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Introduction

Polynomial ideals allowing a set of generators consisting of binomials are
called binomial ideals.They form a distinguished class of ideals,both from a
theoretical and algorithmical point of view.In the introduction of their pa-
per [EiSt] Eisenbud and Sturmfels present a very interesting survey of the
ubiquity of binomial ideals. Their paper is most relevant for our work.Their
results suggested to study radicals of binomial ideals in a quite general con-
text. The usual notion of the radical of an ideal is closely related to algebraic
geometry over algebraically closed fields. There are good reasons to sudy ze-
ros of an ideal a in other extension fields L of the base field K. The vanishing
iddeal of the set of the L—rational points of a is called the L—radical of a.
Varying the field L in special classes of field extensions gives rise to vari-
auts of the notion of an L—radical.Notably,the real radicals of real algebraic
geometry deserve special attention. In this paper we study quite general
radicals of polynomial ideals and focus on two main problems:

e [s the radical of a binomial ideal still a binomial ideal?

e Are there special algorithms to compute the radical of a binomial ideal?

Section 1 presents the basic results about binomial ideals we are going
to use.We first list various statements of the Eisenbud-Sturmfels paper
[EiSt].Besides that we prove a Bezout-type bound for the cardinality of the
set of L—rational points of a binomial ideal provided this set is finite.Special
attention is given to that part of field theory that is associated with binomial
ideals.Roughly speaking,we have to study Kummer theory without roots of
unities.Results of M.Kneser concerning this topic are influential at many
places of this paper.

In the subsequent section we study radicals of ideals from an axiomatic point
of view.We introduce what we call a radical operation which assigns to an
ideal of a K -algebra another ideal of the same algebra subject to some
natural axioms.We have two reasons to present this axiomatic approach.
First of all;the instances of radicals of ideals mentioned above ask for a
unified treatment.Secondly,starting with these axioms it can be clarified why
or why not radicals of binomial ideals are again binomial ideals.

This will be made apparent in the third section where we show that the
radicals of the special ideals

(XP —ap,. X —a) 9 K[X, LX)

decide whether the radical of an arbitary binomial ideal is a binomial ideal.In
addition. the method of the proof suggests an algorithm to compute the
radical even it it is not a binomial ideal. The essential additional idea we
follow is the snggestion from [EiSt] to decompose the affine variety of a into
cells and to stndy the cells via Laurent polynomial rings.

In section 4 we use the reduction to the special ideals just mentioned to
characterize the field extensions L|K such that the L—radicals of arbitrary



binomial ideals over I{ are again binomial ideals.This is true in interesting
Cases as

1 L=1NL.
ii) L = K, ,the separable closure,

1) L = R .a real closure.

If k' is not perfect there are binomial ideals with a non-binomial (usual)
radical.In addition,the various radicals occuring in real algebraic geometry
are also studied in detail.

The concluding section 5 is devoted to deriving various algorithms to study
tlie following problems:

o Determine dim and irreducible components
e Decide the existence of points
o I'ind cardinalities if the set of L—points is finite

e Compute radicals

[t is our aim to design algorithms which benefit from the special structure of
binomial ideals.Again,the decomposition into cells is the basic idea to start
with.
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1 Binomial ideals and radical extensions

In this section we present the notions and basic results we are going to use.
Let N be a field and K[X] = K[Xy,...,X,] be the polynomial ring in n
n

variables over K. Any product t = [] X[*, r, € INU {0} is referred to as a
b

term. Elements at, ¢ € I, t a term are called monomials, and binomials are
the differences of two monomials, one of which may be zero.

Let A C {1....,n}. We say a term (resp. binomial) is built over A if only
variables .\; with ¢+ € A occur in the presentation of the term (resp. bino-
nial).

Anideal a < WN[X] is said to be a binomial ideal or just binomial if it can be
generated by a set of binomials. Clearly, this generating set can be chosen to
be finite. An algorithm to detect whether a given ideal is binomial is based
on the following characterization, cf. [EiSt], prop. 1.1:

1.1 Proposition

The following statements are equivalent

1) a 1s binomaal,

i) for some term order the reduced Grobner basis of a consists of bino-
maals,

wi) for every term order the reduced Grobner basis of a consists of bino-
maals.

As munediate consequences we get [EiSt], (1.2), (1.3):
1.2

i) if L|K is an extension field then a is binomial iff a L[X] is binomial,

ii) if a is binomial then every elimination ideal aN K[X1,...,X,] is again
a binomial ideal.

iii) if a, o’ are binomial ideals and by, ..., bs ideals in K[X] generated by
monomials then
(a+d)N(a+by)N...N(a+ by)

is a binomial ideal. If ' = 0 then this intersection equals a + b where
b 1s generated by monomials.



Note that the intersection of binomial ideals is rarely binomial.

It 4, B are two K-algebras we denote the set of K—algebra homomorphisms
A4 — B by Homg(A, B). If L is any extension field of K then the set of
L pomts of a

Vi(a) = {z € L"|f(x) = 0 for every f € a}

is canonically bijective to Homp (K[X]/a,l;) If L = K, the algebraic clo-
sure of ', we set V(a) = V=(a). As proposed by Eisenbud-Sturmfels the
affine variety 17(a) is decomposed into cells V2(a), A C {1,...,n}. Setting
(K2 ={(a1....,2,) € K™|a; #0 for i € A, z; = 0 for i # A}

we define

V(@) = (KX NV(a).

Clearly.

We just write VA = V2(a) if no confusion is to be expected. Let now a
be a binomial ideal generated by a set of binomials {b1,...,bs}. We want
to analyze the non-emptiness of a cell V&(a) = VA A C {1,...,n}. Let
7a W[X] — N[X;]7 € A] be the K-algebra homomorphism defined by

X;— X; ifi€A,
X0 ifigA.

Set an = ma(a) and ai = ap K[Xi,Xi_1|z' € A] the extended ideal in the
Laurent polynomial ring. Further write

x oLy
Ap = K[Xqu |7’ € A]/ai

We then find that, in a canonical way,

1.3 B
VA ~ Homg(Aa, K)

Everything can be read off any fixed set of generators by,...,bs of a. There
are three types of generators among the b;’s:

1) b; is built over A,

2) bj = awjl —a'xpt’ where a,a’ € K,j,7' ¢ A, t.t' terms,



3) bi = at —d'z;t’ wherea € K™, a' € K, j € A, t a term built over A,
" any term.

We first conclude:

1.4
Assume VA # 0 then

i) none of iy,...,bs is of type 3).
i) ap is generated by the generators of type 1).

i) a+ > (XG) =aaK[X]+ 3 (X5).
igA igA

The natural projection K+~ K induces a regular map V(a) < Viaa)
if there are no generators of type 3). We get

1.5

I V2 # 0 theu:

i) the mapping p : V(a) — V(aa) is surjective and admits the section
s Viaa) — V(a),

s((zi)iea) = (y1,-..,yn) where
yi =z if i€ Ay =0if 0 ¢ A

ii) the fibers of p are described by binomial ideals.

Proof: 1) follows from the fact that generators of type 3) are missing.
11) Obvious.

Non-empty cells for distinet sets A and A’ of indices are not unrelated.
Theoremn (4.1) of [EiSt] is a very interesting complete result. We only need
a trivial part of it.

Assume A’ C A C {1,...,n}. We will use the projection

N L
p- (1o vxn) = (Y1, Yn)

where y; = 2, 1f 2 € A" and y; = 0 for « ¢ A’. Applying (1.4), i) by replacing
{1.2,....n} bv A and the A of (1.4) by A’ we readily derive:



1.6
I A C A and VA, VA £ () then

VA CvAa.

The final analysis of V2 depends on the structure of the ideal
al <9 KN[X.X7Yi € Al We may set A= {1,...,n} and write
KXF = KN[XN|,..., X,, Xl_l, ..., X1. The Laurent polynomial ring is
isomorphic to the group algebra K[Z"] and admits the basis {X™|m € Z"}

n
with m = (mq....,my,), X™ =[] X;™. These elements are units. An ideal
1

a < KN[X™] is called binomial or a binomial ideal if it can be generated by a
set of elements of the type X™ —q, a € K.

Note that the binomual ideals of K[X¥) are just the extensions b= of bino-
maal ideals b of K[X]. In fact, bT is generated by binomials a; X2 % — b;.
Conversely, if a is generated by the elements {X™i — a;};c; then a = b+

where

= (iﬂ%‘+ —a; X" i € I), m* = (..., sup(m;,0),.. Jym” = (—-m)t,

b
ne=mT -

Let a be a binomial ideal in K[X*], a # K[X¥]. Then necessarily a # 0 if
A —a € a. Now let a be generated by X™ —q;,¢ =1,...,k where m; €

Z"' a; ¢ K" Let L=<my,... ,myg > be the sublattice of Z" generated by
ey my. The assignment
mg & ay

can be extended to a character p : L — KX, ie. a homomorphism
(L.4+} — (i,:). To see this we need the following rules (where

X" =amoda = X 2Z=¢'moda (1)

N N !
At =amod e, X =d"moda = X2 =44 moda (2)

The first one is obtained by multiplying the original congruence with
@ "X 72 The second one follows from the identity

iﬂﬁﬂ—ab:_}iﬁ(iﬂ—a)+a(_)iﬂ—b). (3)
Next let m = Ele Aimy; = Zf:_l wim; € L where A\;, p; € Z. jFrom (1) and
(2) we get

k k
X2 e, X2 - II ai* € a
i=1 i=1

Since a # N[.X *| we conclude [T5_; a;* = [J*_, a;*. Therefore we can define
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k k
p (Z Ai@) =] a?. (4)
i=1 i=1
The pair (L, p) defines a binomial ideal # K[X*]:

I(L,p) :== (X2 — p(m)|m € L)

and the above considerations have shown

a= (X" —qy,..., X —qy) = I(L,p) where (5)

L=<my,....,my >,pasin (4).

