The Ehrhart polynomial of the Birkhoff polytope !
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Abstract: The n'"

Birkhoff polytope is the set of all doubly stochastic n x n matrices, that is, those matrices with
nonnegative real coefficients in which every row and column sums to one. A wide open problem concerns the volumes
of these polvtopes, which have been known for n < 8. We present a new, complex-analytic way to compute the
Ehrhart polynomial of the Birkhoff polytope, that is, the function counting the integer points in the dilated polytope.
The leading term of the Ehrhart polynomial is—up to a trivial factor—the volume of the polytope, which is one reason
why we are interested in this counting function. We implemented our methods in form of a computer program, which
vielded the Ehrhart polynomial (and hence the volume) of the ninth Birkhoff polytope.

1 Introduction

One of the most intriguing objects of combinatorial geometry is the n'* Birkhoff polytope
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often described as the set of all n x n doubly stochastic matrices. B, is a convex polytope with
integer vertices. It possesses fascinating combinatorial properties [4, 5, 6, 8, 22] and relates to
many mathematical areas [10, 14]. A long-standing open problem is the determination of the
relative volume of B,,, which has been known only up to n = 8 [7]. In this paper, we propose a new
method of calculating this volume and use it to compute vol By.

Oue of the recent attempts to compute vol B, relies on the theory of counting functions for the
integer points in polytopes. Ehrhart proved [11] that for a polytope P C R* with integral vertices,
the number

Lp(t) = # (wv N Zd)

is a polynomial in the positive integer variable . He showed various other properties for this
counting function (in fact, in the more general setting of P having rational vertices), of which we
mention three here:

e The degree of Lp is the dimension of P.

e The leading term of Lp is the relative volume of P, normalized with respect to the sublattice
of Z< on the affine subspace spanned by P.

e Since Lp is a polynomial, we can evaluate it at nonpositive integers. These evaluations yield

Lp(0) = x(P) , (1)
Lp(~t) = (=) P Lpe(t) . (2)

'Version of 2/22/2002



Here x(P) denotes the Euler characteristic, P° the relative interior of P. The reciprocity law (2)
was in its full gencrality proved by Macdonald [15].

The application of this theory to the Birkhoff polytope B, incorporates the nice interpretation of
the number of integral points in tB, as the number of semi-magic squares, namely, square matrices
whose nonnegative integral coefficients sum up to the same integer ¢ along each row and column.

We will denote the Ehrhart polynomial of B, by
Hn(t) = Lg,(1) .

[t is not hard to sce that dim B,, = (n — 1)2, hence H,, is a polynomial in ¢ of degree (n — 1)2. The
first two of these polynomials are trivial:

Hl(t)zl Hg(t):t+l,

the first nontrivial case was computed by MacMahon [16] as

H3(t)23(t1—3>+<t_+2_2> : (3)

The structural properties of H, were first studied in [12, 18, 19]. It is a nice exercise to deduce
from (2) that
Hp(—n—t) = (~1)""" Hy(t) (4)
and
Hy(-1)=Hp(-2)=---=Hy(-n+1)=0.
This allows the following strategy of computing H,, and therefore, the volume of B,: compute
the first (”;1) values of H,, use the above symmetry and trivial values of H,, and calculate the

polynomial H,, by interpolation. In fact, as far as we are aware of, the volume of By was computed
using essentially this method, combined with some nice computational tricks [7].

We propose a new. completely different approach of computing H,, (and hence vol B,,). It is based
on an analytic method by the first author of computing the Ehrhart polynomial of a polytope [2].
We will introduce the application of this method to the Birkhoff polytope in the following section.

Some recent refreshing approaches—of a more algebraic-geometric/topological flavor—to the prob-
lem of computing vol B,, and Hj, can be found in [1, 9, 21].

2 An integral counting integers

A convex polytope P C R? is an intersection of halfspaces. This allows the compact description
P:{xeRd: Axgb} ,

for some (m x d)-matrix A and m-dimensional vector b. Here the inequality is understood compo-
nentwise. In fact, we may convert these inequalities into equalities by introducing ‘slack variables.’



