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The upper bound inequality hP)—h,_(P)<(" " =2y (0<i<d)2) is proved
for the toric A-vector of a rational convex d-dimensional polytope with n vertices.
This gives nonlinear inequalities on flag vectors of rational polytopes. © 1998
Academic Press

A major result in polytope theory is the characterization of face vectors
of simplicial polytopes, conjectured by McMullen [ 10 ] and proved by Stanley
(necessity [11]) and Billera and Lee (sufficiency [3]). The “McMullen
conditions” in the theorem are stated most easily in terms of the A-vector
of the polytope. For P a simplicial d-polytope, write f,(P) for the number
of i-faces of P, and define the h-vector, A(P)=(hy, hy, .., hy) by h;=

I (=1)THETD f . Write gg=h,—h,_, for 1 <i<d/2; go=h,. For
the definition of the nonlinear operator {i), see, for example, [11].

THEOREM (Stanley, Billera, and Lee). An integer vector (hy, hy, .., hy) is
the h-vector of a simplicial polytope if and only if

(1) hy=h, ;foralli
(i) go=1, and g;=20 for 1 <i<d/2
(i) g,y <{(g)<” for 0<i<d/2—1.
We present the Upper Bound Theorem as a corollary. McMullen [9]
proved parts (ii) and (iii) below ten years before Stanley proved the
necessity of the McMullen conditions and hence part (i) of the corollary.
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CoroLLARY (Upper Bound Theorem).  ( 1) For every simplicial d-polytope
Pavith n vertices, and for all i, 1 <i<d)2,

g‘(P)<<nhd+i;2>

I

(it)  For every simplicial d-polytope P with n vertices, and for all i,
I <i<d,
n—d+i—1
hy(P) << . >

!

(iit)  For every d-polytope P with n vertices and for all i, 0<i<d—1,
JAPY< [i(C(n, d)). (Here C(n,d) is the cyclic d-polytope with n vertices,
und explicit formulas for its f-vector are known.)

(In (1) and (ii), equality holds for i =1.) Part (ii) of the corollary follows
by summing the inequalities of part (i). Part (1i1) is, for simplicial polytopes,
Just a translation of part (ii) into f~vectors. The extension to all polytopes uses
the fact that the boundary of a polytope can be triangulated to get a simplicial
polytope with at least as many faces of each dimension.

The proof of the McMullen conditions [I1], but not the original proof
of the Upper Bound Theorem, is based on the interpretation of the A-vector
of a simplicial polytope as the sequence of Betti numbers of the associated
toric variety.

The toric variety is still defined when the polytope is nonsimplicial, as
long as it has rational vertices. The ranks of the homology of the toric
variety no longer depend only on the face lattice of the polytope (see [8]).
However, the middle perversity intersection homology Betti numbers are
invariants of the combinatorial type of the polytope. These Betti numbers
form the “toric A-vector”, which reduces to the previously defined A-vector
when the polytope is simplicial. Following Stanley [ 12] we define the toric
h-vector (and g-vector) of any polytope (or Eulerian poset), first encoding
the /i-vector and g-vector as polynomials: WP, 1y=3¢_ o h;t“ "and g(P, 1)
== 37454 g,t', with the relations g,=h, and gi=h,—h,_, for 1<i<d).
Then the h-vector and g-vector are defined by the recursion

L g, 6y=h&,1)=1, and
2. WP, 1) =2 Gtaceof p. g p &G, )1 —1)97 1 ~dim&

The toric A-vector cannot be determined from the Jf~vector alone. It is a
function of the “flag vector”. For P a d-polytope and §<={0, 1, ...d— 1,
an S-flag of P is a sequence J < F,cF,< .. < Fp< P, of distinct faces,

with {dim F, dim F,, .., dim F,} = S. Write f5(P) for the number of S-flags
ot P; the length 29 vector (/s(P))se o, 1,...a—1} 18 called the flag vector of P.
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Nonrcecursive formulas for the toric A-vector in terms of the flag vector or
equivalent parameters have been given by Fine [ 6], Brenti [ 5], Bayer and
Ehrenborg [ 14].