(provided a #£ K[X*]). We have

I(L.p) N K[X1, ... . Xn] = ({X% — p(m)X= |m e L}) (6)
ct. [EiSt]. Cor 2.5.
We need further basic results about binomial ideals in K[X*] already proved
in [EiSt]. In particular, we need that (L, p) is uniquely determined by a.

We will apply the elementary divisor theorem to get this and other facts.
Every lattice automorphism ¢ : Z™ — Z™ gives rise to a K-algebra auto-
morphism

¢ K[X*) — K[X*], X™ — X)),

We will use appropriate automorphisms to normalize binomial ideals and
note first

P (I(L,p)) = I(p(L),po ™). (7)

Given any sublattice L C Z", the elementary divisor theorem provides a
basis ... .. v, of Z" and the elementary divisors ry,...,rq € IN such that
) rifra|-olra (8)

i) 7riwi,...,rque is a Z-basis of L.

;From the computational point of view we want to stress that finding
[T vy, and 71,...,r4 can be achieved by doing Euclidean algorithm
finitely often. In fact, represent a set of generators of L as the columns
of a matrix 4. Then finding vy,...,v, and ry,...,7q amounts to computing
unimodular matrices U, V' satisfying



viiav=| o O mlnl (9)

rd
Any existence proof based on the Euclidean algorithm provides a
way to compute all data, cf. [vdW] e.g. . In our present situation,

the condition i) in (8) is not needed. Hence, in computing U, V we can stop
ounce a diagonal matrix V—'AU is obtained.

Suppose unimodular matrices U, V' have been found satisfying
T1
VAU = 0
Td

where we do not assume 71|rg|--- |rq. The columns vy,...,v, of V form a
Z-Dasis of Z" and ryvy,...,7qug a Z-basis of L. Let

Sat(L) = {w € Z"|3k € Z\{0} : kw € L}

be the saturated hull of L, [EiSt]. Then Sat(L) =< wvy,...,v4 > and
Sat(L) : L] = rirg---7r4. In the case d = n, i.e. Sat(L) = Z", we see
that [T, r; is the volume of a fundamental domain of L.

Assume that op,...,v,,71,...,7¢ as in (8) have been computed. V! in-
duces the automorphism ¢ : Z" — Z",v; — e; where ¢; denotes the
i-th standard basis vector (0,...,0,1,0,...,0) (1 at the i-th slot). Then
p(L) =< rier, ... ,rqeq > and we get

2 (L, p)) = (X1 = p(rivr), ..., Xa"™ — p(rqva)) (10)

KLY LK) o

1.7 Proposition
Assume a = I(L,p), then

+) dim a=n —dimgL,

w) L={mcZ"\3ae K*: X —qcal.



Proof:
1) tollows from (11).

ii) It is enough to show that m € L if X™ = a moda for some

a € K™ Assume X™ — g € a. Then X¥@ _ 4 € @ (I(L, p)). Using
Xy —a, € §la) fori=1,...,d we find

Xolm) = @ X1°0 - X% X g% - X% mod a

where «f € KX , 0 < s < r; for i = 1,...,d. Set b =
(pla), Xpp1 —1,..., X, —1). Then X7 X" ... X" — ¢” € b where
W =ad "' € KX, From
[X'[Xi] ~ ]{[Xl,...,Xd]
/b—) /(Xlrl—al,...,Xdrd—ad)

and a Grobner basis argument we conclude s; = --- = 54 = 0, i.e.
o(m) € p(L), m e L.

[ |
.From (10) we get a parametrization of the algebraic set V(a):
Via) = {(z1,...,20) € K"|f(x) = 0 for all f € a}.
The automorphism ¢ induces a rational isomorphism
[} PG Fxn, (1, ap) — (g“"(—@—), . ,@0(6—”))
satisfving
Pt gt = (@20, 7 (V ($(0))) = V(a) (12)

Hence

and we can stite

1.8 Proposition V(a) decomposes over K into rational irreducible com-
ponents of dimension n—d, d = dim L. If charK = 0 or charK Jry then the
number of irreducible components is 179 - - T4.

10



Let us return to a binomial a < K[X7,...,X,]. Then V2(a) # @ if and
only if we have ax # K[X;, X;!|i € A]. Each non-empty cell is therefore
characterized by a lattice L® C Z® and a character p® : L2 — K*. Thus we
find a list of data (L2, p®)a where A runs through the subsets of {1,...,n}
satisfying V2 (a) # 0.

This list contains a great amount of information, in particular, the al-
gorithms in §5 will make use of it. In this section we will use it to de-
rive a Bezout type result for binomial ideals and to describe Spec A with

4= N[ -Xn]/a and dima.

1.9 Proposition

Let K be an anfinite field, a < K[Xq,...,X,] a binomial ideal generated by
hinomuals of degree at most d. Assume that Vi (a) is a finite set. Then

1) #Viela) <
i #Vicla) L3, of K ois a real field.

d?l ,

[

Proof: We start with the decomposition Vi (a) = V2 (a) where A runs
through the subsets of {1,...,n}. Suppose that V2 (a) = V2(a) N Vi (a) is
not empty. For the sake of simplicity, set A = {1,...,s}. ;From (10 we take
that V2(a) is described by a set of equation

X{l :al,...,X,f" = a,,r < 8.

Since V;2(a) is finite and non—empty we get r = s, i.e. ai is O—dimensional.
T addition, if K is a real field, we find #V,@‘ < 2% since the only roots of
unities in A are £1. This leads to

#Vi(a) < i <Z> 2° =3"
5=0

if I\ is real. This bound in fact appears, take K = IR,
a= (NFP(X2 — 1) X (X2 1), Ky 1 > L

To prove 1) we consider the case Vi (a) # {(0,...,0)} and choose A, say
A= {l..., 7}, minimal among the non-empty sets A’ C {1,...,n} with
nol--empty V,?‘I(a). We will apply the projection maps in (1.5) and (1.6):
pVia) — Viapa) and p: V& — VA" whenever both cells are non—empty.

We claim that V(ap) is finite, i.e. aan is O-dimensional. In fact, V(aa) =

U V2'(a). Suppose # G A’ S A and V&' % §. The projection p : V& — V&'
ACA

clearly maps V2 into V,?'. By assumption, VI?' = () showing VA" = (. Hence
Viaa) €{0,...,0} U V4 and the latter set is finite.

The mapping p induces a surjection § : Vg(a) — Vi(aa). Given x =
(r1.....1,) € Vg(a) we denote by b < K[X,41,...,X,] the binomial ideal

11



obtained by inserting z1,...,z, for X;,..., X, in the given set of binomial
generators. Then

PNB)) = {2 e Y s Yn) € K™ (Yra1,- -, yn) € Vi(b)}.

The zevo-dimensional ideal ap < K[X1,..., X,] is generated by binomials of
degree at most d, hence #Vi(an) < d". Since r > 1 and for each 2 € Vi (a)
the ideal b < W[X,41,..., X,,] is generated by binomials of degree at most d
we apply induction to get # Vi (b) < d"". Putting both bounds together the
claim follows once we have settled the beginning of the induction, i.e. n = 1.
In this case, let a = (by,...,b,) < K[X]. Then a = (b), b = ged(by,...,b,)

and the results follows.

Now consider any A C {1,...,n} and any prime ideal g < K[X;, X; 1|7 € A]
which contains ui. Set,

1.10

p=ma"t (aNK[X;)i € A

then p is a prime ideal of K'[X]| containing a. ;From p the data A and q can
be recovered: A = {i|X; € p},q = 7a(p)*.
Conversely, if p is a given prime ideal of K[X], a C p then define A and q
as above. Then q is a prime ideal in the Laurent polynomial ring and p and
(A.q) are linked by (1.10). We summarize

1.11 Proposition

1) The assignment (A,q) +~ p from above is a biection between

U Spec An and Spec A.
AV

i) dima = max{]A| — dim L2| VA # 0},

Proof: i) Proved above. ii) apply i) and (1.7).
[ |

The final topic of this section is the class of 0-dimensional binomial ideals
a. More precisely we are interested in the residue fields of maximal ideals

s _

= MY *X”]/ . They turn out to be radical extensions of K and
a .

the properties of such extensions are vital for our main results. The radical

extensions encountered here are of the type L = K(Vaq,..., V/a,) where
the radicands a; € K, 4 = 1,...,n and where we denote by /a any of the

m 4

solutions of X = « in the algebraic closure K of K.

12



1.12 Proposition

Let a be o zero-dimensional binomial ideal and m a mazimal ideal of K[X],
a € m. Then K [Xl“"’X"]/ = K(Yai,...,Van) for suitable a; € K,

m

r. € IN and roots V/a; (i =1,...,n).

Proof: Using (1.11) and (11) we may assume a = (X{* —as,..., X}¢ — aq)
< N[Xy. ..., X4] for some d < n and aq,...,aqy € K*. Now the claim
follows.

I the situation of §4 we will deal with radical extensions F|K contained in
a given extension field L O K. Separability and degree of F|K have to be
studied. We first show

1.13 Proposition

Let LIK be a field extension. The following statements are equivalent:

1) char N == 0 or char K = p and KN LP = K?,

n) cvery radical extension of K in L is a separable estension.

Proof: 1) = ii) Set x; = V/a;, r; = p™f;, pJfi- Then a; € K N LP" = KP",
a, = b{;)n for some b; € K and z;* = b;. Hence, every x; is separable over K.
ii) = i) Let char K = p and assume a € (K N LP)\KP. Then K(¥a) C L
aud ¢/a is not separable over K.

The question of the degree of radical extensions has been dealt with in several
papers. See [Kn] but also [H1], [H2]. In [Kn] M. Kneser proves a Kummer
theory type result without assuming roots of unities in K. We follow his
approach. If F'is any field we set

p(d, F) = {¢eF|¢t=1},
n(p>, F) = LkJu(p’“,F),
w(F) = gu(d»F)-

W F=NK("Va,...."V/a,). we denote by

< K*,Vai,...,"Va, >
the subgroup of F* generated by K* U {"Vay,..., V/a,}.

