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ABSTRACT We extend the concept of manifold with
boundary to weight and boundary weight functions. With the
new concept, we obtained the double reciprocity laws for sim-
plicial complexes, cubical complexes, and lattice polyhedra
with weight functions. For a polyhedral manifold with bound-
ary, if the weight function has the constant value 1, then the
boundary weight function has the constant value 1 on the
boundary and 0 elsewhere. In particular, for a lattice poly-
hedral manifold with boundary, our double reciprocity law
with a special parameter reduces to the functional equation
of Macdonald; for a lattice polytope especially, the double
reciprocity law with a special parameter reduces to the reci-
procity law of Ehrhart. Several volume formulas for lattice
polyhedra are obtained from the properties of the double
reciprocity law. Moreover, the idea of weight and bound-
ary weight leads to a new homology that is not homotopy
invariant, but only homeomorphic invariant.

1. Introduction

Let P̄ be a d-dimensional lattice polytope of Rm, i.e., the ver-
tices of P̄ are all lattice points. The interior P of P̄ in its
affine span is called the relative interior of P̄ . For positive in-
tegers n, let i�Pyn� denote the number of lattice points of
nP = �nx x x � P� and i�P̄yn� the number of lattice points
of nP̄ = �nx x x � P̄�. Ehrhart (1, 2) proved that i�Pyn� and
i�P̄yn� are polynomial functions of n and satisfy the reciprocity
law

i�P̄yn� = �−1�di�Py −n�: [1.1]

Let M be a lattice polyhedral manifold with boundary ∂M .
For positive integers n, the number of lattice points of nM =
�nx x x � M�, denoted by L�Myn�, is a polynomial function
of n. Macdonald (3) extended 1.1 to M by showing that the
polynomial function f �z� = L�My z�− 1

2L�∂My z� satisfies the
functional equation

f �z� = �−1�df �−z�: [1.2]

If M is a lattice polytope P , then 1.2 reduces to 1.1.
In this paper, we present an idea to extend the concept of

manifold with boundary to weight and boundary weight func-
tions. With the new concept, we obtain the double reciprocity
laws for simplicial complexes, cubical complexes, and lattice
polyhedra with respect to weights. Several volume formulas
for lattice polyhedra are obtained from the double reciprocity
law in the most general context. Moreover, the idea of weight
and boundary weight leads to a new homology that is not ho-
motopy invariant but only homeomorphic invariant.

Let X be a compact d-dimensional lattice polyhedron. A
lattice triangulation of X is a triangulation whose vertices have
integral coordinates. We think of every triangulation as a col-
lection of disjoint relatively open simplices. A function ω on
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X is called a weight function if there exists a lattice triangula-
tion 1 of X such that ω is constant on each relatively open
simplex of 1. The weight ω can be viewed as a function on 1,
defined by ω�σ� = ω�x�, x � σ . For each integer n, the nth
boundary weight function ∂nω of ω is defined by

∂nω�σ� = ω�σ� − �−1�n
∑
σ�τ�1

�−1�τω�τ�:

We define for ω the polynomial of two variables t and z,

L�X;ωy t; z� =
∑
σ�1

�ω− t∂dω��σ�i�σ; z�:

For positive integers n, L�X;ωy t; n� counts the number of lat-
tice points of nX with weight ω− t∂ω. Our double reciprocity
law is the functional equation

L�X;ωy t; z� = �−1�dL�X;ωy 1− t;−z�: [1.3]

If t = 1/2, ω = 1 and assuming that X is a manifold with
boundary ∂X, then ∂dω = 1 on ∂X and ∂dω = 0 elsewhere,
and 1.3 reduces to 1.2. By specifying some integral values of z
in L�X;ωy 1/2; z�, we found relations between the weighted
relative volume of X and the weighted number of lattice
points.

2. Euler Integration over Cell Complexes

Let K be a d-dimensional cell complex. We think of K as a
collection of (relatively) open cells, and use K̂ to denote the
collection with the empty cell ∅, written 0̂, jointed to K. If
σ and τ are open cells of K, the notation σ � τ, or τ � σ ,
means that σ is a face of τ. The topological space underlying
K is the geometric realization �K� = ∪σ�Kσ .

Let R be a commutative ring with unity 1 6= 0 and let φ be
a function from K̂ to R. For a subset L of K̂, define the Euler
integral as

S�L;φ� =
∑
σ�L

�−1�1+dimσφ�σ� = −
∫
L

φ�σ�dχ�σ�;

where the dimension of the empty cell 0̂ is assumed to be −1.
The Euler characteristic χ is a finitely additive measure on
cell complexes (4, 5). The idea of integration with respect to
the Euler characteristic goes back to Hadwiger (6) and was
further developed by Groemer (7), Rota (8), Schanuel (9),
and Viro (10).

