but it can also be done withou

adding any new vertices. The f-vectors and flag vectors of mmm:v:owwp mx.v—w.aovcm are
characterized. How can we use 2 simplicial subdivision to give conditions on flag

1.3. CuBICAL POLYTOPES

A polytope is called cubical if and only if all its proper faces are combinatorially
equivalent to cubes. As in the simplicial case, the flag vectors of cubical polytopes 1
depend linearly on the f-vectors. Also, the f-vectors of cubical polytopes satisfy 3
[d/2] linear equations, analogous to the Dehn-Sommerville equations [19]. Adin 4
[2] has defined a special h-vector for cubical polytopes (different from the “toric 3
variety” h-vector), which is symmetric, nonnegative, and computable by shelling
the polytope. The symmetry of Adin’s h-vector gives the linear equations on the
f-vector mentioned above.
A seemingly basic fact was proved only recently by Blind and Blind [13].

vectors?
Define a polyhedral subdivision of a d-polytope P to be a polyhedral complex

whose vertex set is that of P and whose underlying space is P. "Note that here

we are considering a subdivision of the solid polytope, not of its boundary, but the

i ivisi i o
ivisi P induces a subdivision of its boundary. Alsowe assume :
ot 1 a triangulation if all its faces

vertices occur in the subdivision. The subdivision is |
are simplices. Earlier we defined the h-vector of a d-polytope. More properly we
should have called this the h-vector of the boundary complex 9P of P, that is, the
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polyhedral complex consisting of .
g of the faces of the boundary of P. The computation,&
W MM v..ﬁ&o-. from a flag vector can be performed for any polyhedral ooivﬂx. «dﬂ -
: ) nw.m is done for a._o polyhedral complex consisting of the boundary complex of P vmf
now “..:M W.Mmmw mﬁ ;mm_w.ﬂw “Fm that ho(P) = ho(OP) = 1, hi(P) = hi(0P)~h;_,(9
< i< d/2, and h(P) = 0 for i > d/2. (This is the g- nd
P.) Staniny ol B A wa._. /2. (This is the g-vector of the boundary

Fsheorem 12 A polytope P is weakly neighborly if and only if every set of k +1
.w rtices is contained in a face of dimension at most 2k for all k. )

. The three-dimensional examples of weakly neighborly polytopes are not very in-

ing: they are just the triangular prism and all 3-dimensional pyramids. Among
Jlicial d-polytopes, having a shallow triangulation is equivalent to being |d/2]-
scked. The only simplicial, weakly neighborly polytopes are simplices and even-
iensional neighborly polytopes. A large class of weakly neighborly polytopes is
get of Lawrence polytopes. These are the polytopes having symmetric Gale dia-
Peiims. Perhaps weakly neighborly polytopes can be characterized as having nearly
frinmetric Gale diagrams, but a precise statement is known only for polytopes with
¥ vertices [4). One other example of a weakly neighborly polytope is the Cartesian

Theorem 10 (Stanley) If P is a rational conve : ‘.
Sta z polytope and A is t
polyhedral subdivision of P, then for all i, hy(A) > hi(P) and h;(8A) Vn?.«m%%w

. This gives a limited amount of in ity in i
. e equality information. For example, if we
divide a rational polytope adding no new vertices and then apply the =mvo~. bo

B r WNMM”MMM we get inequalities o the h-vector, and thus the flag vector, of the ori A
, : , R P sduct of two simplices (of any dimension). . : : ¢
Stanley introduced local h-vectors, which serve as measures of uo,nmrmboﬂua at

of a polytope [38]. : ,
The local h-vectorof a subdivision A of a d-polytope P is the vector of coefficients
the degree d + 1 polynomial £p(A, ) that satisfies the recursion e
@2)=1 S R
. h(A,z)= Y. LrAlp@)M(P/Fz). e R
Faceof P ol o T e
Here-A|r is the subdivision of F' obtained by restricting A; h(P/F, z) is the poly-
Bomial whose coefficients form the h-vector of the solid polytope with:face lattice
qual to the interval [F, P}in the face latticeof P.) -« & 2 o0 CE o
The local h-vector of a subdivision A depends on the numbers of flags of A and on
dimensions of the carriers of the faces; an explicit formula for the local hivector
ecting this fact is still lacking. .. . : oy

