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1 Introduction

Given a set of positive integers A = {aq,...,aq} with ged(ay,...,aq) = 1, we call an integer n
representable if there exist nonnegative integers my, ..., my such that

n=miai + - -+ mgaq .

In this paper, we discuss the linear diophantine problem of Frobenius: namely, find the largest
integer which is not representable. We call this largest integer the Frobenius number g(ay,...,aq).

One fact which makes this problem attractive is that it can be easily described, for example, in
terms of coins of denominations ay, ..., ay; the Frobenius number is the largest amount of money
which cannot be formed using these coins.

The following “folklore” theorem has long been known (probably at least since Sylvester [9]).

Theorem 1. g{a,b) = ab—a —b.

LFor d > 3, the quest for general formulas has so far been unsuccessful. For the case d = 2, Sylvester
[9] proved the following result.

Theorem 2 (Sylvester). For A = {a,b}, ezactly half of the integers between 1 and (a — 1)(b—1)

are representable.

Here we introduce and study a more general problem, a natural extension of the Frobenius problem,

which scems to be new.

Definition 1. We say that n is k-representable if n can be represented in the form
n=miay + -+ mgygaq

(where my....,my are again nonnegative integers) in exactly k ways.

I terms of coins, we can exchange the n pennies in exactly k different ways in terms of the given
coin denominations. It is not hard to convince ourselves that—because the numbers in A are
relatively prime——eventually every integer can be represented in more than k ways, for any k. Our
extension of the Frobenius number is captured by the following definition:
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Definition 2. gx(a1,...,aq) is the smallest integer beyond which every integer is represented more
than k times.

This is a natural generalization of the concept of the Frobenius number, as

g(al,...,ad) :go(al,...,ad) .

As to he expeeted, the study of gy, is extremely complicated for d > 3. There is an analogy here
with k-represcntable integers and the classic problem of finding the number of representations of
an integer as a sum of 4 squares, for example. However, the methods here are different. In this
paper we concentrate on the case d = 2, that is, A = {a, b}, and present the following results.

Theorem 3. gi(a,b) = (k+ 1)ab—a —b.
Theorem 4. Given k > 2, the smallest k-representable integer is ab(k — 1).

Theorem 5. There are ezactly ab — 1 integers which are uniquely representable. Given k > 2,
there are ezactly ab k-representable integers.

Theorem 3 is a direct generalization of Theorem 1. Theorem 4 is meaningless for k£ = 0 and trivial
for k = 1: the smallest representable integer is min(a, b). Theorem 5 extends Theorem 2 for k > 0.

2 The restricted partition function

One approach to the Frobenius problem and its generalizations is through the study of the restricted
partition function

yaln) = #{(ml,...,md) e 7% all m; >0, miay —{—-~~+m,lad:n} ,

the number of partitions of n using only the elements of A as parts. In view of this function,
gr(ar,....aq) is the smallest integer such that for every n > gx(ay,. .., aq) we have pa(n) > k.

It is well known [3, 5] that

pa(n) = o ad 1) --Zd(d— 0 +0 (nd‘g) .

[t particular.

n
Plasy(n) = = +c(n)

where ¢(n) = O(1). In fact, [11, p. 99] gives a nice argument that ¢(n) is periodic in n with period
ab, based on the generating function
1
T2 (i —ab)
the cocfficient of =™ of which is equal to pg,(n). This argument can be carried even further to
give the following little-known formula.
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Theorem 6 (Popoviciu). Suppose a and b are relatively prime positive integers, and n is a

positive integer. Then
(n) n b~ln a"n L1
n)y=—— - .
Plab} ab a b

Here {} = 2 — x| denotes the fractional part of z, a™'a = 1(mod b), and b~1b = 1(mod a).

The carliest reference to this result that we are aware of is [7]; the formula has since been resurrected
at least twice [8, 10].

Instead of giving another proof of this theorem, we invite the reader to a scenic tour through the
following modularized set of exercises, which lead to a—as far as we are aware of—new proof of
Theorem 6. Consider the function

f(2) = !

(1= 29) (1 — zb) et

1. Compuic the residues at all non-zero poles of f, and verify that Res(f(z),z = 0) = prap(n).

2. Usc the residue theorem to derive an identity for py,py(n). (Integrate f around a circle with
center O and radius R, and show that this integral vanishes as R — oc.)

3. Verify that for b =1,
Play(n) = #{(m1,m2) € Z:mq,mg >0, mia +mg =n}
=#([0.2]nz) =2 - {2} +1.
a a a

4. Usc this together with the identity found in 2. to obtain

2 Y g

a
Ae=1#£X

1 1
2 2a

(2]

Verify that

1 1
2 T 2 T

Ae=1£) Ae=1£A

and usc this together with 4. above to simplify the identity found in 2.