Let σ be an open cell of K̂. Define the lower closure σ̂ =
�τ � K̂ x τ � σ� and the upper closure σ̌ = �τ � K̂ x τ � σ�.
We associate with φ the R-valued functions φ̂ and φ̌ on K̂,
defined by φ̂�σ� = S�σ̂; φ� and φ̌�σ� = S�σ̌; φ�, respectively.
Notice that

∑
σ�τ�ρ�−1�dim τ is equal to �−1�dimσ for ρ = σ

and equal to 0 for ρ , σ . We have ˆ̂φ = φ and ˇ̌φ = φ.
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Let ψ be another R-valued function on K̂. The pointwise
multiplications ψφ̂ and φ̌ψ are R-valued functions, and

S�K̂;φψ̂� = S�K̂; φ̌ψ�: [2.1]

This property is essential to obtain the reciprocity law for cell
complexes.

For j = −1; 0; 1; · · · ; d = dimK, define φj�K� =∑
σ�K̂;dimσ=j φ�σ�. The �d + 2�-tuple �φ−1; φ0; φ1; · · · ; φd�

is called the f -vector of K̂ with weight φ. The following the-
orem is an analog of the Dehn–Sommerville equations about
f -vectors of K̂ with weight φ.

Theorem 2.1. Let K be a d-dimensional finite simplicial
complex. Then for each i = −1; 0; 1; · · · ; d,

φ̌i�K̂� +
d∑
j=i
�−1�j

(
j + 1
i+ 1

)
φj�K̂� = 0; [2.2]

φi�K̂� +
d∑
j=i
�−1�j

(
j + 1
i+ 1

)
φ̌j�K̂� = 0: [2.3]

For each open d-simplex σ of K̂, φ̌�σ� = �−1�d+1φ�σ�.
Let Kd−1 denote the subcomplex of K consisting of the open
simplices of dimensions less than or equal to d − 1. Then

φ̌i�K̂� = φ̌i�K̂ − K̂d−1� + φ̌i�K̂d−1�
= �−1�d+1φi�K̂ − K̂d−1� + φ̌i�K̂d−1�
= −�−1�dφi�K̂� + �φ̌+ �−1�dφ�i�K̂d−1�:

Plugging this into 2.2 and rearranging the terms properly, then

�φ+ �−1�dφ̌�i�K̂d−1�
= �1− �−1�d−i�φi�K̂�

+
d∑
j,i

�−1�d−j−1
(
j + 1
i+ 1

)
φj�K̂�: [2.4]

Let us introduce the �d+2� 3 �d+2� matrix D̂�d�, called the
extended Dehn–Sommerville matrix, whose �i; j�-entry is

D̂�d�i;j =


1− �−1�d−i for i = j
�−1�d−j−1

(
j + 1
i+ 1

)
for i + j

0 otherwise;

−1 � i; j � d. The difference between D̂�d� and the d 3
�d + 1� matrix D�d� in ref. 11 is that the Euler equation is
included in D̂�d�. More precisely,

D̂�d� =
[

1+ �−1�d ∗
0 D�d�

]
;

where ∗ = �−1�d−1�1;−1; · · · ; �−1�d� is a �d+1�-dimensional
vector. Thus 2.4 can be written as

D̂�d�φ�K̂� = �φ+ �−1�dφ̌��K̂d−1�; [2.5]

where φ�K̂� = �φ−1; φ0; φ1; · · · ; φd�T is a column vector. Be-
cause φ+ �−1�dφ̌ = 0 on K̂ − K̂d−1, K̂d−1 can be replaced by
K̂ on the right side of 2.5. The extended Dehn–Sommerville
matrix D̂�d� then transforms an f -vector with weight φ to
an f -vector with weight φ + �−1�dφ̌, which vanishes on top-
dimensional open simplices of K̂.

Definition 2.2: For each integer n, the nth boundary ∂nφ of
φ is the R-valued function

∂nφ = φ+ �−1�nφ̌: [2.6]

The collection ∂n�K;φ� of cells, on which ∂nφ is nonzero, is
called the nth boundary of K with respect to the weight φ.