..tu Here is the most important theorem wﬁo.:.. local r-<28~w.. mno_wﬁwm_

2.1. SHALLOW SUBDIVISIONS

To help understand how subdivision chan ;
, ders , ges the h-vector of a polytope, we st
. ”Mw_mo a:ﬁ&ﬁm.onm. n_w»._n:a the h-vector unchanged. For ease of vnhow»wmwm .
) -.Ma:—o_.. the discussion to triangulations. (The situation for other subdivisi ‘
N.E_ erstood as well but it is harder to state. See [4] for details.) Let A be
nrgw_“msg of a polytope P. For a face o of A, define the carrier Clo) of o to
m». Mo” na an face of P contai ining ¢. A triangulation A of P is shallow if and off
if for o aces ¢ of A, dimC(0) < 2dimo. Note that the condition for shallowng
.E.ro to vertices of A says that every vertex of A must be a vertex of P, v 7.
Mﬂn WMM\ m&._».nh”a Mﬂé«&&.» triangulation of a 3-polytope is shallow if and
ge of the triangulation is contained i fa hat is, i
e 20 insesion odger ontained in a 2-face, that is, if and only if
Here are a few examples. The bip i ian . > triangulatiog
- ew e 2 pyramid over a triangle has two triangulatiog
o=M am,wo two simplices, the other into three. The first is shallow; erow“oou.
Mo - The Smc_wu octahedron hag only one combinatorial type of triangulation, ing
»M_M_ mﬁ%ﬁ@m Eo%am an edge connecting opposite vertices. It is not shallow.
o mwrw:o MwEB as one combinatorial type of triangulation, F.»o three &Bvr -
Shallow triangulations are important because of the following theorem [4].

*

Theorem 13 (Stanley) Let A be a subdivision of a d-polytope P, and let {p(A, z) -
ot 1z + -+ Lozt o . e
1. If P is rational, then for all i, & = £4y1-; and & > 0. .5
If P is rational and A is regular, then for 0 <i < d/2, &< b1

i
13
Theorem 11 1. If A is a shall bdivisi ;
. and h(dA) = h(3P). aliow su :.53: of a polytope P, then h(A) = h(H
L If A G ivsisi . .
«M aze“M. a subdivision of o rational polytope P and h(A) = E P), then A

¥ The first of these is what is used to prove that the h-vector increases unde
ubdivision. We will discuss the regularity condition on subdivisions in the next

pection,

2.2. SECONDARY POLYTOPES
Thus if . . . ‘ A ;A polyhedral subdivision of a polytope can be obtained in the following way. Giver

vector Omwrwvﬂﬂwn.mhwwwwﬂ oz»ww%c_pw_os whose vo::mm..n.v. 18 vo@@v&.. then the § 8 d-polytope in R¥, embed R vad__t. and “lift” the polytope ﬂ% assigning

satisfies the McMullen conditions @oimﬁﬁ. mmomg._? eights A(z) to each of the vertices z. Thus we get a set of points {y € Rd+!

; Shom, 4o disve 2 = (y1, 42, ..., v4) i8 & vertex of P and yay1 = h(z)}; call its convex hull Q. Le

Q1op be the subcomplex of 8Q that is visible from way out on the (d+ 1)-coordinate

is. Projecting Qop onto RY gives a subdivision of P. A subdivision obtained ir

fthis way is called regular. :

Consider the partially ordered set (poset) of regular subdivisions ordered b)

refinement. The following remarkable result is from [18}.

>_ uo@«.%« .mm weakly neighborly ts triangulations afe shallow. (The o i
MM_WW “wmn.mu. M an Muﬁuv_a of a weakly neighborly polytope.) There is a nick

rial characterizati - . . 1
o Anaton 85“, cterization of weakly :o,mrvo_._v. polytopes [4]; it explains th§
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Note that the vectors Ej do not have to be nonzero and nonparallel, so the fiber

. snotope may have fewer than Ah._v zones. o
‘2—# —.M:S.m—-n to define regular zonotopal subdivisions. A zonotopal subdivision of the

is & polyhedral subdivision of Z each of whose edgesisa translation of one
o _“MMMMMMMMF —vlaw._ a;]. Zonotopal subdivisions of Z are ordered by nomno_:on._on Mme
ot refined subdivide Z into (combinatorial) cubes. Some zonotopal mw_vﬁ.—:.ssg
£ Z can be obtained in the following way. “Lift” the zones of .m. —3. assigning mwmw
{ them a height h;. Thus we get a set of vectors (ai, hi) € R, and we take, in
" idition, the standard unit vector eq41. Let Z' be 25. sou.o.eova defined by these
ectors, and let Ziop be the subcomplex of 3Z' that is visible m—.on- .13. out on
the (d + 1)-coordinate axis. Projecting Ns.v onto RY gives a subdivision of 2. A
hotopal subdivision obtained in this way is called regular. .