1P has rational vertices (those polytopes are called rational), we can choose A and b in such a
way that all their entries are integers. In summary, we may assume that a convex rational polytope
P is given by

P={xeRl): Ax=b}, (5)

where A € M, 4(Z) and b € Z™. (If we are interested in counting the integer points in P, we may
assume that P is in the nonnegative orthant, i.e., the points in P have nonnegative coordinates, as
translation by an integer vector does not change the lattice-point count.) The following straight-

forward theorem can be found in [2]. We use the standard multivariate notation v% := v}’* - .- v¥n.

Theorem 1 [2, Theorem 8] Suppose the convez rational polytope P is given by (5), and denote the
columns of A by cy,...,cq. Then

1 Z"tbl—1 . Z—tbmfl
(27{'7,)7”' ‘Zl|:51 Izm|:fm (]' - ZCI) e (1 - sz)

Here O < e,... 6y < 1 are different numbers such that we can expand all the ck winto power
series about 0.

We can view the Birkhoff polytope B, as given in the form of (5), where

|
1 ... 1
A= 1 1
1 1 1
1 1 1
is an (21 x n?)-matrix and b = (1,...,1) € Z?*. Hence Theorem 1 gives for this special case

. —t—1
H,(t) = / / (21 2on) dz .
27T’l (95\2n 1-— 212Zp41 (1 — len—§—2) (1 - znZQn)

Here 1t is understood that each integral is over a circle with radius < 1 centered at 0; all appearing
radii should be different. We can separate, say, the last n variables and obtain

1 ‘ ' e 1 f P "
] e (g [ ) e

The mnernmost integral is easy to compute: It is equal to the residue at 0 of

1
21— z2) - (1 — z2)

H, (1) =

and. by the residue theorem, equal to the negative of the sum of the residues at %, e ﬁ (Note
that here we use the fact that £ > 0.) The residues at these simple poles are easily computed, and
we obtain the starting point for our computations.



Theorem 2 For any pairwise different 0 < ey,...,e, <1,

1 ' t—1 . zltc+n_1 "
H,(t) = —— / / 21 2n) _— dzp -+ -dzy .
) (2m8)" | 1=y |Zn|:5n( 1 ) ; Hj;ék(zk — Zj) 1

Remark. Tt is not hard to conclude from the form of the integrand that H,, is indeed a polynomial in
t. In fact, one can make this property more apparent by noticing that the expression in parenthesis
is actually a polynomial; namely

— 1 ' . —t—1 m n !
H’”(f) B (_2—7;); '/Jlll_fl .-.-/Zn,ljfn(Zl zn) ( Z 21 1 ZTan ) dznd21 ,

) my+-+mn=t%

where the sum is over all ordered partitions of ¢. This formula can also be proved “more directly”
combinatorially.?

3 Small n do not require a computer

We will now illustrate the computation of H, (and hence vol B,) by means of Theorem 2 for n = 3
and 4. These calculations “by hand” give an idea what computational tricks one might use in

tackling larger n with the aid of a computer. \ Qs
W ‘fc\ R
By the theorem. AL
o oy "t""n(\(\
. 3 gt
1 / L2 L2 SUT2 .
Hi(t) = s /(212223)[v1 ( L + 2 + 3 dz. '
(2m1)? (71 —2)(21 —23) (22— 21)(22 —23) (23 — 21)(23 — 22)

We have to order the radii of the integration paths for each variable;{e-aloose O<eg3<ey <e <1

We heavily use this fact after multiply out the cubic: integrating, for example, the term
zl—t—le—t—lz??t%

(23 = 22)3(23 — 21)3

with respect to z3 gives 0, as this function is analytic at the zz-origin and |21],|ze| > €3. After
exploiting this observation for all the terms stemming from the cubic, the only integrals surviving

are 245 —t—1_—t—1
! i e
. / 27 "z, Z3 iy
(2mi)3 | (21 — 22)3(21 — 23)3

B 3 / z§+32223,_t_1 dz
(27T’Z)3 . (21 — 22)3(21 - 23)2(2’2 - 23)

and

*The authors thank Sinai Robins and Frank Sottile for their help in the proof of this equivalence and its combi-
natorial interpretation.