13



This subgroup contains I, its factor group modulo KX is finite and it
generates Fas a fleld extension of K. More generally, we consider a subgroup
("< K and the field extension K(C) where we assume

C/Kx 18 ﬁnite.

A set of coset representatives of €'/« 1s a K-basis of K(C). Hence
[K(C): K] <[C:K"]. (13)

1.14 Proposition

If K(C)|I s a separable extension then the following statements are equiv-
alent:

) [K(C) K] =[C: KX,
1) al for every prime number p we have u(p, K)NC C K,
b) if 1+ /—1€C then /-1 € K.

Ln the proof Kneser uses the following splitting property. Retain the hypoth-
esis on €' and consider a group D satisfying K> < D < CX.

1.15
The following statements are equivalent:
i) [N(C): K] =[C: K¥],

i) a) [N(D): K]=[D: KX,
bj C'r K(D)* = D,
¢) [K(C): K(D)] =[C: D).

The prootf follows from (13) and this chain of inequalities:

(€ K] = [K(C): K] = [K(C) : K(D)][K(D) : K] <
[N(D*C:K(D)][D:K*]=[C:CNnK(D)*][D: K*] <
(C DD KX =[C: K]

14



Maximal ideals of K[X1,...,X,] are exactly the vanishing ideals of x =
(rpeean) € K7 de.

m, = ker(KN[X1,...,X,] — K(x1,...,2,)) where X; — z;,i =1,...,n.

Ity =.. =20 =0 mw=ker(K[X;41,...,Xn] = K(Zpy1,...,2,)) then
m, = (X|. ... X,)+ mK[Xy,...,X,]. Hence, in characterizing binomial

maximal ideals we may restrict attention to points z € (K )™. z is called
separable if K{xy,...,®,) is a separable field extension.

1.16 Theorem

Let v € (K7)" be a separable point. Then the following statements are equiv-
alent:

1) m, s a binomaial ideal,

w) [K(ey, ..,z K=< KX 2y, 2, >0 KX

It my s bunomaal then a set of generators is given as follows:

1

1—1
; rij .
Xf‘—ciHXj],zzl,...,n,
j=1

where ¢; € K7, fi = [< KX x1,...,2; >< KX, z1,...,2;_1 >] and
i

. [
: "1,
e |

j:il 4

Proof: i) = ii) Set m = m,. Then the extension ideal m* <« K[X%] is
binomial. Hence m* = I(L,p) where L = {m|2® € K*}, p(m) = 2™
according to (1.7). In addition, dim L = n—dimm* = n. Hence, for each i we
find 27 € K= for some r; € IN. Consequently, C':=< K*,x;,...,2, > has
a finite factor group C/ x and the character p : Z" — K>, m — z™ induces
a isomorphism Z"/;, — C/x. The order of the generators T; = x; K~ of
'/ j-x are prime to the characteristic p of K in case

char K > 0. In fact, if 27° € K then z§ € K since K(x;)/K is a separable
extension. Thus, if p = char KX > 0 then p f[Z™ : L]. We have [Z" : L] =

(KX K= hand
Hom ( /I(L,p)’j\> #V(I(L,p)). On the other han
V(m¥) = V(m) = {y € K"|y conjugate to x}.
This means #V(m*) = [K(21,...,2,) : K] since K(x1,...,2,)/K is sup-

posed to be separable. Now [K(z1,...,25) : K] = [C : K*] is proved.
ii} = i) Let us first exploit (1.15). Choose v € C. Then [K(D)(y) : K(D)] =

15



<< D.~ >: D], by applying (1.15) first to < D,~ > and C and next to
D.< D.~>.Let s = order of vy mod D. We deduce Irr(z, K(D)) = X* —z*.

In the situation of our theorem we find
n
- ot Tij
Dy (o, K, .o wie)) = Xt —¢ H z

In particular, [IK(xy,... ln) . K] = fifs...fn. Let a be defined by

the polynomials sz - ¢ H X; ©9. Since a C m there is an epimorphism
7=1

KN{Xy...... Xoi/a = K(21,...,2,). A Grobner basis argument shows that
KN[Xy,.... X, /o has dimension f; ... f,, and the epimorphism has to bijec-
tive entailing a = m.

We want to emphasize that Kneser’s result (1.14) provides an easy criterion
for checking the equality [K(C): K] = [C : KX].

Scparable extensions K (C)/K satisfying this equality allow a strong going-
down theorem for binomial ideals which will be used in §4.

1.17 Proposition

Let K(C') be  finite separable field extension of K satisfying [K(C) : K] =
(' WNX] Let b 9 K(C)[ X1, ..., X,] be a binomial ideal generated by bino-
mials of the type X™ — cX™ with c € C'U{0}. Then

bNK[X1,..., X0]

ts « binomial deal.

Proof: We lLave a presentation K[Tl, e 7T,o] —» K(C), T; — x; with a
binomial kernel m, where C =< K™ x :rr > . Ifbh= X2 — cX2 is one

of the generators then, by assumptlon c= aH:L , a € K. We assign to b
the binomial b = X™ — allT? - X2 € K[Tl, T Xy, 0, X Let a <
KNTy..... X,] be generated by m and all the binomials b obtained in this way.
It is a general fact in ideal theory that bNK[X1,..., X,;] = anK[X1,..., X,].

L our present situation, b N K[Xy,..., X,,] turns out to be an elimination
ideal of a binomial ideal, hence is binomial by (1.2), i).
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2 Radicals of ideals

I this section we introduce various notions of radicals of ideals which nat-
urally appears when algebraic geometry is studied over non-algebraically
closed fields. We end up with an axiomatic framework for radical opera-
tions. Any such operation assigns an ideal a* to a given ideal a subject to
certain conditions. The axioms we list seems quite natural. Radical oper-
ations studied by Laksov [Lal], [La2] and others fit into this framework.
In addition, we will characterize those radical operations for which a* is a
binomial ideal whenever a is of such type, see §3.

Let A denote a field with algebraic closure K, A an affine K-algebra and
Lik any extension. We are interested in the set of all K-geometric points
V= Hompy(A. K') and its set of L-geometric points V;, = Homg (A, L) .

I the natural way, A gives rise to rings of functions on V with values in K
aind on Vj, with values in L, respectively. Next let a be an ideal of A. We set

Vi(a) = {2 € VL|f(z) = 0 for all f € a},V(a) = V4=(a)

In a natural way,

VL(a) = HOIl’lK (A/a,L> .

In addition we denote by

Va={f € Alf =0o0n V(a)}

thie vanishing ideal of Vi (a) in A and say that

Y/a is the L-radical of a.

Now let I\ be a real( =formally real) field. Then there are field extensions
of special interest. The real closures of K are the maximal real algebraic
extensions of N. If R is a real closure of K then, by the Artin—Schreier
theory [BCR]. Chap. 1,

|
—

i) R? is the unique order of R,
i) R# LK, R(vV—1) =K.

Hence, a real closure R of K induces an order o := R2N K on K. The
Artin-Schreier theory states
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2.2

1} every order o on K is induced by a real closure,

i) two real closures of A are K—conjugate if and only if they induce the
same order on K.

If the order o of K is given then a real closure R inducing « is called a real
closure of o and denoted by R,. (From (2.2) we get that R, is unique up
to conjugacy over K.

The residue field k(x) of a point © € V(a) is the algebraic extension field
I<A/a) of I'. . is called real if k(z) is real which is equivalent to requiring

k() to be contained in some real closure R of K. Hence, the set of real
points

Vie(a) = {z € V(a)|x real}

satisties

Vie(a) = U Vr(a), R the real closures of K.

The sets Vi.o(a) and Vp(a) are the two extremes when considering real points.
Therc is need to consider intermediate cases as can be seen in §4 e.g. To this
end we make use of the notion of a preorder 7 of K. By definition, cf. [BCR],
chap. 1. 7 is any subset of K satisfying r+7Cr,7-7C1, K2 Cr1,-1¢& .

The smallest preorder of a real field is the set of all sums of squares :

X:K2 = {,Z"cﬂr €eN,z; € I{}v

1

the maximal ones are exactly the orders o of K. By the Artin-Schreier
theory we have the intersection theorem

T = ﬂ o, o order of K such that 7 C a.

We then introduce the set of T—points

Vila) = U Vi(a), R the real closures of K inducing orders a D 7.

I - = 3 K? then V,(a) = Ve(a). If 7 = v an order of K and R, a fized real
closure of o then Vi (a) = {z € V(a)|x conjugate to a point in Vg_(a)}.

In general. Vzia) = |JV,(a) where « ranges over all orders o 2 7. Finally,
we define the r—radical {/a of a to be the vanishing ideal of V,.(a) in A. We

have
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2.3

ii) /a ="%a, Ry any fixed real closures of a.
The first statement follows from the definition, the second one from the
description of Vi (a).
To cover the cases of the various radicals considered so far we introduce the

following setting:

{2 an extension fleld (not necessarily algebraically closed),

L a family of extension fields of K in .

Then we set

Ve(a) = | Vi(a),

LeL
{/a = vanishing ideal of V;(a) = ﬂ a
Lel

and call a the L—radical of a.

In [Lal]. p. 78. Def. 2 or [La2], p. 324 Laksov introduce a certain radical of
an ideal relative to a field extension K a field k denoted by y/a. We do not
follow this notation but write La — §/a for this Laksov-radical. Back in our
situation we get for any extension field L|K

La— {aC Y.

I general, these two radicals differ. However, if L contains K or there exist
for each n € IN a polynomial p,(X1,...,X,) such that V;(p,) = @ then
Laksov’s investigations apply to yield

La — ¥Ya= {/a.

11 some sense this means that &/a has found an equational description. For
real base fields very distinguished description have been deduced, e.g.

Ja={f ¢ Alf* + Zuig;z € a for some N.s € N, u; € 7,g; € A}.
I

19



This follows from the Artin-Lang homomorphism theorem, cf. [BN], [BCR]
but also [BJ] where general results about the K-radical are proved.

