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Abstract. We use the residue theorem to derive an expression for the number of lattice points in a dilated n-
dimensional tetrahedron with vertices at lattice points on each coordinate axis and the origin. This expression is
known as the Ehrhart polynomial. We show that itis a polynomial in ¢, where ¢ is the integral dilation parameter. We
prove the k:hrhart-Macdonald reciprocity law for these tetrahedra, relating the Ehrhart polynomials of the interior
and the closure of the tetrahedra. To illustrate our method, we compute the Ehrhart coefficient for codimension
2. Finally, we show how our ideas can be used to compute the Ehrhart polynomial for an arbitrary convex lattice
polytope.
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1. Introduction

Let Z" . R” be the n-dimensional integer lattice, and

n

P=3(x,....,x,) €R": Zx—k <1 andall x; >0
=1 %
the n-dimensional open tetrahedron with integer vertices (0, ..., 0), (@, 0, ..., 0), (0, a2,
O..... M, ..., (0,...,0,a,). Wecan assume thatay, ..., a, € Z are >2. Fort € N, denote
by L (P, r) the number of lattice points in the dilated polytope ¢ P. We note that the restriction
di. ...,y > 2is harmless: If one of the g is 1, simply omit this vertex and consider the

number of lattice points in the resulting tetrahedron in R” ! Upon reinserting this additional
vertex, the number of lattice points in the closure of the polytope, P, merely grows by 1,
whereas for P it is the same.

Ehrhart [6] proved (actually for a general lattice polytope) that both L(P, ¢) and L(P,1)
are polynomials in ¢ of degree n. Moreover, he determined the two leading coefficients and
the constant. The leading coefficient is Vol(P), and the second coefficient is 1/2 Vol(37P),
which is half the surface area of P normalized with respect to the sublattice on each face of
‘P. The constant coefficient equals x (P), the Euler characteristic of P. The other coefficients
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of L(F'.t)and L(P, t) are not as easily accessible. In fact, a method of computing these
coefficients was unknown until quite recently [1, 4, 5, 7, 8]. In this paper, we present an
elementary method for computing the Ehrhart polynomials of P and P using the residue
theorem. We verify the Ehrhart-Macdonald reciprocity law for these n-dimensional tetra-
hedra. To illustrate our method, we compute the first nontrivial coefficient, c,_,, of the
Ehrhart polynomial. Finally, we show how our ideas can be used to compute the Ehrhart
polynomial for an arbitrary convex lattice polytope.

2. The main idea

Lets start with L(75, t); that is, we consider the closure of our dilated tetrahedron rP. We
introduce the notation

~

AI:LI]"'(l,,, Ak::al---aku-an,

where «; means we omit the factor a;. Then we can write

L(75.t):card{(m.,...,m,,)GZ":Zﬂft and all m; >0
=1
= card{ (m, m m)EZ"“'Zz=1 MiAg+m =14
e T, e = 0 .

We can interpret L(P, ¢) as the Taylor coefficient of z/# for the function

(l+:“'+;2A1+...)(]+3Az+32A2+...)...(1+ZAn+Z2An+,..)(1+z+z2+...)
1 1 1 |

1 — -] — A —zA ] _:'

Equivalently,

—1tA—1

- z
L(P.t)= Res((l (A = ) —Z)’Z :0>.

To reduce the number of poles, it is convenient to change this function slightly; this residue
is clearly equal to

ZfrA_l
Res ,2=0 1.
%<u—zMNr—ﬁn~-m—zhx1—wzz >+

If this expression counts the number of lattice points in £, then all we have to do is compute
the other residues of

ZflA —1

(1= AT =28 (1= A (1 = )z

J-i(2) =
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and use the residue theorem for the sphere C U {oc}. In this notation,
L(P.t) =Res(f (z).2=0)+ 1. (1)

The only poles of f_, are at 0, 1 and the roots of unity in

Q:={zeC\{l}izwi = 1,1 <k <[ <n).