Because ˇ̌φ = φ, we have ∂n−1∂nφ = 0. One can define the
nth coboundary operator δn by δnφ = φ + �−1�nφ̂ and have
the same property. Thus

∂n−1∂n = 0; δn+1δn = 0: [2.7]

With the operators ∂ and δ, Eq. 2.1 is equivalent to the fol-
lowing theorem.

Theorem 2.3. (Discrete Analog of Stokes Theorem)∫
K̂

�∂nφ�ψ =
∫
K̂

φ�δnψ�: [2.8]

Eq. 2.1 also implies the following prototype of the double
reciprocity law for finite cell complexes.

Theorem 2.4. Let φ and ω be R-valued functions on a d-
dimensional finite cell complex K. Then for any elements a and
b of R such that a+ b = 1,

S�K̂; φ̂�ω− a∂dω��+ �−1�dS�K̂;φ�ω− b∂dω��= 0: [2.9]

If �K� is a d-manifold with boundary and ω = 1, a = b =
1/2, then ∂dω = 1 on the boundary ∂�K� and ∂dω = 0 on
�K� − ∂�K�, and 2.9 reduces to an equivalent form of 2.1 in
ref. 3. All results of this section can be extended to semi-
Eulerian posets (12, 13).

3. Weight Functions

Let X be a compact subset of a manifold M without bound-
ary. We always assume that X is finitely stratified, i.e., X can
be decomposed into a disjoint union of finitely many con-
nected submanifolds Xi without boundary, such that, when-
ever Xi ∩ X̄j 6= ∅, then Xi � X̄j , and in this case we say that
Xi is a face of Xj , written Xi � Xj . The collection �Xi� is
called a stratification of X and each Xi is called a stratum.
The dimension of X is the highest dimension of its strata. The
set of all strata forms a poset by the face ordering. There is an
intrinsic stratification for X that can be constructed as follows:
first, set Xd = X, then remove the set of d-dimensional points
(the points that have an open neighborhood homeomorphic to
a d-dimensional open ball) from Xd , and denote the leftover
by Xd−1. Second, remove the set of �d−1�-dimensional points
from Xd−1 and denote the leftover by Xd−2. Repeat this pro-
cess until all the points of X have been removed. We then
have the intrinsic filtration (see refs. 14 and 15)

X = Xd � Xd−1 � · · · � X1 � X0 � X−1 = ∅: [3.1]

Strictly speaking, the stratification we defined above may
be called a topological stratification. One can define smooth,
analytic, subanalytic, semialgebraic, and piecewise linear strat-
ifications. A more general treatment of Eulerian stratification
is studied in ref. 16.

Definition 3.1: Let X be a stratified space with strata Xi. A
real valued function ω on X is called a weight function if ω
is constant on each stratum of X.

Example 3.2: (i) Any constant function on a stratified space
X is a weight function.

(ii) The local Euler characteristic χ�x� = ∑σ�τ�1�−1�dim τ,
where 1 is a triangulation of X and σ is the unique open
simplex containing x, defines a weight function on X with
respect to the intrinsic stratification.

(iii) The local link number `�x� = χ�lk�x;X�� also defines
a weight function on X with respect to the intrinsic stratifica-
tion.

Let 1 be a stratified triangulation of X, i.e., each stratum of
X is a disjoint union of open simplices of 1. For each open
simplex σ � 1 and x � σ , the local Euler characteristic and
the local link number of x are related by

χ�x� = �−1�dimσ �1− χ�lk�σ;1��;
χ�lk�x;X�� = 1− �−1�dimσ + �−1�dimσχ�lk�σ;1��:



Mathematics: Chen Proc. Natl. Acad. Sci. USA 95 (1998) 9095

For each weight function ω on X, we define a function ω̌ on
X by

ω̌�x� = ω̌�σ� =
∑
σ�τ�1

�−1�1+dim τω�τ�; [3.2]

where σ is the unique open simplex such that x � σ . For
a fixed x, let 1′ denote the triangulation refined from 1 by
adding x as a vertex. Then

ω̌�x� =
∑
σ�τ�1

ω�τ�
∑
ρ�τ

x�ρ�1′

�−1�1+dim ρ

=
∑

x�ρ�1′
�−1�1+dim ρω�ρ�:

Notice that �ρ x x � ρ � 1′� is a cone decomposition of the
star open neighborhood st�x� of x. We see that ω̌ is indepen-
dent of cone decompositions. In fact, for two cone decompo-
sitions 11 and 12 of st�x�, there is a common refined cone
decomposition 13. Then∑

x�τ�13

�−1�1+dim τω�τ� =
∑

x�σ�11

∑
τ�σ

�−1�1+dim τω�τ�

=
∑

x�σ�11

∑
τ�σ

�−1�1+dim τω�σ�

=
∑

x�σ�11

�−1�1+dimσω�σ�:

Because ω̌�x� is defined via arbitrary stratified triangulations,
ω̌ is constant on each stratum.