The first integral factors and yields, again by residue calculus,

C 24, ]t 1 2 Lo\ 2
J, A / - 2__ % ~ dz = ——ml_ /z%t+5 / z dz) dz; = ( + ) .
2r)t | (2 — 22)3(21 — 23)3 (27)3 (21 — 2)3(21 — 2)3 2

For the second integral, it is most efficient to integrate with respect to 2o first:

: . 43 —t—1 t+3 ‘43
- J' | / 2y g — - 3. / 272 dz do; = _3< + ) '
(2mi)? ] (21— 22)* (21 — 23)% (22 — 23) (2mi)* J (21— 23)° 4

Adding up the last two lines gives finally

t42\? t+3\ 1, 3,5 15, 9
3(t) = - = = e e ey |
() (2) 3(4) P D D

which is equal to (3). To obtain the volume, the leading term of Hj3 has to be multiplied by the
relative volume of the fundamental domain of the sublattice of Z° spanned by Bz, which is 9; hence

VOlBg = g .

[n general. it is not hard to convince oneself that the relative volume of the fundamental domain
of the sublattice of Z™ spanned by B, is n" 1.

The nmunber of integrals we have to evaluate to compute Hy is only slightly higher. By Theorem 2,

1 ' ' . t—1 24: zltc+3 '
Hyt) = 7 / / / / (21222324)_ B = | dz.
(2mi)* lz1|=€1 J2z2|=€2 /|z3{=€3 J|z4]=¢4 k=1 Hj?'fk(zk = %)

Again we have a choice of ordering the radii; we use 0 < €4 < €3 < €3 < €1 < 1. After multiplying
out the quartic, we have to calculate five integrals; their evaluation—again straightforward by means
of the residue theorem-—is as follows. As before, we can ‘save’ computation effort by choosing a
particular order with which we integrate.

. St —t—1_—t—1_—t—1 —t— 3
1‘ / ’ 2 + Zg Z3 Z4f g — 1 /z§t+11 /i dz le
i)t [ (21 = 223(21 — 23)3(21 — )3 (2mi)4 (21 — 2)3

;<t+3 i
S\ 3 )7

, . 2t4+8 2 —t—1,_—t—1
4 / 2y T2y, 2,

Cemt ) (= z) (21— 23)3 (21 — 2a)3 (22 — 23) (22 — 24)

4 . Z‘}Zt+szg . Sl 2
_ - d d d P
(2mi)* / (21 — 22)" (/ (21 — 2)3(z2 — 2) ) 1 aE

4 d ;32t+8 ‘7f,+l t 9 —t—3 —t—2
= 53 / L% 1 4ot + 1)L 422 = — “2 - | dz
(2mi)? | (21 — 29)7 2 )z — 29 (21 — 29)? )

m8<t—‘;—2> (\it?5>+8(t+1)(t§6)+8<t;7> _4(21:;8) ’

dz




| 2248, 9 11
/ : 42 Z324 dz

2ri)t ] (21 — 22)3 =z — 2’3)4(21 — 24)3(20 — 23)(23 — 24)

4 - Bt ot

B p 4

(2m1)3 / (21 — z2)3(z1 ~ 24)7 (20 — 24)

B 4 /'Zl)t+8 —f 1 (<t+2) '—t 3 t+1) Z + Zl )dz
(27ri)2 . (2’1 — Z4 Z1 — %4 (21 - 24)2 (21 - Z4)3 l

() () (37).

t+5 t+5,,—t—1 —t 1

dz

6 / zZ] 2y Vg dz
Rri)t | (20 = z0) Mz — 23)%(21 — 24)2(22 — 23)%(20 — 24)?

6 B A </ P )2
= - dz | dz1 dz
QMV/(M~@V (21 = 2)2(z — 2)? P

6 d Ji—}— 5 ,£+5 ) 22_2t 4 z2—2t—3 z;QtAQ
= - t4+1)— —4(t+1 +4 > dz
QMP/(m—wV<( e P A P

o 2 (1+5 t+5 t+5
= 6(t+1) < . )—24(t+1)< 8 >+24< 9 )