. Take four vectors in R2. The zonotope is an octagon. It rwm .ommra
mwuﬂﬂbomm.oﬂ”vm?w._ouw‘ having six quadrilaterals each. It rwm“ n.mm.re subdivisions
into one hexagon and three quadrilaterals. All sono?wvw_ subdivisions are regular.

_Thus the fiber zonotope is also an octagon. A portion of the face lattice of the
“fber zonotope is shown in Figure 1. o

Theorem 14 (Gel’fand, Kapranov and Zelevinsky) Given any polytope P thef)
exists a polytope £(P) whose face lattice is isomorphic to the poset of regular subdig
visions of P.

The polytope I(P) is called the secondary polytope of P. Note that its vertices
correspond to regular triangulations of P. The case where P is 2-dimensional wagj
proved independently by Carl Lee [27] and Mark Haiman [20]. They called the se .
ondary polytope of a polygon an associghedron. For example, the pentagon has fivel
subdivisions into a quadrilateral and a triangle, and five triangulations. The refine:
ment poset is easily seen to be the face lattice of a pentagon. Thus the secondary]
polytope (associahedron) of a pentagon is a pentagon. The secondary polytope of
hexagon is a simplicial 3-polytope with 14 vertices, 36 edges and 24 2-faces. See [0K
for several equivalent descriptions of secondary polytopes. . - - - o

The secondary polytope can be constructed from a projection of a simplex onto
the polytope P. This construction was generalized by Billera and Sturmfels . .
their definition of fiber polytopes [11}. Given polytopes PCR", QCRYand
projection x : P — Q, consider all measurable functions v : @ — R™ such that f
all z, 7 0 7(z) = z. Define Z(P,Q) = g {fg7(=)dz} C R". Thus Z(P,Q) 13
an average of the fibers 7~1(z), as  ranges over the points of Q; it is called the
fiber polytope.- Billera and Sturmfels proved that ©(P, Q) is a‘convex polytope
dimension dim P—dim @, and that its face lattice is isomorphic to a poset of certail
kinds of subdivisions of.Q induced from.P. We will look at the special case wherg
P is a cube and Q is a zonotope. : . . .

2.3. FIBER ZONOTOPES AND DISCRIMINANTAL ARRANGEMENTS \ - / . .
This section contains joint work with Brandt [6]. A zonofope is the Minkowski sun}
of a set of intervals [—a;,a;). ~A zonotope hias a natural dual object, the centra
hyperplane arrangement whose hyperplanes have normals a;. The face lattice
the hyperplane arrangement is dual to the face lattice of the zonotope. We shi
study the fiber polytope of a zonotope and see what it says about the hyperple
arrangement. . YA
Fix a set of n nonzero vectors a; in R4, no two parallel. Let Z be the zonotop
generated by the corresponding intervals [-a;,a;]. Billera and Sturmfels give
explicit description of the fiber zonotope f11}.

N/ \_

v

Fig. 1. Portion of face lattice of fiber zonotope

Theorem 15 (Billera and Sturmfels) The fiber polytope £(Ch,, Z) is an ?I&
dimensional zonotope, f

1
MAQq—.Nv = volZ Muml.m.: MM_.
J

. Example 2. Consider the five vectors in R%: a1 = (1,0,0), a2 = (o, fov.
. a3 = (1,1,0), 84 = (0,0,1) and a5 = (1,0,1). The zonotope Z=2(A)isa

agonal faces and eight quadrilateral faces. The drawing

where the sum is over all (d41)-subsets of {1,2,...,n}, and for J = {j1,jz, .- I
4 <. 3-polytope with four hex

> i i i his polytope, with
= -1y i j j j - €5 in Figure 2 shows the combinatorial structure of one side om. this polytope,