Proposition 3.3. For any weight function ω on a d-dimen-
sional stratified space X, ω̌ is a weight function. Thus the nth
boundary function ∂nω = ω+ �−1�nω̌ is a weight function. So
is ∂ω = ∂dω.

Stratified spaces with weight functions share some proper-
ties of manifolds with boundary. For instance, the boundary
of a weighted space is a weighted manifold with the bound-
ary weight. For a nonzero weight function ω on X, denote
d�ω� = dim�x � X x ω�x� 6= 0�. Write m = d�ω�; if
∂mω = 0, we call �X;ω� an m-dimensional weighted manifold
with weight ω. The closure of �x � X x ∂ω�x� 6= 0� is called
the boundary of �X;ω� and is denoted by ∂�X;ω�. Now if
∂nω = 0, then for a d�ω�-dimensional open cell σ such that
ω�σ� 6= 0, we have ∂nω�σ� = ω�σ�+�−1�n�−1�d�ω�+1ω�σ� =
�1 − �−1�n+d�ω��ω�σ� = 0. Thus n and d�ω� must have the
same parity. If, on the other hand, ∂nω 6= 0, then for a
d�∂nω�-dimensional open cell τ such that ∂nω�τ� 6= 0, we
have ∂n−1∂nω�τ� = ∂nω�τ� + �−1�n−1�−1�d�∂nω�+1∂nω�τ� =
�1 + �−1�n+d�∂nω�∂nω�τ� = 0. This means that n and d�∂nω�
must have different parity.

Theorem 3.4. Let ω be a nonzero weight function. If ∂nω =
0, then n and d�ω� have the same parity. If ∂nω 6= 0, then n
and d�∂nω� have different parity.

Let φ be a real-valued function on 1. Define φ�1� =
�φ0; φ1; · · · ; φd�, where φi is the number of i-dimensional
open simplices. Then D�d�φ�1� = ∂dφ�1� by 2.5. De-
fine the linear function χ on Rd+1 by χ�v� = ∑d

i=0�−1�ivi,
v = �v0; v1; · · · ; vd�. Given a weight function ω on X,
χ�X;ω� = χ�ω�1�� is called the ω-weighted Euler charac-
teristic of X. It has been shown in ref. 11 that χ�D�d�v� =
�1− �−1�d�χ�v�. This gives Theorem 3.5.

Theorem 3.5. For any d-dimensional space X with a weight
function ω,

χ�X; ∂dω� = �1− �−1�d�χ�X;ω�:
If ∂dω = 0 and d is odd, then χ�X;ω� = 0. We thus have

Corollary 3.6.
Corollary 3.6. Odd-dimensional weighted manifolds have

the weighted Euler characteristic zero.

If X has only odd-dimensional strata and ω = 1, then by
Theorem 3.4, ∂ω = 0, i.e., X is an odd-dimensional weighted
manifold with weight 1. By Corollary 3.6, χ�X� = χ�X; 1� = 0.

Corollary 3.7. (Ref. 17) Stratified spaces with odd-
dimensional strata have vanishing Euler characteristic.

Eulerian manifolds are defined as compact spaces whose lo-
cal links have constant Euler characteristic (18, 19). This im-
plies the following corollary.

Corollary 3.8. A stratified space X is a weighted manifold
with the constant weight function ω = 1 if and only if X is an
Eulerian manifold.

Theorem 3.9. Let X1 and X2 be stratified spaces with weight
functions ω1 and ω2, respectively. Then X1 3 X2 is a strat-
ified space with weight function ω1 3 ω2, defined by ω1 3
ω2�x1; x2� = ω1�x1�ω2�x2�, �x1; x2� � X1 3 X2, and

∂�ω1 3 ω2� = �∂ω1� 3 ω2 +ω1 3 �∂ω2� − ∂ω1 3 ∂ω2:

χ�X1 3 X2;ω1 3 ω2� = χ�X1;ω1�χ�X2;ω2�:
Moreover, X1 3 X2 is a weighted manifold with weight ω1 3 ω2
if and only if one of the three conditions is satisfied: (i) ω1 = 0
or ω2 = 0, (ii) ∂ω1 = 0 and ∂ω2 = 0, or (iii) ∂ω1 = 2ω1 and
∂ω2 = 2ω2.