Note that Res(f_,. z = oc) = (, so that the residue theorem gives us the first half of our
main result:

Theorem 1(a).

L(P.1)=1—Res(f(2).z=1)— ZRes(f,f(z), Z=4A)

reQ
Remarks.
1. The residue at z = 1 can be calculated easily:

Ros(f_(2).2 = 1) = Res(e? f,(e%), z = 0)

& < e 14T _ _0>
= nes (1 — eAi)(1 — eA2?) .. (1 — eAn?)(1 _ez)’z -y

To fucilitate the computation in higher dimensions, one can use mathematics software
such as Maple or Mathematica. Itis easy to see that Res(f_,(z), z = 1) is a polynomial
in { whose coefficients are rational expressions inay, ..., a,.

2. The residues at the roots of unity in € are in general not as easy to compute. They
give rise to Dedekind-like sums and their higher dimensional analogues, as we will
illustrate in Section 4. There is, however, one feature we can read off from these residues
immediately, the dependency on the dilation parameter ¢:

Corollary 2 (Ehrhart). L(P.t) is a polynomial in t.
With Corollary 3 below, this will also imply that L(P, ¢) is a polynomial.

Proof: Let X € Q2 be a B’th root of unity, where B is the product of some of the a;. Now
express 2 in terms of its power series about z = 1. The coefficients of this power series
involve various derivatives of 774, evaluated at z = A. Here we can introduce a change of
variable: £ = w# = exp(% log w), where we choose a suitable branch of the logarithm
such that exp(% log(1)) = A. The terms depending on ¢ in the power series of 7~/ consist
therefore of derivatives of the function z/4/8 evaluated at z = 1. From this it is easy to see
that the coefficients of the power series of z /4 are polynomials in . The fact that L(P, r)
is simply the sum of all these residues, finally, gives the statement. a
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For the computation of L(P, ¢) (the number of lattice points in the interior of our tetra-
hedron +P), we similarly write

L(P,r):card{(m,,...,mn)EZ":Zﬂ<t and all my >0
=1 %

= cardq (m, m m)eszrl.ZZ:lmkAk‘i‘m:[A
o “my,m >0 .

Now we can interpret L(P, t) as the Taylor coefficient of z'4 for the function

B I SRR [ AL St AR BN Co i St I SRS | C S S
_/,A| _/./\: A

I T N R Vi

or equivalently as

A -4 S An z
Res{ — = e — 72 =0
| — M | — g4 | —zA | —2

SA LAz ZAn “tA _ |
< < kS Z Z
= Res( . 7= 0>

I—zM 1 —zM l—z4 11—z z

—1 | 1 1 1
= Res Z‘IA—], =0 |.
es<zz e ira e e R JC )z )

To be able to use the residue theorem, this time we have to consider the function

1 1 1 1 24—
2 pA ] 7A—1 7 -1

1
= (—=1)"fi(2),
so that
L(P,t) = (=1)" Res(f;(z), z = 00). (2)

The finite poles of f; are at 0 (with residue —1), 1, and the roots of unity in €2 as before.
This gives us

Theorem 1(b).

L(P.t)=(-1D" <l —Res(fi(z),z=1) — ZRes(f,(z), 7= A)) .

reQ2

As an immediate consequence we get the remarkable
Corollary 3 (Ehrhart-Macdonald Reciprocity Law).

L(P, —t) = (—1)'L(P, 1).
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This result was conjectured (again, for a general lattice polytope) by Ehrhart [6], and later
proved bv Macdonald {9], McMullen [10], and Stanley [13].