12 252,211
1 27374 dz

 (2m) / (71 — )3 (21 — 23)3 (21 — 24)% (22 — 23)2%(22 — 24) (23 — 24)
t+)zzz t+1
/ 4 dz
2777 z1 — 22 21 -~ 24) ( 2 = 2“4)3
t+> 4+1 2
1 24 Z4
6 6 d
27r7 / —24 < 71—24)3+ (21—24)‘0L (21—24)5> i
t+95 t+5 t+5
=12 - 72 - 72 .
( ) -e() (9
Adding them all up gives

o\ 4
Hy(t) = (H‘;) +6 (2t* + 5t + 1) (tj;‘r)) —24(i+4) (t;‘r’) +12(t+1)(t£6>

3
2t + 8 t+5 t+7
—4 —4 12
(9") -(57) + ()
11 11 19 2 1109 43 35117 379 65
=t S T S S It 3 T2 g
11310~ " 630 +135 t3 +540 +10 5670 +63 UET
and hence " 176
=4%. - - _
vol By 11340 _ 2835



4 Larger n do

As we have seen in the examples, after multiplying out the integrand of Theorem 2, many of the
terms do not contribute to the integral. The following proposition will provide us with a general
statement to that extend.

For a rational function f in n variables z; we use the notation d,(f) for the degree of f in the
variables zy,..., 2.

Proposition 3 Suppose pi1,...,p, are integers, q;r are nonnegative integers (1 < j < k < n),
I1>e > >¢€, >0, and

Py
Micjcn

B Il <jckanlzi — 21) 0% '

f(Zl, . ,Zn)

If 1 <r <mnandd.(f) < —r then

[ =0

Proof. This is clear if r = 1 since f, considered as a function of z1, is analytic outside the circle
21| = € and has zero residue at infinity since its degree is less than —1.

We continue by induction, so suppose r > 1 and the proposition is true for smaller . Suppose that
dy(f) < —r: we may assume d, | > —(r — 1). Note that d,(f) > d,_1(f) + d where d is the degree
of f in the single variable z, (the discrepancy is the sum of the exponents ¢; for j < r). Hence
d < d(f) —dr—1(f) < —1. We consider f as a function of z, and apply the residue theorem to
the region outside the circle |z,.| = €.. As above f has zero residue at infinity, so we only need to
cousider the residues at the poles z; for j < r. Evaluating these residues converts the integral of f
imto a (possibly huge) linear combination of integrals of functions of the same form as f, but in the
n — 1 variables 2y, ..., 2,1, Zp41, ..., 2. If ¢ i8 any one of these functions then we easily calculate
dr—1{g) =d(f)+ 1< —(r—1), and, by the induction hypothesis, the integral of g is zero. O

From this proposition we obtain the starting point for our ‘algorithm.’

Corollary 4 For 1 >¢; > --->¢, >0 and t >0, H,(t) =

et 5 (ot i)
(27”-)” Jizy]=ey |zn|=€n ' " M- Mn k=1 Hj?’ék(zk - Zj) ’

mi+-+mp=n

where " denotes that we only sum over those n-tuples of non-negative integers satisfying my +
et mp=nandmi+---4+my >rifl <r<n.



Remark. The condition on my, ..., my, can be visualized through lattice paths from (0, 0) to (n,n)
using the steps (1,mp),(1,ma),...,(1,my). The condition means that these paths stay strictly
above the diagonal (except at the start and end).?

Proof. By Theoremn 2,

1 t—1 & lti3+n ! !
Ho(t) = / / (21 2) B SN R
(27r7) I lI €] |Zn| €n " ; H]#k(zk‘ - Z])

— 1 / / e )—t—l Z ( n > rn[ Z]i+—n_1 my "
i = l2nl= 6” B i Miy..., My [Tk (2 = 29) '

My tma =n k=1

We sclect a partition my + - -- + my = n and rewrite the corresponding integrand in the language
of Proposition 3: ‘

pj=(n—1)m;+t(m;-1)-1, @ik = Mj + my .
Now suppose 1 < » < n. The degree of the denominator in z1, ...,z is
T T T r
Z Z(m_j—l—mk n—lZm]—}—erJ n—l)ij+nr—erj
G=1 k=j+1 j=r+1 j=1 j=1
T T
=(n - I)ij + nr —rZ(mj -1)—r?.

=1 =1

We subtract this from Z;’:l p; to get

T

dr(f):(t+r)2(mj—1)—r(n—r)—r.