Theorem 3.10. Let X1 and X2 be stratified spaces with
weight functions ω1 and ω2, respectively. If ∂�X1;ω1� = X0 =
∂�X2;ω2� and ω0 is a weight function on X0, then X1 ∪X0

X2
is a stratified space with weight

ω�x� =


ω1�x� for x � X1 −X0

ω2�x� for x � X2 −X0

ω0�x� for x � X0;

and on �X1 −X0� ∪ �X2 −X0�, ∂ω = 0, on X0,

∂ω = �∂ω1 + ∂ω2� + �∂X0
ω1 + ∂X0

ω2 − ∂X0
ω0�

− 2�ω1 +ω2 −ω0�:
Moreover, if ω1 = ω2 = ω0 on X0 and ∂ω1 = ∂ω2 = ω0, then
X1 ∪X0

X2 is a weighted manifold with weight ω.
Under the conditions of Theorem 3.10, one has χ�X1 ∪X0

X2;ω� = χ�X1;ω1� + χ�X2;ω2� − χ�X0;ω0�. If X1 and
X2 are both even-dimensional, then χ�X1 ∪X0

X2;ω� =
χ�X1;ω1� + χ�X2;ω2�. If X1 and X2 are both odd-
dimensional, then χ�X0;ω0� = χ�X1;ω1� + χ�X2;ω2�.

Now let X be given the intrinsic stratification filtrated as
3.1 and let Wn�X� denote the R-module of weight functions
on Xn. If Xn is empty, we assume that Wn�X� = �0�. Because
∂n∂n+1 = 0, we have the chain complex

· · · −→ Wn+1�X� ∂n+1→ Wn�X� ∂n→ Wn−1�X� −→ · · ·

Define the nth weight homology as

WHn�X� = ker ∂n/im∂n+1:

The operator ˇ is a chain automorphism on the chain complex
�Wn�X� x n � 0� and induces an involutive automorphism on
WHn�X�.

Roughly speaking, the weight homology is a measurement
about the singularity of a space. For instance, if X is an n-
manifold without boundary and R = Z, then WHn�X� ı Z2
and WHi�X� ı 0 for i � n − 1. If X is an n-manifold with
boundary, then WHn�X� ı Z and WHi�X� ı 0 for i � n −
1. Unlike the simplicial homology, the weight homology of a
contractible space may not be trivial.

Example 3.11: Let X � Rd be a compact d-polyhedron and
let Bd�x; r� denote the ball of radius r centered at x � X.
Define the angle ω�x� by

ω�x� = lim
r→0

Vd�X ∩ Bd�x; r��
Vd�Bd�x; r��

; [3.3]
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where Vd is the volume, i.e., the Lebesgue measure on Rd . If
K is a regular cell decomposition of X (see ref. 20), then ω
is constant on each open cell of K. So ω is a weight function
on X with respect to the stratification K. Let us recall the
geometric cone relation∑

σ�τ��K

�−1�dim τT �τ;X�= T̄ �−σ;−X�= T̄−�σ;X� [3.4]

for σ � K̂ (theorem 1.1 in ref. 20). By integrating both sides
of 3.4, we obtain the angle-sum relation

ω̌�σ� =
∑

σ�τ�K̂

�−1�dim τ+1ω�τ� = �−1�d+1ω�σ�: [3.5]

This means that ∂ω = ω+�−1�dω̌ = 0. Thus X is a weighted
manifold with the angle weight function ω.

4. Double Reciprocity Laws

In this section, we make use of 2.9 to generalize the reciprocity
law of ref. 3. Let R be the polynomial ring Z�t; z� and let X
be a d-dimensional compact topological space with a fixed
stratification.

Let 1 be a stratified triangulation of X. We view 1 as
a simplicial complex consisting of open simplices. For each
open simplex σ � 1̂, define φ�σ� = z1+dimσ . Then φ̂�σ� =
�1 − z�1+dimσ . Let ω be a weight function on X. Define the
polynomial

P�X;ωy t; z� = S�1̂; φ�ω− t∂ω��: [4.1]

Then S�1̂; φ̂�ω− �1− t�∂ω�� = P�X;ωy 1− t; 1− z�:
Theorem 4.1. For any stratified d-dimensional space X with

a weight function ω and a stratified triangulation 1,

P�X;ωy t; z� + �−1�dP�X;ωy 1− t; 1− z� = 0: [4.2]

If X is a manifold with boundary and t = 1/2, then 4.2 is
obtained in ref. 3 and is equivalent to corollary 7.2 in ref. 21.
Actually, 4.2 is equivalent to the Dehn–Sommerville equation
2.5. Whenever X is a Euclidean d-polyhedron in Rd and ω is
the angle weight function given by 3.3, we denote S�1̂; φω�
by ��Xy z� because ∂ω = 0. Then S�1̂; φ̂ω� = ��Xy 1 − z�.
Thus ��Xy z� = �−1�d+1��Xy 1 − z�, which is equivalent to
the angle-sum relation of ref. 20. In particular, if X is a d-
polytope, the reciprocity law with the angle weight is equiva-
lent to the angle-sum relations of (22, 23).