The toric A-vector of a rational polytope satisfies the same linear equations
and lnear inequalities as in the simplicial case. However, the intersection
homology fails to have the ring structure, which is responsible in the simplicial
case lor the nonlinear inequalities. Stanley [13] used the decomposition
theorem for intersection homology to prove that the A-vector of a rational
polytope increases (weakly) under subdivision. He concluded that part (ii)
of the Upper Bound Theorem holds for arbitrary rational polytopes. Stanley
(private communication) points out that the methods of his paper can be used
to prove that the g-vector increases under subdivision and hence that part (i)
also holds for rational polytopes. Here is a short alternative proof of part (i)
ol the Upper Bound Theorem for rational polytopes. It depends on work
of Braden and MacPherson [4] on relative g-vectors. Part (ii) of the Upper
Bound Theorem follows by summing the inequalities of part (i). A stronger
version of part (iii) follows.

There is no reason to think that these inequalities fail for irrational
polytopes. but the proofs use results proved only for toric varieties of rational
polytopes. The theorem below can also be interpreted as an inequality on
intersection homology Betti numbers of toric varieties.

THrorREM.  Let P be a rational d-polytope with n vertices. Then for all i,

I <i=1d/2,
n—d+i—2
gi(P)< < ; >

{ Equality holds for i=1.)

Proof.  The polytope P is a quotient of an (n + ¢ )-dimensional Lawrence
polytope L with 2# vertices (see [2]). (L is the polytope with Gale transform
equal to the set 4 U — A, where A4 is a Gale transform of P.) Note that g,(P) =
n—d —1=g(L). Braden and MacPherson [4] proved Kalar’s conjecture,
glP. 1y =zg(F t)g(P/F, t) (cocfficientwise) for all faces F of a rational
polytope P. This implies that the g-polynomial of any quotient of a rational
polytope is bounded above by the g-polynomial of the polytope. So, for
0<i=<d/2, g,(P)<g,(L). Triangulate L (with no new vertices) so that the
boundary of the triangulated ball is the boundary of a polytope O, for
example, by pulling vertices (see [7]). Since Lawrence polytopes are weakly
neighborly (see [1]), g(L)=g(Q). Thus, g(P)<g(Q) and g,(P)=g,(Q)=
n—d —1. The polytope Q is simplicial, so g(Q) satisfies the McMullen condi-
tions. In particular, for all i, 1 <i<d/2, g,(P)<g,(Q)<(""“T%). |
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For /=2 the inequality of the theorem says that Joo—=3+ /1 <(£0),
which is clearly true for all polytopes, since the left-hand side counts some
distinct pairs of vertices. The i = 3 inequality is:

(Jo2a =321+ /18— 4f0a + 1072) + (fos — 4f3) — (d = 2)(for — 3f3)

. C/d d+1\ _[fo—d+1
w1 A+ () (11 )70

Part (iii) of the Upper Bound Theorem can be strengthened. For simplicial
polytopes the definition of the -vector is inverted to give f; = Z;:%) 27 Dh,
This is not valid for the toric h-vector of nonsimplicial polytopes, but the

analogue is still nice. For P a d-polytope,

i+1 d‘] i £+i /
S nr=s4 ) X am
jgo <d_l* 1> ! Zgl m§2(’ m—1 gfacZ;:SfP ’

Since for a rational polytope P with n vertices, hj(P)g("‘djj “H=
h;(C(n, d)) (C(n, d) being the cyclic polytope), we get

COROLLARY.  Let P be a rational d-polytope with n vertices. Then Jor all
LI<gigd—1,

i £+i /
ey Y (08 san<cman

t=1 m=2 U/ Pfaceot P
dim F—m

Thus the nonnegative terms, (,," ;) 3 im rem & F), measure the unused
“space” for i-faces in the polytope.
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