=1

Here t is non-negative and r(n — r) is positive, so Proposition 3 implies that the integral is zero
unless 377 (my — 1) > 0. O

Theoretically. Corollary 4 tells us what we have to do to compute H,. For practical purposes, its
statement is almost worthless. For once, the number of terms in the sum equals the nt! Catalan

number
1 2n\ (2n)!
n+1\n/) (n+1n!’

which grows exponentially with n. Another slippery point is the evaluation of each integral. As
we have seen in the examples, and as can be easily seen for the general case, we can compute
cach integral step by step one variable at a time. However, this means at each step we ‘convert’
a rational function into a sum of rational functions (of one variable less) by means of the residue
theorem. Again, this means that the number of (single-variable) integrals we have to compute grows
immensely as n increases. In fact, if we just ‘feed’ the statement of Corollary 4 into a computer and
tell it to integrate each summand, say, starting with z1, then 29, and so on, the computation time
explodes once one tries n = 7 or 8. We feel that computationally this is as involved as calculating

*The authors thank Lou Billera for pointing out this lattice-path interpretation.



a sufficient number of values of H, and then interpolating this polynomial. However, complex
analysis allows us some shortcuts which turn out to speed up the computation by a huge factor and
which make Corollary 4 valuable, even from a computational perspective. These ‘tricks’ all showed
up already in the examples and include

I. realizing when a function is analytic at the z;-origin,

2. choosing the most efficient order of variables to integrate, and

3. factoring the integral if some of the variables appear in a symmetric fashion.
Finally. if we are only interested in the volume of B,, we may also be

1. dispensing a particular integral if it does not contribute to the leading term of H,.

[t is worth noting that every of these computational ‘speed-ups’ decreases the total computation
time substantially. By applying them to Corollary 4, we implemented a C-program for the spe-
cific functions we have to integrate to compute H,.* We were able to verify all previous values
(n < 8) and to compute volBg and Hy. The 65 coefficients of this polynomial can be found
at www.math.binghamton.edu/dennis/Birkhoff. The following table gives the volumes together
with the respective computing time (on a 1GHz PC running under Linux). Note that computing the
full polynomial H,, takes longer, as we cannot make use of shortcut #4. In fact, the computation
of Hg took more than 300 days. (We divided the process onto several computers.)

n vol B, time
I 1 < .01 sec
2 2 < .01 sec
9
3 ] < .01 sec
/ 176
4 2835 < .01 sec
23590375
b 167382310104 < .01 sec
) 9700106723
6 1310281096032 10° 18 sec
) 77436678274508929033 15 soc
‘ 137302063632235238300868928-10°
< 5562533838576105333259507434329 54 min
. 12580036260005477950081480942693330803308928. 1010
. 5504981 29702796022246895686372766052475496691 17 e
09692623400952636498965 1467 1230608420605105 1320202419606 108477 153345536- 1014

"The program can be found at www.math.binghamton.edu/dennis/Birkhoff.



5 An outlook towards transportation polytopes

The Birkhofl polytopes are special cases of transportation polytopes, which are defined below. The
study of this class of polytopes, which are naturally at least as fascinating as the Birkhoff polytopes,
was motivated by problems in linear programming; for combinatorial properties see, for example,
[10. 13]. The goal of this section is to show how our methods can be applied in this more general
setting.

Fix positive real numbers ay,...,am,,b1,...,b, such that a; + --- +a,, = by + -+ + b,. Let
a=(ay..... am).b = (b1,...,by).

T1l ot Tin

Tap = : : € R™ : x>0, 2ok Tk = aj for all 1 < j <m,

ijjk:bk foralll <k<n

I'mi e Tmn

is the set of solutions to the transportation problem with parameters a,b. It is a convex (m —
1){n — 1)-dimensional polytope in R™"—hence we refer to the T, as transportation polytopes.
Note that B, = T11 where 1 = (1,...,1) € Z™. We will be exclusively interested in the case when
a1.....Gm, b1 .., by are integers. One reason for this is that the vertices of T, p, are then integral.
Let

T(a,b) = T(al, . ,am,bl, Cee ,bn) = # (7;’1) N Zmn)

denote the number of integer points in the transportation polytope with integral parameters a, b.
Geometrically, each of these parameters determines the position of a hyperplane bounding the
polytope T, p. It is well known (see, for example, [20]) that T'(a, b) is a piecewise-defined polynomial
m aj....,am.by,. ., by, namely, it is a (different) polynomial for each region in the (m + n)-
dimensional space of the parameters ay, ..., am, b1, ..., by in which the combinatorial type (that is,
the face structure) of T, 1, does not change.