Let X be a d-polyhedron with a cubical decomposition #,
i.e., every open cell σ of # is isomorphic to a relatively open
cube. For each σ � #̂, let φ�σ� = xdimσ for σ , 0̂ and let
φ�0̂� = 0. Each σ̂ contains exact

( dimσ
k

)
2dimσ−k open k-faces

if σ , 0̂. Then φ̂�0̂� = 0 and φ̂�σ� = −�2 − z�dimσ . For a
weight function ω on X, define the polynomial

Q�X;ωy t; z� = S�#̂; φ�ω− t∂ω��: [4.3]

Then S�#̂; φ̂�ω− �1− t�∂ω�� = −Q�X;ωy 1− t; 2 − z�.
Theorem 4.2. For any d-dimensional stratified space X with

a weight function ω and a cubical decomposition #,

Q�X;ωy t; z� = �−1�dQ�X;ωy 1− t; 2 − z�: [4.4]

The reciprocity law 4.4 is equivalent to the cubical form of
the Dehn–Sommerville equation. Whenever X is a Euclidean
d-polyhedron and ω is the angle weight function, we denote
S�#̂; φω� by 4�Xy z� because ∂ω = 0, and then 4�Xy z� =
�−1�d4�Xy 2 − z�, which is equivalent to the cubical form of
angle-sum relations. In particular, for a polytope, it is equiva-
lent to the cubical form of the angle-sum relations of ref. 22.

Now let X be a polyhedral complex of Rm with lattice
vertices, i.e., all 0-dimensional simplices have integral co-
ordinates. Let X be decomposed into a disjoint union of
relatively open lattice simplices. For each relatively open cell
σ of X, denote by σ̄ the closure of σ . Let h x Rm −→ R
be a homogeneous polynomial function of degree k. For
a positive integer n, define i�σ; hyn� = ∑

x�nσ∩Zm h�x�
and i�σ̄; hyn� = ∑

x�nσ̄∩Zm h�x�: Pukhlikov and Khovanskii
(24) showed that i�σ; hyn� and i�σ̄; hyn� are polynomial
functions of n of degree k + dimσ ; Brion and Vergne
(25) showed that i�σ; hyn� and i�σ̄; hyn� satisfy the reci-
procity law i�σ̄; hyn� = �−1�k+dimσ i�σ; hy −n�: If h = 1,
then k = 0 and it reduces to the reciprocity law of Ehrhart.
With each relatively open cell σ of X, we associate a poly-
nomial φ�σ; h� = �−1�1+dimσ i�σ; hy z�: Then φ̂�σ; h� =∑

τ�σ�−1�1+dim τφ�τ; h� = i�σ̄; hy z� = �−1�k+dimσ i�σ y −z�:
Let ω be a weight function on X. Define the polynomial

L�X;ω;hy t; z� = S�X̂;φ�ω− t∂ω��: [4.5]

Then S�X̂; φ̂�ω−�1− t�∂ω�� = �−1�k+1L�X;ω;hy 1− t;−z�:
The polynomial L�X;ω;hy t; z� is independent of lattice
cell decompositions of X and L�X;ω;hy t; n� = ∑

σ�X�ω −
t∂ω��σ�i�σ; hyn� counts the number of lattice points of nX
with weight �ω− t∂ω�h. If we write ∂ω explicitly, then

L�X;ω;hy t; n�
=
∑
σ�1

ω�σ���1− t�i�σ; hyn� + t�−1�di�σ̄; hyn��:

Theorem 4.3. Let X be a bounded lattice d-polyhedron with
a weight function ω. If h is a homogeneous polynomial function
of degree k, then

L�X;ω;hy t; z� = �−1�k+dL�X;ω;hy 1− t;−z�: [4.6]

Eq. 4.6 generalizes the reciprocity law of ref. 25. For h = 1,
it generalizes Ehrhart’s reciprocity law for lattice polytopes as
well as Macdonald’s extension to lattice manifolds with bound-
ary, and in this case we write L�X;ωy t; z� = L�X;ω; 1y t; z�.
For t = 1/2, we write L�X;ω;hy z� = L�X;ω;hy 1/2; z�. For
ω = 1, we write L�X;hy z� = L�X;ω;hy z�. If ω is the angle
weight function, we define A�X;hy z� = S�X;φω� because
∂ω = 0.