£ radicals and Laksov’s radical are the prototypes for the general radical
operations we are now going to introduce. Let C be a class of K-algebras
closed under forming homomorphic images and quotient rings A,, A € C,
s € A. A radical operation in C assigns to each algebra A and an ideal a <1 A
an ideal a* <1 4 subject to the following

2.4

[) a Ca* (a*)* =a*
1) o = Vo,

HI) (aMb)* = a* N b,

7

V) ifa.b< 4, a Cb then (b/a)* = b*/a’

V)it g A -- B is an algebra homomorphism and b <1 B then
(271(0))" € o (6"),

VI) (ady)" = a" A, for every a < A, 5 € A.
We call a* the *-radical of a.An ideal a satisfying a = a* is called *-radical.

2.5 Proposition

In the class of affine K -algebras the assignments a — /a and a — La— ¥a
are radical operations.

Proof:

In the case of La — {/a the proof can be found in [Lal]. We have &a =

N ¥/a. That a — ¥/a defines a radical operation is readily checked. The
LaL
general case follows from the observation that every family of radical oper-

ations {a — a* };cr gives rise a new radical operation by setting a* := (] a*:.
i

|
Some radical operations allow a stronger version of VI, namely

(aAg)* = a* Ag

for an arbitrary multiplicative semigroup. Examples are ¢/a, La — ¥/a and
V/a. Also some satisty a further axiom

VI (ad[T])* = a*A[T].
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Examples are: La— ¥a if L is infinite, {/a if there is no finite bound for the
cardinalities of the fields L in £. Hence, /a, {/a are instances.

A further remark is of interest.If A is noetherian then every minimal prime
wdleal p of o* stisfies p = p* as follows from I,II1.Hence in this case the
x-radical is the intersection of x-radical prime ideals.

The following result is of great importance for the computation of *—radicals
of binomial ideals. In the case of a quotient ring Ag with canonical mapping
1A — Ag.a— ¢ and a 9 Ag we write, as usual, aN A to denote i (a) < A.

2.6 Proposition
Let sy.....s, < A and s = $182...5.. Then for every radical operation we

have

a* = [(ad,)" N AN r](a7 si)*.
=1

Proof:

Every radical ideal b satisfies the identity
b= (bA,NA)N[)(b,s;).
i
This applies to b = a*. Since (adg)* = a*Ag we get

a* = ((ads)*NA)N ﬂ(a*, $i)-

Now using I, TIT we derive
o =a™ = ((ads)* NA)*N ﬂ(a*, si)*.

JFrom I V we deduce i 7} (ad)* = [i7!(ad,)]*. Using I we find a* C (a, 5;)*
and finally (a*. s;)* = (a, 5;)*.

The last proo! essentially used that the x—radical is a radical ideal. Much
more is true. "The decomposition in turn implies that o* is a radical ideal.
More precisely, assume the properties I, VI and that a* admits the decom-
position of (2.6). We then deduce that a* = /a*. In fact, let s™ € a*. Then
(ady)* =a"A, = A;. Hence, a* = (a, s)* implying s € a*.

An algebra is said to be x—reduced if (0)* = 0. In this terminology, a* is
the smallest of the ideals b O a such that A/ is x-reduced. Axiom V means
that pre images of sx—radical ideals are x—radical. Tt is also equivalent to
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the “continuity” condition: ¢(a*) C [p(a)]*. Hence, isomorphisms A % B
are compatible with forming the s-radical: p(a)* = ¢(a*). Now IV can be
generalized as follows: if ¢ : A — B is an epimorphism and ker ¢ C a then

*

A} = (pla) ™

3 Radicals of binomial ideals

In this section we show that the computation of the *-radical of a binomial
ideal can be reduced to the determination of the s-radicals of ideals of the
tvpe (X7 —ay. .. X" —a,) Q< K[X1,...,X,],7 < s,a; € K*. If the radical
operation cven satisfies the axiom VII —(aA[T])* = a* A[T)*—

the x radicals of such ideals with r = s suffice. As a first consequence we get a
general characterization of radical operations for which a* is a binomial ideal
whenever a is binomial. In the subsequent section this general statement
will be made more explicit for L-radicals and 7-radicals. We also derive the
fact that the cells V2(a) and the % radicals of ai completely determine a*.
This leads to the algorithms in §5 the basic principles of which are already
explained at the end of this section.

3.1 Theorem

Let av— a* be a radical operation on the class of affine K -algebras. Then
the follounng statements are equivalent:

1) for every binomial 1deal a < K[X,...,X,], n € IN the x—radical a* is
again binomaal,
n) the x —radical is binomaal for all ideals of the type
s = (X" —ar,.. . X[ —a,) QK[Xy,..., X,
where r < s, a; € KX,

If the radical operation additionally satisfies axziom VII, then it is sufficient
o) to consider the zero—dimensional ideals Q-

The proof proceeds in various steps. Of course, i) = ii). So let us assume
the hypothesis an 11). We draw several consequences.

I) a < KX ], a binomial then a* binomial.
Proof: ais a principal ideal. Its generator form a Grobner basis , hence
has to be a binomial X*¥(X! — ), a € K (we set X = X;). If a = 0 then
(VR = (v"(XkH)) = (X)*. Thus (X*+1)* = (1) or (X*H)* = (X). If
a # 0 then (X*(X!—a))* = [(X*)n (X! — a)]* = (X*)* N (X! - a)* which

turns out to binomial.
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Il a < W[X], a binomial ideal, A C {1,...,n} then

ba = (aaK[X;, X 'i € A])* N K[X;|i € Al

and W;l( ba) are binomial ideals.

Proof: Since 73'(ba) = bao K[X] + 3 (X;) the second claim follows from
€A
the first. We may assume A = {1,..., s}. Then

ar = mala)K[X1, ..., X]x . x,
Sitce wa(a) 18 binomial ideal we see that set ¢ := ai is a binomial ideal
iu AW =]. Once ¢* turns out to be binomial we conclude by (6) that ba
is a binomial ideal. We choose an automorphism ¢ (as in §1) of K[X¥] to
transform ¢ into an ideal

¢ = ()(‘lfl —al,...,XfT —ar) < Ky[Xl,...,Xs]lexs.

Because of ¢* = ¢(c)* = ¢(c*) and the fact that binomiality is preserved
under o~ we can restrict attention to ¢;. Clearly, ¢; = a, s K[ X]x, x, with
a,. as above. Then ¢f = af [ K[X]x,. x, and the claim follows from the
hyvpothesis. |

II) a binomial ideal, M a set of monomials then there is a further set of
monomials My such that

(a+(M))* =a" + (M) + (My).

The proof inakes use of the following facts. Let A C {1,...,n}, a a binomial
ideal in A[X ... ., X,]. Then we have

3.2

1) kﬂ + 2 (Xz)> = (ma(a))"K[X] + 3 (Xi),
igA WA
i) mala) = (anN K[X;]i € A]) + (M’) for some set M’ of monomials.
Indeed, 1) 1s a consequence of axiom [V for radical operations. The statement

i1) follows fromn a discussion of three possible types of binomial generators
ol a. ef. 41
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Proof of IIT): The claim is correct for n =1 or M = (). Now assume n > 2
and M # 0. In view of (a+ (M))* = (a* + (M))* we may assume that a is *—
radical. To make use of an inductive procedure we apply the decomposition
of x—radicals (2.6) with r = n, f; = X;. Since every monomial in M becomes
a unit in ]&'[L(i] we get the decomposition

Applying (3.2 we find, setting S; = K[X;|j # i]:

(a+ (M) + (X)) =[(an )+ (M) + (M""K[X] + (X;).

The continuity of the radical operation entails that an.S; is *—radical. Hence,
by induction on n:

(a+ (M) (X)) = (anS;+ (M) +(M")+ (M")K[X] + (X;)
a+ (M) + (M) + (X,).

We find that the hypothesis (1.2), iv) is fulfilled hence our claim follows.
[ |

We are prepared to prove (3.1). Using (2.6) we start with the decomposition

=

o = [@K[X*)* 0 KX () (o, X0

i=1

From 11 we know that (a*)* N K[X] is a binomial ideal containing a. To
apply (1.2), ii1) directly we should have (a, X;)* = a + (M;), M; a set of
monomials. However, we compute (using S; = K[X;|j # 1]):

(a, X;)" = {(aN S)" + (M) + (M K[X] + (X;).

Hence. if aNS; is not x—radical we cannot expect (a, X;)* to be of the required
tvpe. To put ourselves into the situation that a N S; are *radical for every
r=1,..., n we modify a without changing the *radical and binomiality.
Set

ap = a,d;41 = a; + Z(ai N S])*K’[X]
J=1

Then

1) cach @; i~ a binomial ideal,
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2} a Ca, C a". hence a} = a*.

In fact. let a; already satisfy 1), 2). Then the elimination ideal a; N S; is
binomial, hence by induction, (a; N S;)* is a binomial ideal yielding 1) for
a,4;. The continuity of radical operations shows (a; N S;)* C af, and 2) is
proved for a, 4.

By mnoetherian induction there is ¢ such that a; = a;41 enforcing
(a; 05;)" = a; N S; for every j. Now pass from a to b := a;. Then

a” = 6" = [(eK[X*))" N K[X]] N ()b, X:)",

aud now we have (b, X;)* = b+ (M) + (X;) for every i. The proof of the
equivalence of i) and ii) is complete.

[ the radical operation satisfies axiom VII then we get

()" = (an, N[X 1, X)X X)) = an, KX X
]

The method of the last proof suggests an algorithm to compute the x—radical
even 1if a® is non binomial. The decomposition

& = [(K1XH)* 0 KX 1 () X
=1

together with the reduction formula (3.2) leads to the following formula

o= ) a3t ((ek) KXl € A))
AC{1,...n)

Of coursc,only those subsets with V2(a) # 0 need to be considered.This
formula propose the following basic algorithm.

1st step: determine all non empty cells,
2nd step: compute for each non-empty cell the x-radical (ai)*,

3rd step: compute contraction and intersection of ideals by Grobner ba-
s18 techniques

At this moment, the use of (possibly very expensive) Grobner basis methods
cannot be avoided. There are ways to reduce the number of cells to be
considered. Details will follow in §5, here we only outline the basic idea.