In fact, one can derive results for the counting function 7'(a,b) which are ‘higher-dimensional’
extensions of (4), by application of the main theorem in [3], which in turn is a generalization of the
Ehrhart-Macdonald reciprocity theorem (2). To state this theorem, we need to define the following
iteger-point counting function. Suppose P is a rational polytope given in the form (5); denote by
Plt) = {xeR': Ax= t} a polytope which we obtain from P = P(b) by translating (some of)
its bounding hyperplanes. (Classical Ehrhart dilation is the special case t = tb.) Let

Lp(t) = # (P(t) N Zd) .

[3. Theorem 4] states that Lp and Lps are piecewise defined (multivariable) quasipolynomials
satisfying
Lp(=t) = (=)™ P Los(t) .

As easy as we deduced before (4) from (2), this reciprocity theorem yields a symmetry result for
the transporation counting function. Denote the d-dimensional vector all of whose entries are one
by 14. Then -
T(-a—nly,,—b-ml,) = (-1)™"! T(a,b) .

10



We finally turn to the problem of writing T'(a, b) in form of an integral. As with B, we can view
Tap as given in the form of (5) and apply Theorem 1 to obtain

T(ab) = — /zfal_lm%w1 o g
a, = .
' (27-”/)777,4—71 . Hlf]ﬁm (]. - Z]wk)

1<k<n

Again the integral with respect to each (one-dimensional) variable is over a circle with radius < 1
centered at (0, and all appearing radii are different. As in the Birkhoff case, we can separate, say,
the w-variables and obtain

T(a,b) = (2m)m+n/ —a1—1 —am—ln/n 1—z]wk) dwy, dz .

Aud as with the Birkhoff polytope, the innermost integrals are easy to compute by means of the
residue theorem. This yields the following statement which generalizes Theorem 2.

Theorem 5 For uny pairwise different 0 < €1,...,€m; <1,

bk+m 1

1 .
T(a,b) = : / / R B P 1 dz .
(27”)7“ lz1]=€1 |2m |=€m ! H Z H#J P — zl

k=1j5=1

Remark. Tt is not hard to conclude from the form of the integrand that T'(a, b) is indeed a piecewise-
defined polynomial in aq,...,ay,,b1,...,b,.

Theoretically we could now use this theorem to produce formulas for T'(a,b) just as we did for
H, (t). There is one major difference: T'(a, b) is only a piecewise-defined polynomial. In fact, we can
see this from the form of the integral in Theorem 5: whether we will get a nonzero contribution at a
certain step in the computation depends heavily on the relationship between aq,...,am,b1,...,by.

The fact that the counting function T'(a,b) is of a somewhat more delicate nature naturally has
computational consequences. We feel that providing any general results on this function would go
beyond the scope of this article and will hopefully be subject of a future project. On the other
hand. we adjusted our algorithm to examples of values of T'(a,b) for three (fixed) pairs (a,b),
which have been previously computed by Mount [17] and DeLoera and Sturmfels [9]. The first
example 1s

T((3046,5173,6116,10928), (182, 778, 3635, 9558, 11110)) =
23196436596128897574829611531938753

[ts computation took 20/10 minutes with Mount’s/DeLoera-Sturmfels’s algorithm, respectively
9. 17]. We computed this number in 0.2 seconds, based on Theorem 5. A similar phenomenon
happens with

T((338106. 574203, 678876, 1213008), (20202, 142746, 410755, 1007773, 1222717)) =
316062820930116909459822049052149787748004963058022997262397

11



and

T((30201,59791,70017, 41731, 58270), (81016, 68993, 47000, 43001, 20000)) =
24640538268131981086897018033422264050747251133401758112509495633028

which took 35 minutes/10 days with the DeLoera-Sturmfels algorithm [9], 0.3/2.9 seconds with
ours.
References

[1] Welleda Baldoni-Silva and Michele Vergne, Residues formulae for volumes and Ehrhart poly-
nomials of convex polytopes, Preprint (arXiv:math.C0/0103097), 2001.