Corollary 4.4.

A�X;hy z� = �−1�k+dA�X;hy −z�: [4.7]

If X is a rational polyhedron, the reciprocity laws 4.6 and
4.7 are still valid if z is replaced by an integer. However,
L�X;ω;hy t; n� is no longer a polynomial of the positive inte-
ger variable n but a quasi-polynomial ref. 13.

5. Volume Formulas

Let us recall some well-known facts about the polynomial
i�σ y z� for an open d-simplex σ of Rm: the constant term of
i�σ y z� is �−1�d (the Euler characteristic of σ) and the lead-
ing coefficient of i�σ y z� is the d-dimensional relative volume
v�σ� of σ . The lattice points of the affine span �σ� of σ form
an abelian group of rank d, i.e., �σ� ∩Zm is isomorphic to Zd .
Hence there exists an invertible affine linear transformation
T x �σ� −→ Rd satisfying T ��σ� ∩Zm� = Zd . The relative vol-
ume of σ is just the d-dimensional volume of the image T �σ�.
If dimσ = m, then v�σ� is the same as the volume V �σ� of
σ . Thus for a bounded lattice d-polyhedron X with a weight
function ω, the polynomial L�X;ωy z� has the constant term
equal to χ�X;ω− 1

2∂ω� and the coefficient of xd equal to the
relative volume of X with weight ω − 1

2∂ω. Write L�X;ωy z�
as

L�X;ωy z� = a0 + a1z + · · · + adzd:
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Then a0 = χ�X;ω − 1
2∂ω� =

∑
σ�X�−1�dimσ�ω − 1

2∂ω��σ�
and ad = v�X;ω− 1

2∂ω� =
∑

σ�X v�σ��ω− 1
2∂ω��σ�; where

X is assumed to be decomposed into a disjoint union of open
simplices σ . Notice that ∂ω is zero on open d-simplices, so
v�X;ω − 1

2∂ω� = v�X;ω�. If dimX = m, then v�X� is the
same as the volume V �X� of X.

Theorem 5.1. For a bounded lattice d-polyhedron X and a
weight function ω,

d!v�X;ω� =
d∑
i=0

�−1�d−i
(
d
i

)
L�X;ωy i�: [5.1]

More generally, if m0;m1; · · · ;md are any distinct nonnegative
integers, then

v�X;ω� =
d∑
i=0

L�X;ωymi�
π ′d+1�mi�

; [5.2]

where π ′d+1�z� is the derivative with respect to z of the polyno-
mial πd+1�z� =

∏d
i=0�z −mi�.

Proof: Express L�X;ωy z�/πd+1�z� as a sum of the partial
fractions

L�X;ωy z�
πd+1�z�

=
d∑
i=0

L�X;ωymi�
π ′d+1�mi�

· 1
z −mi

:

Multiply both sides by πd+1�z� and compare the coefficients
of xd on the left and right. We obtain 5.2. In particular, by
setting mi = i, 5.1 follows. �

The reciprocity law L�X;ωy z� = �−1�dL�X;ωy −z� implies
that the coefficient of xd−1 is zero. We then have Theorem 5.2.

Theorem 5.2. Let X be a bounded lattice d-polyhedron with
a weight function ω. Then

�d − 1��d!�v�X;ω�

= 2
d−1∑
i=0

�−1�d−i−1
(
d − 1
i

)
L�X;ωy i�: [5.3]

More generally, if m1;m2; · · · ;md are distinct nonnegative inte-
gers, then

v�X;ω�
d∑
i=1

mi =
d∑
i=1

L�X;ω;mi�
π ′d�mi�

; [5.4]

where π ′d�z� is the derivative with respect to z of the polynomial
πd�z� =

∏d
i=1�z −mi�.