3. The Ehrhart coefficients

With a small modification of f;(z), we can actually derive a formula for each coefficient of
the Ehrhart polynomial
L(P.t) =cyt" + -+ co.
Consider the function
(thA _ l)k
(=281 —z4) - (1 = z4)(1 — 2)z
I (B Ak D (1)
(1 —z4) (1 —z4) - (1 =22 (1 — )z

g (2) =

If we insert —Zﬁ.:o(lj‘-)(— 1)/ = 0 in the numerator, this becomes

K rk _ kDA
) (2) = (=1
e Z(,)( ST = a - -z

i=0
k=1

- (i)(—l)ff,w(z»

=0

Recall that (1) gave us L(P, 1) = Res(f_,(z), z = 0) 4 1. Using this relation, we obtain

=~

Res(gi(2),z2=0)

—1
<§>(~1)'j Res(fi4—j (@), 2= 0)

- O

E .

3 <’;)(_1)-"<L<75, (k=)= 1)

=0

>~

I

(’;)(—1)%(73, k — )ty + (=D~

J=0
We clain that this polynomial has no terms with exponent smaller than k:

Lemma 4. Suppose L(P, ty=cyt"+---+co. Thenfor1 <k <n

Res(gi(z).2=0) =k! Y Sm.k) cp 1™, (3)

m=k

where Sim, k) denotes the Stirling number of the second kind.
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Proof: Suppose
ifc>e4yuﬁxknn=§immm, )
= \J —
so that form > 0
k=1 k
bewm = (ﬁ)(—l)}‘cm k=) =cny (ﬁ)(—l)k‘fj'” .

J=0 Jj=0

The Stirling number of the second kind S(m, k) is the number of partitions of an m-set into
k blocks. The reason we are interested in these numbers is the identity [13]

1 d k k—j :m
Swmzﬁzj(q)J.

e
so that by, = ¢, k! S(m, k) for m > 0. Some of the elementary properties of S(m, k) are
[13]
Sm,k)=0 ifk>m 5)
Sim, 1) =1 (6)
Sim,m) =1 7

Sm,k)=kSn—1,k+Sh-1,k—-1).
By (5). we conclude that b; ,, = 0 for 1 < m < k. The constant term in (4) is

(= _
bio= Z <]-)(—1)"CO = —co(— D~

=0

Since g = 1 for our tetrahedron (in fact, ¢y = 1 for any convex polytope [6]), (3) follows.
O

The other poles of g, are at 1 and the roots of unity in
A
Qi=43ze C\{l}:Z”” “idr =1, 1 < j] < jz < e < jk+l En}

Note that as k gets larger, €; gets smaller. That is, we have fewer residues to consider.
This is consistent with the notion that the computational complexity increases with each
additional coefficient, that is, the computation of ¢; is more complicated than that of ¢4 .
Using the residue theorem, we can rewrite (3) as
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Theorem 5. Suppose L(P, ty=cyt"+---+co. Thenforl <k <n

- m -1
D Stmk) et = —— | Res(gu(@), 2= 1) + ) Res(g(@),z=4) |

n=k A€

Remarks.

1. For k = 1, we get with (6) a reformulation of Theorem [(a).
. The coefficients of L(P. 1) are the same as those of L(P, 1), up to the sign: By Corollary 3,
L(P.t) = cpt" —cpyt" 1 4+ 4 (= 1)cp.

3. Res(gi(2), z = 1) can be computed as easily as before, the slightly more difficult task
is to get the residues at the roots of unity (see also Remark 2 following Theorem 1(a)).
However, with increasing k, we have to consider fewer of them, so that there is less to
calculate. If we want to compute the Ehrhart coefficient ¢,,, we only have to consider
the roots of unity in €,,. We can make this more precise: With (7), we obtain

9

Corollary 6. Form > 0, ¢, is the coefficient of t™ of

~1
m (Res(gm (2),z=1)+ Z Res(gn(z), z = )\))

rEQ,

4. An example

As an application, we will compute the first nontrivial Ehrhart coefficient c¢,_, for the
n-dimensional tetrahedron P (n > 3) under the additional assumption that ay, ..., g, are
pairwise relatively prime integers >2. This case was first explored by Pommersheim [11].