—=, [2] Matthias Beck, Counting lattice points by means of the residue theorem, Ramanujan J. 4

(2000), no. 3, 299-310. MR 2001k:11191

[3] Matthias Beck, Multidimensional Ehrhart reciprocity, J. Combin. Theory Ser. A 97 (2002),
no. 1, 187-194.

[4] Louis J. Billera and A. Sarangarajan, The combinatorics of permutation polytopes, Formal
power series and algebraic combinatorics (New Brunswick, NJ, 1994), Amer. Math. Soc., Prov-
idence, RI, 1996, pp. 1-23. MR 96m:52014

(5] Richard A. Brualdi and Peter M. Gibson, Convez polyhedra of doubly stochastic matrices. I.
Applications of the permanent function, J. Combinatorial Theory Ser. A 22 (1977), no. 2,
194-230. MR 55 #10486

6] —__, Convez polyhedra of doubly stochastic matrices. III. Affine and combinatorial proper-
ties of Uy, J. Combinatorial Theory Ser. A 22 (1977), no. 3, 338-351. MR 55 #10488

|7] Clara S. Chan and David P. Robbins, On the wvolume of the polytope of doubly stochastic
matrices, Experiment. Math. 8 (1999), no. 3, 291-300. MR 2000k:15048

[8] Clara S. Chan, David P. Robbins, and David S. Yuen, On the volume of a certain polytope,
Experiment. Math. 9 (2000), no. 1, 91-99. MR 2001d:52022

9] Jestis  DeLocra and Bernd Sturmfels, Algebraic unimodular counting, Preprint
(arXiv:math.C0/0104286), 2001.

[10] Persi Diaconis and Anil Gangolli, Rectangular arrays with fixed margins, Discrete probability
and algorithms (Minneapolis, MN, 1993), Springer, New York, 1995, pp. 15-41. MR 97e:05013

[11] Bugene Ehrhart, Sur un probléme de géométrie diophantienne linéaire. II. Systémes dio-
phantiens lindaires, J. Reine Angew. Math. 227 (1967), 25-49. MR 36 #105

2y , Sur les carrés magiques, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A651-A654. MR
48 #10859

12



Yictor Klee and Christoph Witzgall, Facets and vertices of transportation polytopes, Mathe-
matics of the Decision Sciences, Part I (Seminar, Stanford, Calif., 1967), Amer. Math. Soc.,
Providence, R.1., 1968, pp. 257-282. MR 38 #4134

| Donald E. Knuth, Permutations, matrices, and generalized Young tableauz, Pacific J. Math.

34 (1970), 709-727. MR 42 #7535

51 1. G. Macdonald, Polynomials associated with finite cell-complezes, J. London Math. Soc. (2)

4 (1971). 181 -192. MR 45 #7594

Percy A. MacMahon, Combinatory analysis, Chelsea Publishing Co., New York, 1960. MR 25
#5003

John Mount, Fast unimodular counting, Combin. Probab. Comput. 9 (2000), no. 3, 277-285.
MR 2002a:05016

Richard P. Stanley, Linear homogeneous Diophantine equations and magic labelings of graphs,
Duke Math. . 40 (1973), 607-632. MR 47 #6519

M. L. Stein and P. R. Stein, Enumeration of stochastic matrices with integer elements, Report
No. LA-4434. Los Alamos Scientific Laboratory, University of California, Los Alamos, New
Mexico (1970).

Bernd Sturmfels, On vector partition functions, J. Combin. Theory Ser. A 72 (1995), no. 2,
302-309. MR 97b:52014

. , Lquations defining toric wvarieties, Algebraic geometry—Santa Cruz 1995, Amer.
Math. Soc., Providence, RI, 1997, pp. 437-449. MR 99b:14058

Doron Zeilberger, Proof of a conjecture of Chan, Robbins, and Yuen, Electron. Trans. Nu-
mer. Anal. 9 (1999), 147-148 (electronic), Orthogonal polynomials: numerical and symbolic
algorithms (Leganés, 1998). MR 2001b:05015

DEPARTMENT OF MATHEMATICAL SCIENCES
STATE UNIVERSITY OF NEW YORK
BINGHAMTON, NY 13902-6000
matthias@math.binghamton.edu
dennis@math.binghamton.edu

¢

13