Proof: Express L�X;ω;mi�/π ′d�mi� as a sum of the partial
fractions

L�X;ωy z�
πd�z�

= v�X;ω� +
d∑
i=1

L�X;ωymi�
π ′d�mi�

· 1
z −mi

:

Multiply both sides by πd�z� and compare the coefficient of
xd−1 on the left and right. We obtain 5.4. In particular, by
setting mi = i− 1, 5.3 is obtained. �

Finally, L�X;ωy z� = �−1�dL�X;ωy −z� implies that the co-
efficients of zd−1; zd−3; zd−5; · · · are all zero. Then for even
d = 2n,

L�X;ωy z� = a0 + a2z
2 + a4z

4 + · · · + a2nz
2ny

for odd d = 2n+ 1,

L�X;ωy z� = z�a1 + a5z
2 + · · · + a2n+1z

2n�:
Theorem 5.3. Let X be a bounded lattice d-polyhedron with

a weight function ω. For even d = 2n, let m0;m1; · · · ;mn be the
distinct nonnegative integers, then

v�X;ω� =
n∑
i=0

L�X;ωymi�
π ′n+1�m2

i �
; [5.5]

where π ′n+1�z� is the derivative with respect to z of the poly-
nomial πn+1�z� =

∏n
i=0�z − m2

i �. For odd d = 2n + 1, let
m0;m1; · · · ;mn be distinct positive integers, then

v�X;ω� =
n∑
i=0

L�X;ωymi�
miπ

′
n+1�m2

i �
; [5.6]

where π ′n+1�z� is the derivative with respect to z of πn+1�z� =∏n
i=0�z −m2

i �.
In 5.5, set mi = i. Then π ′n+1�i2� = �−1�n−i�n− i�!�n+ i�!/2

for 1 � i � n and π ′n+1�0� = �−1�nn!n!. In 5.6, set mi = i+ 1.
Then π ′n+1�j2� = �−1�n+1−j�n + 1 − j�!�n + 1 + j�!/2j2 for
1 � j � n+ 1. We thus have Corollary 5.4.

Corollary 5.4. Let X be a bounded lattice d-polyhedron
with a weight function ω. Then for even d = 2n,

d!v�X;ω� = 2
n∑
i=1

�−1�n−i
(

d
n− i

)
L�X;ωy i�

+ �−1�n
(
d
n

)
L�X;ωy 0�y

for odd d = 2n+ 1,

�d + 1�!v�X;ω� = 2
n+1∑
i=1

�−1�n+1−i
(

d + 1
n+ 1− i

)
iL�X;ωy i�:

If X is a bounded lattice d-polyhedron of Rd and ω is
the angle weight function, then ω�σ� = 1 for each open d-
simplex σ . Thus the leading coefficient of A�X;ωy z� is the
volume V �X� of X. All of the volume formulas in this section
about L�X;ωy z� are true for A�Xy z� by replacing v�X;ω�
with V �X� and L with A.

One can consider lattice polyhedra of an arbitrary lattice L
instead of the integral lattice Zm. All of the formulas about the
integral lattice are obviously true for any L-lattice. However,
for the volume formulas, v�X;ω� needs to be replaced by
v�X;ω�/ det�L�, where det�L� is the relative volume of the
unit parallelogram of L.

Now we take ω = 1, then v�X;ω� = v�X�. For even
d = 2n, �ω − 1

2∂ω��x� = ω�x� − 1
2χ�lk�x;X��, so ∂ω�x� =

χ�lk�x;X��. Because ∂∂ω = 0, �X̄; ∂ω� is an odd-dimensional
weighted manifold. Thus χ�X̄; ∂ω� = ∫

X̄
χ�lk�x;X��dχ�x� =

0. For odd d = 2n + 1, �ω − 1
2∂ω��x� = 1

2χ�lk�x;X��.
Corollary 5.4 becomes Corollary 5.5.

Corollary 5.5. Let X be a bounded lattice d-polyhedron of
Rm. Then for even d = 2n,

d!v�X� =
n∑
i=1

�−1�n−i
(

d
n− i

)[
2#�X ∩ i−1Zm�

−
∑

x�X̄∩i−1Zm

χ�lk�x;X��
]

+ �−1�n
(
d
n

)
χ�X�y

for odd d = 2n+ 1,

�d + 1�!v�X�

=
n+1∑
i=1

�−1�n+1−i
(

d + 1
n+ 1− i

)
i

∑
x�X̄∩i−1Zm

χ�lk�x;X��:

Theorem 5.1 and Theorem 5.2 are generalizations of Mac-
donald’s results (26) for lattice polyhedral manifolds with
boundary to arbitrary lattice polyhedra. The special cases of
Corollary 5.5 for d = m = 2 and 3 are unified generaliza-
tions of various versions of Pick’s theorem and the volume
formulas of Reeve (27, 28). Finally, our weight function may
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be related to McMullen’s recent paper (29) on weights of
polytopes.
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