We built up a binary tree each node of which stands for an affine K-algebra
4 together with an ideal a of it. The branching at a node runs as follows:
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Aa

B.b /\Cc

b) bl
where for some s € A:

B=A,b=a4,

_A _a+(s
= oy ="" Yoy

For every radical operation we deduce

a* = (b*NA)Na (")

with 7 : A4 — @ the canonical epimorphism.

The root of our tree will be the polynomial ring K[X,...,X,] and the
ideal a. the terminal nodes (= leaves) the affine algebras K[X;, X 1|i € A],
AC {1, n} and the ideals ak = waAK[X;, X;!|i € A]. The tree then
allows to transfer back information from the leaves to the root, this means
from the algebras K[Xy, X7 '|i € A] and ideals o& back to K[X1,...,X]

and a.

To present the tree we parametrize the nodes by a pair (I', A) of subsets of
{lo. .. n} subject to the condition TN A = 0. The algebra at the node (", A)

Is

Ara = K[X;, X; i € T][XG15 € A

and the ideal

ar A = mrua(a)Ara-

The root belongs to (8, {1,...,n}). If A = § we have reached a leaf. If A # 0
we choose ¢ € \ and pass to the nodes (TU{i}, A\{7}) and (', A\{7}). Using
the general notation from above we have A = C[X;], B = C[X;, X, and
7 1(c*) = ¢*A+(X;). This tree can be built for any ideal a <1 K[X1, ..., X,].
But in general it seems of little importance since we will have to consider
all the 2" leaves. In the case of binomial ideals however the combinatorial
structure of a set of binomial generators allow to discard several nodes right
from the beginning. Again, details will be presented in §5. Here, we give the
basic principle. Let us consider two situations:
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A(), ag A(), ao
®

Bn«h(;.//\ Aa Aa /\ Co, co
N /\
B.o / \C*c B,b e C.c

as i (14).
Assume first a” = A then b* = (aB)* = a*B = B and ¢* = (a + (b)/(s)> =

ta+ <‘“)>*/(H\' = C. Furthermore af = (b} N Ag) N 7 1(a*) = b5 N A or
aj, = 7 L(¢}). Hence, if there is an a—priori knowledge that a* = A the node
(. a) and its successors can be discarded.

Next let us assume a = ¢C'[X;] and that the radical operation satisfies axiom
VIL Then a* = ¢*C[X;],b* = ¢*C[X;, X;"!] and 6* N A = a*. Thus,either the
node (B,b) or the node (C,¢) can be deleted.

4 [L-radicals and 7—radicals
In this section we characterize the field extensions L|K and the preorders 7
of i such that for every binomial ideal the corresponding radicals are again

binomial ideals. To treat special cases we need the following fact.

4.1 Lemma

Let f{(T)...., fo(T) € K[T)] be polynomials with no multiple roots. Then
coery wdeal a <9 K[Xy, ..., X,] with (f1(X1),..., fa(Xn)) C a is a radical
wdeal.

Proof: 4 := K[X]/(f1(X1),..., f.(X,)) is a finite-dimensional separable
algebra, hence a product of finitely many fields. Now K {X]/a is a factor
algebra of A, thus a product of fields itself. This means that a is radical.

4.2 Proposition
Let L be a finite field, #L = q, and a < K[X] an arbitrary ideal. Then

Va=(a, X] - X1,..., X1 - X,,).

If a w5 binomaal the same is true for {/a.
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Proof: Set b = (a, X] — Xj,...,X¢ — X,,). Then clearly, b C &a and
V(b) = Vi (a). By definition, {/a = vanishing ideal of V(a). So it remains
to show that b is a radical ideal. But this follows from (4.1). The final claim
is obvious.

n

We now consider the L-radical of an ideal a = (X{* — a1,..., X" —a,) <
N RS X.,] where ay,...,a, € K*. Set

e; =#ulri, L), i=1,....,n (15)

Then ¢;|r;, pye; if char K = p > 0, and

pler) = plei, K) = p(ry, L). (16)

Let Vi (a) # 0. pick any (xy,...,2,) € Vi (a). Then

Vi(a) ={(z:1Q, - 2nGa)lG =1for i =1,...,n} (17)

since p(r,, L)y = pu(e;). We further obtain

Vi¥/a) = {z € K"|z conjugate to some y € Vi(a)}. (18)

We first consider a simple case.

4.3
Assume Vie(a) # 0. Choose any (x1,...,2,) € Vk(a). Then
Vo= (X7 =o' X0 —alr).

n

Proof: Both ideals have the same set of zeros in I, and both are radical
ideals. use (4.1).

4.4 Theorem cf. [FiSt]

The K -radical of every binomzial 1deal is a binomial ideal.

Proof: If I{ is finite, (4.2) gives the result. If K is infinite, in view of (3.1)
. we have to prove the claim for ideals a = (X{' — a1,...,X]» —an) <
N[Xy... .. X!, a1,...,a, € K*. But this is (4.3) or Vi(a) =0, ¥a=(1).
|

In general, L-radicals of binomial ideals need not be binomial again. We
deduce a first necessary condition.
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4.5

If {/u is binowmial for every binomial ideal then either char X = 0 or
char k' = p and K NLP = KP.

Proof: Assumne char I =p > 0 and let a € (K N LP)\K?. Then consider
a= (X" ~aY? — (1 + a)). These generators from a Grobner basis of a.
Consequently, X —Y +1 does not lie in a. However, (X =Y +1)? = (X?—a)—
(Y?—(1+a)) € ahence X—Y +1 € {/a\a. We find (XP—a, X-Y +1) = ¥a.
Smce the two given generators form a reduced Grébner basis the L-radical
1s not a binomuial ideal.

Note that the condition “K N LP = KP” is satisfied trivially if K = L or if
LK is a separable algebraic field extension.

We returu to the study of the L-radical of an ideal
a=(X{" —ap..... Xor —an) < K[X1,...,X,] where a1,...,a, € K* and
the convention (15) is retained. In this situation we prove

4.6 Proposition

Assume char K = 0 or char K = p > 0 and K N LP = KP. Let
(.. v,) € Vi(a). The following statements are equivalent:

1) Ya is a binomial ideal,

i) [IN(e. o agm) c K] = [< K™ 2. a8 >0 K.
I '\‘/(X{‘ —ay....,X™ —ay) 1s binomial a set of generators is given as

follows:
1—1
i €571 .
Xielfl — ¢ ” XjJ Yii=1,...,n
i=1

where ¢; € K=, f; = [< KX, af, .. 28 >:< KX a0 ..., 207 >] and

1
. 1—1
. s
-I',’j' = ¢ H 'E/] i
=1

Proof: ;Froni Vi (a) C (K)" we deduce {/a= VaENK[X]. Hence, ¥ais
binomial iff ¥/a¥ is of this type. The binomial ideals in X [X*] are of the type
IiG. p), G a sublattice of Z" and p : G — K a character. To characterize

X
the ideals I(G. p) € V/aT we have to consider the group L /KX' Ifz e L™
X
weset T=oRh* el /KX'
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Set

(/' 1s a lattice of finite index. We set

U =< KX,J:?,...,fo" >

aud define the character

p:Z" — L m=(mq,...,my) r—»Hx;nl
1

Then p(e1Z x ... X e,Z) = U, G = (e1Z X ... x e, Z) N p~ (KX), hence
[ G) = ejen...enlU: KX

We now claim:

G p))C Vat & G CG,p=p/e. (19)

Proof of (19: We know Vy(at) from (22. “< We find
(X = p(m)) (21 Gy anCa) = (TT(25)%) — plerst, ... ensy) = 0 “=. If
X2 — p'(m) € Va* then for every choice of (; € ulei),t =1,...,n we must

have [[(a;¢)™ = pf
m; = (1,-5,1 and p'(m) = p(m). (19) is proved.

m;
(3

(m) entailing (™ = 1 for ¢ = 1,...,n. This implies

Hence. I{G.p} is the largest binomial ideal contained in va®. To study
when I(G.p) = Va* we first note that I(G,p) is a radical ideal. In fact,
from §1, (1) we know

KX L K[Xy, ..

+/ L X _.
]/,I(G,p) - ]/(X{I — by, XS = b)) A

with fi...f, = [Z" : Gl =e1...e,[U : K*]. If char K =0, A is a reduced
algebra by (4.1). If char K = p > 0, then we first recall that p Je; for
t=1,....n. Using the assumption that K N LP = K? we deduce that U/ g«
has no p-torsion. This means that no f; is divisible by p, hence A is reduced
by (4.1).

We now prove i) = ii). Then #V (I(G, p)) = #V(¥/aT). Using the structure

K[X7]
of /I(G. ») we find

H#VI(G,p)=[Z": Gl=e1...e,U: KX

Set Fr= (... a8m). We prove: #V (VaE) < ey ...e,[F : K] In fact, let
3= (3,....i,) be conjugate to a point (z},...,z) € Vp(aT). Then there
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is v € Aut(K|K) and there are ¢; € p(e;),i = 1,...,n such that p(ziG) =

3, We find p(zf") = §{*. Thus 8 induces a homomorphism pg: F — K,
" 37" There are at most [F : K| such homomorphisms. If ¢35 = ¢, then

4=~ hence §8; = v;(;, ¢; € ule;) for i = 1,...,n. This proves the claim
for #V( Va*). Hence [U : K*] < [F : K], showing equality by §1, (13.
i =1 F =K (2", ..., 28 ) is a separable extension satisfying the hypoth-

esis of (1.17). We have {/a= Va® Fn K[X]. Clearly
W= (X = X e Coi= VB F

- The reduced algebra F[X]/, has dimension #V.(a @ F) = #Vi(a) =
¢y...¢, which is also the dimension of F[X]/,. Hence, the canonical epi-
morphism F[X]/, — F[X]/, is an isomorphism yielding a’ = b. Now (1.17)
cownpletes the proof.