= MUA e B i) i half %-Mra 9_faces showing. (Since zonotopes are centrally symmetric, this mwwim
..lL r zonotope X(Cs, Z) is a

enough to determine the whole polytope.) The fibe

hexagon. The original zonotope has twelve regular zonotopal subdivisions. Four

(Here e, is the €'th standard unit vector.) The face lattice of B(Cn, Z) is isomorphic}
to the poset of regular zonotopal subdivisions of Z.
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_rrangement A is generic if and only if some parallel translation A; is in general

of them each cut Z into two hexagonal prisms and two cubes. Two of them eai
ition. This is the case treated in [28].

cut Z into a twelve-sided zonotope and four cubes. Refining these are six cubje;
subdivisions of Z. Y

‘heorem 16 (Manin and Schechtman) If A s generic, then the complement
¢ the discriminantal arrangement B(A) is the set of b for which A, is in general

sition.

« To see what the nmEv_mBoua.mm for an arbitrary arrangement A, we need a defi-
pition. The affine arrangement Ay is in relatively general position if and only if for
B 1 C (1,2,...,n}, [ Hi=0if [I| > d, and dim(H; <d— || if I < d. (The
- il iel .

idea here is that the _Emr dimensional intersections, but not the parallelisms, of a
»ngeneral position arrangement can be eliminated by parallel translation of the

yperplanes.)

fTheorem 17 The complement &. the discriminantal arrangement of A is the set of
b for which Ay is in relatively general position.

Fig. 2. 3-dimensional zonotope

" Now a hyperplane of the discriminantal arrangement has a vector

Write A for the central hyperplane arrangement, 4 = {HY; mm..,. .., HS}, wh

H} = {z € R?: a; -z = 0}. There are two lattices associated with A. The Ia 41 -
of intersections L(A) consists of all distinct intersections [} Hf, ordered by rever . Ey =Y (-1)det(aj,, 18511 Bjigar -+ Gjana) * i
s iel - g = C ’

inclusion, with a least element § w&wmuom.

To describe the face lattice of A, consider the ~85v_oaabo of A, that is, RY) normal. Such a vector represents a minimal dependency among the a;. Corre-

sonding to a2 minimal dependency among the g; is a minimal possible violation of
tlatively general position in the parallel translations of A. Suppose {a; : i € S} is
nimal dependent set. Define Hs evéo the set of points b € R" such that in the
ne arrangement A, dim D H;=d-|S|+1. . :
i€s

n
C HY. This is a set of open cones. The face lattice F(.4) consists of all faces of
i=1 . : T = .
closures of these cones, ordered by inclusion, also with w&om.uom. The face latticg
of A is dual to the face lattice of the zonotope Z. - ‘
For example, for the standard unit vectors e, ea, ..., €, in R®, Z is the n-cub®
L(A) is the Boolean lattice, and F(A) is the face lattice of the crosspolytope. #
How does the fiber zonotope relate to the hyperplane arrangement? Define
new central hyperplane arrangement B(:A) by taking as normal vectors a maxima
set of nonzero, pairwise nonparallel vectors amorg the Ej (the vectors of the fib
.souogv&. Thus B(.A) is the hyperplane arrangement dual to the fiber zonotope.
is an arrangement of hyperplanes in R™ but it is of essential dimension n — d (thak
is, all the hyperplanes intersect on -a d-dimensional subspace). In the case whe
the original vectors a;, a3, ..., a, are in general position, this is the discriminan
arrangement introduced by Manin and Schechtman; we will extend that term to &
case of arbitrary a;. We study the complement and the intersection and face latti
of the discriminantal arrangement. ,
Consider all affine hyperplane arrangements that have normal vectors a;. Thet ]
can be parametrized by points of R®. An easy way to do this is as follows: for b € R™§
let Ay be the affine arrangement with hyperplanes H; = {z € R* : a; -z = b}
Call A; a parallel translation of A. 1t is in general position if and only if for all;
1<{1,2,...,n},( | Hi=0if |I| > d, and dim [ H; = d - |I|if I < d. The central
i€l el 3

corem 18 The hyperplanes of the discriminantal arrangement based on A are
e Hs, for all sets S that indez minimal dependent subsels of {g;:1<ign}.