Popoviciu’s beautiful and simple formula leads to very short proofs of the results stated in the
introduction.

Proof of Theorems 1 and 3. We will show that pr, 41 ((k + 1)ab —a — b) = k and that p,p} (n) >k
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for every n > (k + 1)ab — a — b. First, by the periodicity of {z},

Piasyt (k+1)ab—a—b) =

(k:+1)ab—a—b«{b_l((k+1)ab—a_b)}_{a_l((k+1iab_a_b)}+1

1 1_ b 1p —a la
ib a a b
1 1 —1 —1
"“”'z‘a‘{?}‘{?}
1 1 1 1
=k+2-—=~ Y- (1-2) =%.
voo gt (1 ) ( b) k

For any integer m, {%} <1- % Hence for any positive integer n,

—a- 1
Ptk +Dab—a—b+n) > T (Ll) - <1“E>+1:k+%>k.

It
+
Do

ab a
0
Proof of Theorem 2. We first claim that, if n € [L,ab — 1] is not a multiple of a or b,
Plap}(n) +Plapy(ab—n) =1, (1)

This identity follows directly from Theorem 6:

IMMMbJ”:w—n_{wwf~m}w{mw?—m}+l

g (5
ab a b

*) n b~in aln
e () )

=1- p{a,b}(n) :

Here. (%) follows from the fact that {~z} =1— {z} if z € Z. This shows that, for n between 1 and
ub — 1 and not divisible by a or b, exactly one of n and ab — n is not representable. There are

ab—a—b+1=(a—-1)(b—1)=gla,b)+1

integers between 1 and ab— 1 which are not divisible by a or b. Finally, we note that Plapy(n) > 0if
nis a multiple of a or b, by the very definition of py, 1 (n). Hence the number of non-representable
integers is %((/ —1)(b—1). d

Note that we proved even more. By (1), every positive integer less than eb has at most one
representation. Hence, the representable integers in the above theorem are uniquely representable.
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Proof of Theorem J. Let n be a nonnegative integer. Then

/){a.b}(a‘b(lC - 1) - n) -

_aleln {b—1<ab<ka— 1) - n)} ) {a‘1<ab<kb— D-n) } T

n b 1n —a"in
T

If = 0. (2) cquals k. If n is positive, we use {z} > 0 to see that

n
- —-n)<k——<k.
Plap(ablk —1) —n) <k pa <

All nonrepresentable positive integers lie, by definition, in the interval [1, g(a,b)]. It is easy to see
that the smallest interval containing all uniquely representable integers is [min(a, b), ¢1(a, b)]. For
k > 2, the corresponding interval always has length 2ab—a— b+ 1, and the precise interval is given

next.

Corollary. (ven k > 2, the smallest interval containing all k-representable integers is

[ngQ (a‘v b) +a+ b> gk(a7 b)] .

Proof. By Theorems 3 and 4, the smallest integer in the interval is
ab(k — 1) = gx—o(a,b) +a+b.
The upper bound of the interval follows from the proof of Theorem 3.
Proof of Theorem 5. First, in the interval {1, ab], there are, by Theorems 2 and 4,

(a—1(b-1)
2

ab — -1

l-representable integers. Because of the almost periodic behavior of the partition function
Plapy(n +ab) =prpy(n) + 1,

which follows directly from Theorem 6, we see that there are

{a—1)(b—-1)
2

l-representable integers above ab. For k > 2, the statement follows by similar reasoning.
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3 Final remarks

Although the proofs we have given so far are simple, they rely on Popoviciu’s formula (Theorem
6). It is worth mentioning that there exist even more “clementary” proofs of Theorems 3, 4, and 5.

We note that for all d > 2, generalized Dedekind sums [4] appear in the formulas for pa(n), which
increases the complexity of the problem. The full details of these connections to Dedekind sums
appear in [2].

We conclude with a few remarks regarding extensions of the above theorems to d > 2. Although no
‘nice” formula similar to the one appearing in Theorem 1 is known for d > 2, there has been a huge
cffort devoted to giving bounds and algorithms for the Frobenius number [1]. Secondly, we remark
that Theorem 2 does not extend in general; however, [6] gives necessary and sufficient conditions
on the a;’s under which Theorem 2 does extend. The almost periodic behavior (3) of the partition
function extends easily to higher dimensions [2]. We leave the reader with the following “exercise”:

Unsolved problems. Fzrtend Theorems 3, 4, and 5 to d > 3.
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