To deduce that the given polynomials form a set of generators the proof of
the corresponding claim of (1.16) can be adopted. This time we use that

dimy, Ix'[f\’]/% =#V(¥a)=e1...en[< KX 20, . 08 > KX

This last proposition allows a characterization of the extensions L|K such
that the L—radical of any binomial ideal in K[X;,...,X,] is again a bino-
wial ideal To prepare this theorem we first derive necessary conditions.
Let #p(r.L) == e and let [ be a prime number dividing £ and [ # charK.
Then p(e. L) = p(el, L) ,hence

#u(1°, L) = I* where I* is the largest power of [ dividing e
In a first case, let [ be odd and ¢ be a primitive [—th root of unity.Assume
"< K*¢>¢ K

Then o!* = a( where a € K* ¢ ¢ K. By the previous proposition, we get
that

e )

is not a binomial ideal.
In the second case let | = 2 and set 7 = /—1.Assume that

L*N<KX14i>¢ K
Then +2° = a(1 +4) where a € K%, ¢ K .From (4.6), we find that
{ (X252 4 dat)
15 not a binomial 1deal.
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4.7 Theorem

Let LIK be any field extension. The following statements are equivalent:

t) the L—radical of every binomial ideal 1s a binomial ideal,

w) 1) either char(I) =0 or char(K) =p and LP N K = KP,

2) for all odd primes | such that 1 < #u(1°°, L) = ¥ < co we have
*n< KX (>CK

where ¢ 15 a primitive [—th root of unity,

9) if 4 < #u(2%,L) =28 < oo then LN < KX, 1+v-1>CK

If 1) holds and cither a) L = K or b) u(L) = p(K) or ¢) (L) = p(K)
the L—radical of a binomial ideal 1s binomial. The (usual) radical of every
binomaal rdeal 15 binomial if and only if K is a perfect field.

Proof: That the conditions in ii) are necessary was shown above,use also
(L.5).Now we show that they are sufficient. We have to verify the condition ii)
of (4.6). In view of assumption 2) we may assume that, if charK = p > 0,p
does not divide any of the r;. Using the notation used there set C :=<
Nyt x> We let ¢ be a primitive I—th root of unity,l odd.We
want to apply (1.14),i.e we have to show that ( € K if ¢ € C is assumed.
If for all + we have e; = r; then C = K* Next assume that some e; < r;
and that ¢ € C. Since (xj’)rj/ej € K and there is only need to consider
the [—primary part of C'//I(* we can restrict attention to those i—’s such
that I|(r;/e;). As said above [ # char K.Furthermore,from the arguments
betore(4.7) we derive [¥|e;.Now the assumption 2) yields that ¢ € K.The
corresponding test for the element 1 + /=1 is seen to positive in the same
way. Thus the equality in ii) of (4.6) holds and the equivalence of i) and ii)
is proved. The remaining statements readily follow.

|
A prominent example for case b) is L = K., the separable closure of K,
and examples for case ¢) are provided by the real closures R of a real field
since pi(R) = pn(K) = {#£1}. To see field extensions L such that not every

L-radical of a binomial ideal is binomial we can take the following examples.

I) ' = @Q p an odd prime number, a € Q\Q?, ¢ a p-th root of unity,
(# 1. L=Q(¢al), a = (X" —a?), and

Va= (X" —a")/(X? ~a)).
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I) N=Q, L =Q(¥1+1i), a= (X6 4+4). Then
(XTI +4) = (X8 —2X4 4 2).

We now turn to the consideration of 7—radicals, 7 a preorder of K. In par-
ticular. A is assumed to be real throughout the rest of this section. Recall
from €2 that 17(a) = |J Vr(a), where R ranges over the real closures of K
inducing an order o 2 7, i.e. 7 C R?. {/a is the vanishing ideal of V;(a):

fa=( ¢

where «v ranges over the orders containing 7. We first deal with special cases.

4.8 Proposition

If a4s an order of K, a 9 K[X] a binomial ideal then {/a is a binomial
rdeal.

Proof: In (2.3) we showed ¢/a = {a, R a real closure of a. As already
remarked. L = R satisfies the condition ¢) of 4.7 .

We first treat nnivariate ideals.

Let @ € K. One readily checks that there is a unique largest divisor d|n
such that a € (K*)%. Assume a = b%. If d is odd b is uniquely determined
since [\ is real. otherwise up to a factor —1.

4.9 Proposition

Let n € IN, a = K*, Vo(X"™ —a) # 0 and d the mazimal divisor of n such
that a € K. Then for some b € K such that a = b® we get

(X% N b) of d is odd,
V(X" —a) = éijﬁ*—bé) } if d is even.

If d us odd then X7 — b is wrreducible over K, if d is even both polynomials
NG b are irreducible over K.

Proof: Let V. (X" —a)={x1,...,2,}. Clearly,
X" —a) = (Irr(x;, K)). Let « be one of the roots. Since K(z) is a real

K3
field and ™ € K Kneser’s result (1.14) applies and states [K(z) : K| =
ord of I in K(x)"/gx =: s. Then Irr(z, K) = X* — z°. We deduce
a = ()Y € K%, hence %'d, ie. %|s. Now, 2® = a = b%, d|n implies
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i o= b since K (z) is a real field. This means 3‘%, altogether s = Z and
Ier(e, K) = Xd —bifdis odd, Trr(z, K) = X + b otherwise. In the case
of d being odd we deduce /(X" —a) = (X% — b). Otherwise, d, hence
n. is even. Suppose both polynomials X7 + b occur as Irr(x;, K). Then
VX" —a) = (XQITL - b2). Then let only X4 — b occur for the z;’s. We find
VX" =) = Xd —b. Finally assume that X @ + b were reducible. By the
theory of the pure equation, cf. [L] e.g. either —b € KP for some pl5 or 4|5
and —b = —4¢* for some ¢ € K. Having that d is even we find a € K?¢ or
a € W% both are contradictions.

The 7-radicals of bivariate binomial ideals are no longer binomial ideals in
general. The study of the bivariate case already discloses the properties of
the preorder + to guarantee binomial 7-radicals. We need certain notions
and techniques of the theory of real fields, consult [Lam] or [KnS].

Let 7 be a preorder of K. Each order o D 7 gives rise to the subgroup
a® = o\{0} << I'*. & is even closed under addition. Clearly, a subgroup
" < K which is closed under addition cannot contain —1. A preorder 7
is called a fan if every subgroup U < K* not containing —1 is of the form
[" = & for some order a D 7.

Fans can be characterized in various ways. They have proved to be of
great importance in the theory of real fields and real algebraic geometry,
cf. [ABrR]. They are intimately related to the valuation theory of the field,
a tact that will be used later. To introduce a further characterization we set
Tla] = {t1 + toalt1,ts € T}.
This set 7[a] is a preorder iff —1 & 7{a] iff @ ¢ —7. In this case, T[a] is the
preorder generated by 7 and a and we have
Tla] = ﬂ a.
TCo,a€q

Obviously, 7L 7a € 7{a]. In [Lam], §5 we find the following statements:

4.10

i) 7is a faniff 7{a) = 7 U Ta for every a € K\(~7),

1i) every order v and the intersection of two orders 7 = a N 3 are fans,
the socalled trivial fans,

i) if 7.0 are preorders of K, 7 C ¢ and 7 a fan then o is a fan.

We can now state
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4.11 Theorem

The following statements are equivalent:

i) the 7-radical of every binomial ideal 1s o binomial ideal,

w) T s a fan.

The proof proceeds in various steps. We first show the easier implication
i} = iii. To this end we consider the binomial ideal a = (X* — a?,Y* — ?)
in A[X, Y] where a,b # 0. We claim:

if {/a is a binomial ideal # 1 then #V,(a) divides 16.

Assume {/a binomial then ({/a)* = Va® = I(L,p), V(/a) = V(/a*) and
#V({/a) = [Z" : L]. ;From 4Z* C L we find [Z" : L]|16. On the other hand,
V.- (a) is closed under conjugation over K. Hence, V(7/a) = V;(a).

Next assume that 7 is not a fan. By definition, there is a € K*\(—7) such
that 7U7a & 7[a]. Choose b € 7{a]\(7U7Ta). We claim: b & 7[—al, b & —7[—a].
Otherwise, in the first case, b = t; — tga, t; € 7 and b = t3 + t4a. We obtain
b(ly + tq) = t4t1 + toty, thus b € 7: a contradiction. In a similiar way we
show b € —7[—a]. As a consequence we find orders «, 8,y 2 7 satisfying

a,b € a;—a,b e B;—a,~b €.

.From b € 7[a] we deduce that there is no order 6 O 7 with a, —b € 6.

For this choice of a, b we will conclude that #V;(a) = 12. In fact, in any real
closure R of I\’ a has exactly 4 solutions if not Vg(a) = 0. In R,URgUR,, we
find 12 solutions. The remaining 4 zeros of a in K, namely (£+/a, &v/~b),
cannot lie in a real closure Rg of an order 6 D 7 since this would imply
a.—b € 6. Thus, i) = ii) is proved.

To derrve the implication ii) = i) it is sufficient to study the 7-radicals of
zero—dimensional ideals '

a= (Y{l —a,l,...,X:L" —an) < K[Xl,...,Xn],ai e K*.

We will show by induction on the number n and for fixed nonr:=r;-...-7,
that for every real field K, every fan 7 in K and every ideal of this type the
7-radical is again a binomial ideal. To get to smaller values of r we will have
to pass from 7 to other fans 7. In particular, 7/ may be an extension of 7
to an extension field, i.e. 7/ N K = 7. Therefore we need results about the
extension of fans to extension fields. This is usually done by using Brocker’s
trivialization theorem for fans [Lam], §12 or [ABrR], chapt. VI),1 which
reduces the problem mainly to valuation theory. For more details we refer
to the literature cited already and [B], ch. IV, §2 where extension theorems
are proved.
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4.12 Proposition

Let p be a prune number, o € K, F = K(¥/a) a real field and 7 C K a fan.
In case p =2 assume a € 7. Define 7' C F as follows: 7" = o/, where o
ranges over all orders of F satisfying o/ NK 2 7, and, in addition, if p = 2:
Va €' Then 7 is a fan satisfying 7' N K = 7.