Theorem 7. Under the above assumptions,

1
Cp—2 = m (Cy,—s(A,a) — - —s(Ay, an)),

where sia. b) denotes the Dedekind sum, and

Crim S Aad o4 A+ (L Ay A
n o= S\ 2 n—1.n A\ — — .
4 1 & 12\A  gq a,

~

Here A, denotes ay -~ -a; - - ay - - - ay.

Proof: We have to consider

(ZfrA _ 1)1172
(1 —zA(1 —zA2) - (1 = z4)(1 = 2)z

gn—2(2) =
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Becauseaq. ..., a, are pairwise relatively prime, g, » has simple poles atalltheay, ..., a,th
roots ot unity. Let A = 1 £ A. Then
Res(gr-2(2), 2 =A)
1 '~tA -1 n=2
= Res (z ) , 7= k).
(=2 —0r N\ =28 (1 —z4)

Similar to the methods used in the first chapter to arrive at Corollary 2, we make a change of
variables 7 = w4 = exp(% log w), where we choose a suitable branch of the logarithm

such that exp(ﬁ log(1)) = A. We thus obtain

Res(g,—2(2). 2= 1)

B 1 & R ( (wle _ 1)n—2 _ 1)
T U= —mra N\ U=wB) (I —wB)y YT )

where B:=ay---a,. By :=a>---ay---a,. We claim that

Z*)‘B -1 n—-2
Res( ( ) ,Z= l) =—1"2
(1= zP) - (1= gB)

To prove this, first note that

(Zle _ 1)11—2 — (_tB)n-Z(Z _ l)nAZ + 0((2 _ 1);1—1)‘

Now form € N,

=11 —zm

=
o
72}
N
[
o
I
N—
1
=i
2~
|
—
I
|
I~

Putting all of this together, we obtain

Res( (thB _ 1)11—2 L 1) _ (_tB)n72
(L—zB)- o (1 = g8y’ (=By) -+ (=By)

n—2 n—2 n—2

_ _l a, Cordy . _tn~2

- a/z~2 . .anv2 - ’
2 n

as desirved. Therefore
g -2

Res(g, 2(2).z2=4) = a(l — )\A|)(] — )\')

Adding up all the a,’th roots of unity # 1, we get

Z _tn—Z 1

RCS(g,I__z(Z), = )\.) = s

A =1#£) a AT (] _ )LAI)(I _ )»)
—l"_2 a;—1 1

a g;(r—ﬁmxl—SH’
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where & 1s a primitive @, th root of unity. This finite sum is practically a Dedekind sum:

1 a—1 1 1 aj—1 ]+skA| ]_'_Sk
ZTZu—skAl)(l—sk) _Tmz<l+l—s“1><l+l~sk>

k=1 k=1
1 P, kA, nk)
= —(a—-1)— — cot + cot —
4a| ( : ) 4611 ; < ay a)
| e mkA, wk
_— cot cot —
461] =1 ay aj
1 1 (A )
=-—— —5(A,ay).
4 aa b

The imaginary terms disappear here, since the sum on the left hand side and s(A, a;) are
rational: Both are elements of the cyclotomic field of a;’th roots of unity, and invariant
under all Galois transformations of this field.

Hence we obtain

1 1
Z Res(g, 2(2),z=4) = —t”‘2<— —— —s(Ay, al))-
A=A 4 461]

We get similar expressions for the residues at the other roots of unity, so that Corollary 6

gives us forn > 3
i B 1 n c 1/1 + . 1
“2 = o)\ 4\ 4 a,

—5(A1,a|)—'~—5(An,an)), (8)

where C is the coefficient of #"~7 of Res(g,_»(2), z = 1). We can actually obtain a closed
form for C: As before,

Res(ga2(2), 2 = 1) = Res(e7g,2(¢), 2 = 0)

_ ‘ (eAIAz _ 1)n—2 _
- Res((l — e ety (I e —e) 0)'