This generalizes the observation of [26] that the hyperplanes of the discriminantal
Afrangement of a generic arrangement correspond to the (d+1)-sets of {1,2,...,n}.
k ‘We have described the hyperplanes and the complement of the discriminantal
prrangement. We now turn to the whole face structure. Every parallel translation
li of A has its own face poset, and we can label each open face with a sign vector

:{—,0,+}, which indicates its position with respect to each of the n hyperplanes
; “As. This gives a description of the face lattice of the discriminantal arrangement.

heorem 19 Two points b and b’ are in the same (open) face of the discriminantal
frrangement B(A) if and only if the two affine arrangements Ay and A} have the
lame labeled face poset. *

. Note that each face of the discriminantal arrangement corresponds to a face of
fhe fiber zonotope, which in turn represents a regular zonotopal subdivision of the
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original zonotope Z. There is a natural way of assigning sign vectors to the faces of
a regular zonotopal subdivision, and under the duality between the face lattice of
the fiber zonotope and that of the discriminantal arrangement, corresponding faces
are labeled with the same sign vectors. The reason for this is that both situationg
are different interpretations of the same oriented matroid. The base zonotope Z
and hyperplane arrangement 4 represent a single oriented matroid. Regular zono-
topal subdivisions of Z come from projections of a higher dimensional zonotope.
Affine parallel translations of A come from sections of a higher dimensional centra]
hyperplane arrangement. The higher dimensional zonotope and central hyperplane
arrangement are duals; that is, they are represented by the same oriented matroid,
called a lifting of the original oriented matroid. (See [12].)

—4+4]

-t

-—

-

444 +44+

—+4- - ++-+

+4--

-——4- -+~ +--+

- -

Fig. 3. Labeled faces of an affine arrangement and labeled vertices of the zonotopal subdivision

Example 1 continued. For the arrangement A of four lines in R2 choose normals

;
i
H
)
t
¥
i
1 5
EA
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a; = (1,0), az = (0,1), a3 = (1,-1), and ag = (1,1). Let b = (0,0,2,4).
In Figure 3 we show A; with maximal faces labeled, and the corresponding
zonotopal subdivision with vertices labeled.
Manin and Schechtman [28] described the intersection lattice of discriminantal ar-
rangements coming from arrangements of d + 3 hyperplanes in RY in the “most
mmumanu case, that is, for an open Zariski dense subset of all d-arrangements with
d + 3 hyperplanes. Falk [16] showed that not all generic arrangements have an in-
tersection lattice of this type. We conjecture a condition on the a; guaranteeing
“most generic” status, and a description of the intersection lattice L(B(A)) of the
discriminantal arrangement for arbitrary n.
For n > d+ 1 > 2 let P(n,d) be the following poset. The elements are sets
{S1,52: s Sm} of subsets of {1,2,...,n} satisfying
1. foreach i, |S;| > d+1
9. for each i,j,i# j, [SinS;| < d
3. for each I C {1,2,...,m}, [|JSil > d+ Y _(IS:| - d).
i€l iel
The ordering is given by {S1,5,,...,Sm} X {1, T2, .. ., T, } if and only if for each
; there exists j such that S; C T;. This is a ranked poset, with rank{S1, Sz, ..., Sm} =

m
(s - d).
i=1
Conjecture 20 1. If A is a generic arrangement of n hyperplanes in R4 with
algebraically independent normal vectors, then L(B(A)) is isomorphic to P(n,d).
2. Among arrangements A of n hyperplanes in R4 the number of rank i elements
of L(B(A)) is mazimized for alli by the arrangements described in (1).

We mention briefly the issue of freeness of discriminantal arrangements. Terao {42]
defined a central arrangement to be free if its module of derivations is free (the
definition has its source in singularity theory). There has been much interest in
determining which arrangements are free. Manin and Schechtman [28] computed the
Mébius function for the intersection lattice of the discriminantal arrangement coming
from “most generic” arrangements of d+ 3 hyperplanes in R4. From this Orlik and
Terao [33] observed that these discriminantal arrangements are not free. No other
general results on freeness of discriminantal arrangements are known. However,
known examples of nonfree discriminanta!l arragements have exhibited a high degree
of formality [14], which is a necessary condition for freeness.

2.4. CONCLUSION

This paper has touched on three interesting topics in the combinatorial study of
convex polytopes: numbers of faces, subdivision, and relation to hyperplane ar-
rangements. Results range from the very old to the very new, and we hope the
reader is left with an interest in the many open questions in the subject.
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