Proof: First consider p # 2. Then F|K has odd degree and [B], ch. IV, §2,
p. 145 applies to show the existence of a fan 7’ C F such that 7' N K = 7.
Given «« 2 7 then —1 € o - 7/. Hence ar’ C o for some order o of F'. The
extensions of « correspond, by Artin-Schreier theory, to the K-embeddings
F'— R. But X? — q has a unique root in R. This means every « 2 7 has a
unique extension in F. As seen, it must contain 7’ and 7/ has the description
as given. To treat the case p = 2 we take a valuation ring W of K that
trivializes 7. W has at least one extension and at most two extensions. All
the extending valuation rings have a real residue field. Following the pattern
of the proof of [B], ch. IV, §2, Lemma 4 and distinguishing cases according
the values of the ramification index and residue degree the proof can be
completed.

We are prepared to start the proof of the implication ii) = i). We study
a=(X{"—q..... X} — ay), and proceed by induction as described above.

lst case: Somie odd prime number p divides some r;, say p|r;. We may
assume there is @ = (21,...,2,) € Vr(a). The field K(z1) is real and we

have (.1"’1‘1/;'>p = a1. If a; € K? then we apply (4.9) to replace the ideal

X' —a) by {/ (X7' —a1) = (X?® — by) with s; < ry. This substitution does
not change {/a. Now induction yields the claim in this case. Next assume
a; & KP. Then set z; = mgl/” and F' = K(z1) C K(z1). The polynomial
NP — qy is irreducible with z; as one of its root. According to (4.12) we
extend 7 to the fan 7. ;From 7' N K = 7 we infer

Vi(a® F) C Vi(a). (20)
We further prove:
every y € Vi(a) is K—conjugate to some 3’ € Vu(a ® F). (21)
Then. as an immediate consequence we deduce
Va=KX]n Va& F. (22)

ri/o\P
To prove (21) pick any y = (y1,...,9n) € Vir(a). Then (yll/”) = a. Thus
there is an automorphism ¢ € Aut(K|K) such that ¢ (ygl/p) = z;. Assume
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Ky, ... yn) € Ra, @ 2 7. Then K(@(y1),...,9(yn)) C R, R induces
on F. We find ¥ NK = «, hence 7/ C o/. This means ¢(y) € Vy(a® F). The
binomial ideal a & F has now the feature to contain the binomial X' — a3
with p|r; and a; € FP. This is the first case we dealt with. Consequently,
by induction, Va® F is a binomial ideal. Since F = K(z1) and

F K] = [< K¥,z1 > K*] we will use §1 (1.17) to conclude that
y/a is a radical ideal. To apply this result special binomial generators are
needed for /a@ F. In this situation and others to follow we are given
r= () € Vi(a),

C=< NN, ..,zp >and F = K(D), K* <D < C. Suppose

X™ — gX™ a € K(D%)

lies in Va F. Then, [[z;" = a[]z]", ie. a € K(D)*NC = D by &1,
(1.15). This means §1, (1.17) can be applied.

2nd case: Now all exponents r; are powers of 2. ;From (4.9) we know

. /‘“*( T an) = X7 —a;, irreducible, s;|r;
VA ‘ X2 —a?, X% % a; irreducible | 2s;|r;

S
Simice a = vz (X — a;) we may assume
1

P

r o 2rk41 2 2r 2
a:(All—-al,...,)&k’“—ak,X —akH,...,Xn"—a)

k41 n

where X7 — @, 1s irreducible for + < k and both X" + a; are irreducible for
>k

[t some r, =1 for ¢ < k then induction on the number of variables applies.
Let be #; = 2 or some s; = 1 for some « < k or j > k say r = 2,
k> 1 as the first case. If K(xy,...,z,) C Rg for (z1,...,2,) € Vi (a)
then a; = a7 € RZN K C a. Hence

VT<a) = VT[a1](a)'

Now, 7[a;] is a fan again. Thus we may assume a; € 7. Setting

o = (X} —ag,..., X —a,) < K[Xs,..., X,

we find Vi (a) = {(£/a1)} x V;(a'). Using this we derive {/a = (XZ—ay, V/d').
Induction on the number of variables yields binomiality for {/a. The case
s; = 1 is done in the same way.

Thus we may assume 4|r; for ¢ < k and 2|s; for j > k. The case of £ =0
will be dealt with in the third case. Assume k£ > 1. Note that X{l —ay 18
irreducible over K. Fix (y1,...,yn) € Vr(a) and set L = K(y;). L is a real
field. If v € V,(a) then z7' = a; as well and there is ¢ € Aut(K|K) with
£(r1) = y1. Hence it is enough to consider points x € V;(a) with z; € L.
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. 21 r
]ihen o =y'=a,reL implies xy =*y;and z* =y =: z;. We have
:f = ay. Extend 7 to the fan 7/ of F := K(z1) which contains z;. Since z1is a
square in L we find that x € Vo/(a® F). This implies ¥/a = K[X]N \/a ®F.

In £ we have X{' —a; = (X 2 —z1> (X 2 +21> We find that wl =1

for every (wy ...,w,) € Vo(a® F). Thus X|! — a; can be modified to
a1
X2 = z;. Induction on the product of the degrees proves the claim for {/a.

[+ remains the

3rd case: a = (X" — at, ..., X3 — 42} where all r; powers of 2.We do
not assume the polynomials X + a; to be irreducible. Consider any
(... ry) € Vi(a). Then F := K(xy,...,2,) is a real field. Now Kneser’s
criterion (1.14) applies to yield

[P K] = [< KX 2,02 > KX < [](2r0)
1

since for each 7 = 1,...,n the fact 1:2“ +a; implies ord(Z;)|2r;, Z; =
LN e FX ex. Furthermore7 we ﬁnd ¢; = =1 such that x?” = ¢a;. If
Nixp,.... r,) C R, for some a O 7 we then obtain €1aq, ..., ena, € a.

For any given € € {+1}" set

Ho:={a2r7|ea; € a,i=1,...,n}.

As just shown. every x € V(a) gives rise to some H, # (). Conversely, if H, #
) and o € H, then choose a real closure R,. In R, the equations Xf” = €;a;
are solvable, and we find a point = = (z1,...,z,) € R", x € V,(a) inducing
H,. Points inducing distincts sets H., H, are clearly not conjugate.

Assune first He # 0 for every e. We claim: [K (z1,...,2,): K] = (Zn) for
1

n

every € Vi(a). As a consequence we get: #V;(a) > 2™ - [[(2r;) = #V (a),
1

whence Vi (a) == V(a). Since a is a radical ideal the statement ¢/a = a follows.

To prove the claim concerning the field degree assume the contrary. Then
the field degree is strictly less than [](2r;) and from Kneser’s result, stated
above, we find a certain relation

n
¢ = Hri where c € K™,0 < l; < 27;
1

and not all I; = 0. If I; # 0 consider ¢t; = 'g—cE(%iT) and let #; be maximal
among the 2-powers t;. We find 2|t;. Then

l; 1

mn
= ;a;)° wh = — .
c I:[(elal) where s ged@r ) 1)

38



t1

At least s; is odd, also ¢!t € (K*)2. That means there are a;, ¢;, say

k

for © = 1,....k, such that [[(ea;) € (K*)%. But then H, = @ for
1

n=1(—€.€2,..., €k 1,...,1): a contradiction.

We are now left with the case that some H, = @. Since 7 is a fan this is
equivalent to a relation

—1=t-(e1a1)...(esas),s > 1, ter

(renumbered if necessary). We consider the variables X1,..., X,. The ideal
a contains

s s s s s s
H ‘X’;,lr, . H CL? _ (H XQH _ Heiai> (H X2r.i + H 61‘%‘) .
1 1 1 1 1 1

The first factor on the right hand side never vanishes on V.(a), hence can
be deleted. We find Vi(a) = V;(b) with b generated by

S

8
27; 4r 2 4dry 2
HX7’+H6iai,X22—a2,...,Xn —a
1

ne
1

To b we can apply the induction on the product of the degrees. In fact,
V.(b) = V(b hence Vb = Vbt N K[X]. b% is associated to a lattice L of
mdex 2ry -4y ... - 4r, =: 5. Diagonalizing L we end up with a system

X =bn . X0 = b, [[ 5= s < [J4r),
1 n

Heuce, we conclude that ¥/b is a binomial ideal and the proof is complete.

We finally coniment on possible generalizations of the last theorem. This
means we are given a preorder 7 not necessarily a fan and ask for special
binomial ideals a such that {/a is still binomial. By a careful reading and
adjusting some arguments one can prove

1) \"'/(Xi'l - ay,...,X3" — ay) is binomial if either all 7; are odd or all

The property of a fan was only needed to deal with generators of the type
A

As demonstrated in §3 the computation of {/a actually depends on the
computation of {/% for all non—empty cells V2(a). The ideals ai can be
transformed into ideals of the type (X' — a1,..., X" — a,). Therefore if
we only meet ideals as in i) above the binomiality of /a results. Hence,
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we conclude that if for all non-empty cells V2 (a) the group Sat(La)/p, is
either of odd order or of exponent 2 then /a is a binomial ideal for every
preorder 7.

The following statements can be found in [Lam] e.g. Most of the preorders
are not fans. If 7 is an order or 7 = N B, @, 8 orders of K then 7 is a fan,
a socalled trivial fan. By means of valuation rings non-trivial fans can be

constructed as follows: if W is a valuation ring of K with residue field % and
7 C kb afan then

r=K {ecW*|ce7)}

Is a fan in IV, the pullback of 7. By Brocker’s trivialization theorem every
fan is the pullback of a trivial fan. In the iterated power series field K =
IR((X7)){((X2))... ((X})) the smallest preorder 7 = 5" K2 is a fan. On the
other hand fans in algebraic extensions of @ are trivial. If K|IR is a real
fimction field of transcendence degree d then a fan 7 € K has index

[K* %) < 2¢

and there are fans with index 2¢.
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5 Algorithms

Let a be a binomial ideal and K an infinite field. We want to solve the fol-
lowing problems.