Now with
(()*fAZ' _ l)nvz —_ (_ZAZ)Hfz + O((tz)nfl)

and




308 BECK

the coefficient of "~ of Res(g,_»(z), z = 1) turns out to be

S -1 n+1 -1 n+IA _1)rz+lAn
¢ a2 LD ED 1+_“+<_)
12 Ay A, Ar--- A, Ay A,
1 (_l)n-l (_1)11~]
Z(Az"‘An+ +Al"'An—l
(_l)nfl (_])n—l (_l)n—l
A A T AT
e n Al T A,
12\ A a) Ay

1/1 1
___<+...+—+A].2+"'+AnI.n)’

a ay

Substituting this into (8) yields the statement. t

The other Ehrhart-coefficients for this tetrahedron can be derived in a similar fashion,
although the computation gets more and more complicated, as noted in Section 3.

5. General lattice polytopes

Any convex lattice polytope (that is, a convex polytope whose vertices are on the lattice
Z") can be described by a finite number of inequalities over the integers. In other words, a
convex lattice polytope P is an intersection of finitely many half-spaces. Translation does
not change the lattice point count, so we can assume that the points in the polytope have
positive coordinates and apply the ideas of the previous sections to P. Suppose the closure
of the dilated polytope P is given by the n + g inequalities

Xi, oo, x, >0

X1 Xn

— o+ <y

ap din )
X1 Xn

— <

dgl Agn

with a;, € Z. Then by introducing a similar notation as before,
Poi=an - apn,  Ajpi=aji-dji--ajn,
we can define a matrix

M= (A1)
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Let C; the j’th column, and Ry, the k’th row of M. Then we can rewrite the last ¢ inequalities
of (9) as

Ri-x <tP
(10
R, -x <tP,
where ¥ = (x|, ..., x,) and - denotes the usual scalar product. Now consider the function
: g i g
JE = i) = o = — e (-2
Here we used the standard multinomial notation z¥ := z|" - - - z;’"‘. We will integrate f with

respect to each variable over a circle with small radius:

/ / f@ls 22y - dzy an
|z1|=€y ‘7/[‘:('1/

Here. 0 < €. ..., ¢, < | are chosen such that we can expand all the 1‘lzck into power series

about 0. To ensure the existence of e, ..., €,, we may, if necessary, add an additional
inequality x, + --- + x, <t Py for a suitable large Py. This is always possible, since P is
bounded.

Since the integral over one variable will give the respective residue at 0, we can integrate
with respect to one variable at a time. When f is expanded into its Laurent series about 0,
each term has the form

_m-Rytri—tPi—1 "m-Rq+r,,—1Pq—l
7 Sz ,

where m 1= (my,...,m,), and m,, ..., m,, 7, ..., r, are nonnegative integers. Thus, in
the integral (11), this term will give a contribution precisely if m satisfies the inequali-
ties (10). In other words, we have proved

Theorem 8.

- |
L(P,t) = Rny /‘le_ﬂ /l fzi, .o zy)dzy - - dzy.

4 |:Eq

On the other hand, we can compute this integral by computing the residues # 0 as before,
for each variable at a time. The (finite) sum over these residues will be equal, by Theorem 8,
to the number of lattice points in the closure of our polytope tP. We will explore this method
and its results in a future paper.

6. Further remarks

1. The ideas in this paper can also be used in other ways. First, note that by omitting the
o4 [ factor, we essentially get trivial residues at oo and 0. In view of Corollary 6, this
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corresponds to obtaining an expression for the constant Ehrhart coefficient and setting
it equal to 1 [2]. This means we are not getting a lattice point count; however, the other
factors will still give us Dedekind-like sums, as they appear in the formulae. By using
the residue theorem as before, we thus now get relations between these terms, similar in
spirit to the various reciprocity laws for classical [12] and higher dimensional Dedekind
sums [14].

Finally, we can extend these methods to n-dimensional rational polytopes (whose ver-
tices have now rational coordinates). For example, the number of lattice points in the
dilated rational tetrahedron

(x1,...,x,) €R": Zxkak <t andall x; >0
k=1

can be computed with similar methods. The details will appear in a future paper [3].
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