A} determine dima and the irreducible components of V(a),
B) decide whether Vi (a) or V,(a) # 0,
') if Vi (a) is non-empty and finite determine its cardinality,

D} compute *-radicals of a.

There are well known algorithms to solve these tasks for general ide-
als.However in our context of binomial ideals we will design algorithms which
take into account the distinguished structure of these ideals. Our algorithms
consist of three main steps. We first decompose V'(a) into cells and pass from
the polynomial ring to some Laurent polynomial rings as described in the
first. section. In the second step we treat the corresponding questions for
each of the relevant cells. Then we put together these informations to solve
the original problem in K [X].

The first step could be performed by writing down for each A C {1,...,n}
the ideal

ax = mala) - K[XF)i € A]

But more care allows us to skip many empty cells and detect some trivial cells
in advance just by looking at the combinatorial structure of the generators
of a, and furthermore to carry out all the intersections in the third step in
such a way that all intermediate results are still binomial.

There are two possibilities listed as 1) and 2) below to discard cells.Let a be
generated by a set B of binomials by, ..., b,.Then the ideal

aa < K[X;]i € A]

is generated by wa(B) which is obtained from B by setting the variables
N;.7 ¢ Ain the binomials by, ..., bs to 0.

1) If ma(B) contains a monomial # 0 then ai = (1),

2) There is A" C A such that each ma(B) contains only binomials built
over A’'. Then

i) Viaa) = Viaa) x KA\A'
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i) V2 (a) C VA(a) (Zariski closure),

i) p: VA(a) — VA (a) and p: VA(a) — VA (a) are surjective
Proof: 1) Clear 2)There are no constraints for the variables X,
J € A\A".Hence i) follows.To derive the two other statements we may take
A'={l,....,7} € A={1,...,5}.From i) we conclude

VAa) = {(@1ee 20,0, 0 (2,2, 0, 0) € VA () 21,y € K

This identity implies the remaining claims. |
The following algorithm makes use of the observations 1) and 2).

5.1 Algorithm
Input: a = (fi,..., f,) <« K[X] binomial.
We construct a tree consisting of nodes N with two sons and three entries:
B(N) a list of binomials and T(N),A(N) C {1,...,n}.
Initialization: T a tree consisting of one node R with either B(R) =
(fio.o o fo).T(R) = 0,A(R) = {1,...,n} or NIL if B(R) contains a con-
stant # 0.
WHILE there exists a leaf N # NIL DO

IF there exists a ¢ € A(/V) such that

X; occurs in B(N) choose one of these X; (23)

THEN

CREATE(left_son(N),right_son(N))

B(left_son(N)):=B(N)

I(left_son(NV)):=T(N) U {i}

A(left_son(N)):=A(N)\{i}

B(right_son(/N)):=obtained from B(N) by setting X; to 0
IF B(right son(N)) contains a monomial # 0 built over
(V)

THEN right_son(NV):= NIL
ELSE
I'(right_son(NV)):=I'(N)
A(right_son(N)):=A(N)\{7}
ELSE left_son(/N):=right_son(/N):= NIL
DELETE all nodes NIL

Output: A enpty tree or a tree with root R such that at each node N
7rp(N>UA(N)(a) is generated by B(N),

The leaves (=rerminal nodes) of this tree play a fundamental role.We form
the list
T ={T'(N) UA(N)| N a leave}
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Clann: The list T satisfies

V)= |J V2(a), dim(a) = maz{dimV*>()|A € T},
AeT

1
Vi{a) #0 (resp. Vi(a) # 0) if and only if V72 (a) (resp.V:2(a) # ) for some A € T,

I if Vi(a) £ 0 and finite then

Vi(a) = U Vi (a),
AeT

V)
a* = () 72 ((eX)" N K[X;]i € A])
AeT

if the radical operation satisfies axiom VII.

Proof: We first compare this tree to the following one denoted by T.That
oue consists of nodes (I';A) where T''"A C {1,...,n}. It has the root
(0.{1.....n}) and the branching rule :while A # @ choose i € A and set
left son =(I' U {¢}, A\{7}), right son=(T', A\{7}).The leaves of this tree are
the pairs (A #),A C {1,...,n}).If (I',A) is a successor of (I',A) then
I ©T" C I'UA.The tree of (5.1) is obtained from this one by deleting a
node and its subtree of successors according to the rules semantically de-
scribed in 1) and 2). Now pick any A C {1,...,n}.Assume

o £ (1)and A ¢ T

Then some predecessor (I, A) of A in 7 must have led to NIL either by
rule 1) or rule 2).If 1) applies then B(/N) contains a monomial # 0 built
over I'(N).From T'(N) C A we get that aa contains this monomial,hence
ax = (1) : a contradiction. Thus rule 2) must have been applied.This means
that the binomials in B(/N) are completely built over I'(NN), hence over

ACT(N)UAN)=:AeT

Using the statements in 2) we find

VA&(a) C VA(a)

This proves I).In the same way II) follows. To deduce III) we observe that if
V2 (a) # 0 then A € 7. Otherwise the relation between V2(a) and V2(a)
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as given in the proof of statement 2) above would lead to an infinite set
L7 (a). To derive IV) we recall the formula

at = ﬂwgl((ai)* NK[X;|i € A))
A

Pick any A C {1,...,n}which is not in7 and assume ai # (1).The argu-
ments above have shown the existence of A D A, A € 7 such that

ax = aAK’[XiH S A]
Set Sx = K[X;li € A] for any A C {,...,n}.We will prove
(@) NSz = ()" nSa) Sz

This implies

ng((ai)* NSz) < ng((ai)* N Sa)

and IV) is proved. To prove the identity we simplify the notation :A =
{L.....n},A ={1,...,7}, a = ap.b = a;. The properties of the radical
operations yield

(07) = (b)) = (a"K[X1,..., Xu))F = (a*5a)* - K[X*]
= (") KIX*] = ()" 1 Sa) KX
from which the claimed identity follows.

The statements I) - IV) means that only cells V2(a) with A € 7 need to be
considered to solve our initial problems A) - D). Litterally, the determina-
tions of the irreducible components of V(a) have not been mentioned. But
[} implies that V'(a) is the union of the Zariski closures of the irreducibles
components of the sets V2(a) , A € 7. Thus the components of V(a) can
be obtained as the maximal sets among those irreducible sets. Two final
remarks are in order

1) {From IV) we obtain

V(") = [J V(ma'((ax)" N Sa))
AET

This shows
dim(a*) = mazacr{dim(af)*}

and that the irreducible components can be obtained from the closures
of the irreducible components of V ((ax)*).

i1} Neither the value of the exponents nor the coefficients play a role in
these combinatorical considerations.
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Example: Let f1:= X7 X3+ XXy, fo .= X1 Xs + X1 Xy,
fo= cXu+ X1 X3Xy, ¢ # 0, a = (f1, fa, f3)9Q[X1, Xo, X3, X4]. The resulting
tree has just three nodes Ny, No, N3, which can’t be replaced by NIL .

NL: B(Ny) = {0}, T(N1) = 0, A(M1) = {3,4},
N2: B(Ny) = {0}, T(Ny) = {1}, A(Nz) = 0 and
N3 B(Ng) = {f1, f2, f3}, T(N3) = {1,2,3,4}, A(N3) = 0.

We stop at Ny because (23) doesn’t apply. This means that the cells corre-
sponding to A = 0, {3}, {4}, {3.4} are described by the same equations. In
this case we have the zero ideal. Ny gives us the zero ideal for A = {1} ,and
the only non-trivial node is N3 with the ideal agy 2 34y = (f1, f2, f3)-

[u the second step of our algorithms we have to deal with individual cells

V> (a). We first decide whether the cell is empty over K ,i.e. whether
ay = (1). This amounts to showing that certain systems
A= b17 ey = r

have no solutions over K .In dealing with such systems it is appropriate to
regard K * as 4 Z - module and let A € M, (Z) induce the mapping

A (K — (FX)T,(xl,...,n)t — (y1,...,7)" where
Y = Hm?” VA = (aij)
J
Then clearly A(Bzx) = (AB)x. A system of equations Ax = b can be manip-

ulated as usual.In particular,given U € GL,.(Z),V € GL,(Z), we can pass
to the equivalent system

(UAV)y = Ub where y = V™ lx

5.2 Lemma Let b <« K[X*] be generated by X® —by,..., X% —b,,
A e M., (Z) the matriz with the rows vy, ..., v, . Further let U € GL,.(Z),
Ve GL,(Z) such that
ayp - Qls v Qlp
U-A V= Gss - Qgp ,aii;ﬁOfOTl—_—l,...,S.

Then setting
(c1y.ye)t =U-(by,...,b)¢
we find

b=K[X*|e3Is<t<n:¢g#1
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Proof: The system (UAV)y = Ub is solvable over K« iff Csp] = -.. =
c, = 1. |

In practice we pass from the extended matrix (A|b) with b= (by,...,b.)! to
the matrix (UAV|UD). Very often V is just a permutation matrix and need
not be considered.

Example:We continue with the previous example and the cell associated to
A C{1.2,3,4}.Then

—

-1 1 -1

(Alb) = ~111

= O
I =
—
= o
—_
o

which can be transformed into

1 01 =21
01 0 —-1|1
06 0 2 |c¢

Thercfore a% = (1).

So far we have found all cells V2(a), A € 7T that are not empty.Clearly only
those play a role.We are now ready to solve the problems A) - D).
Problem A)

We have

dimV®(a) = #A — dim L® if o= # (1)

The dimension of L® =< v1,...,U, > equals the rank of the matrix A
with columns vy,...,v, and can be read off after putting A into trigonal
shape.If unimodular matrices U, V' are chosen such that UAV is a diagonal
matrix then the irreducible components can be described.Details are given in
section 1. In the example above we find dim(a) = 2 and the four irreducible
components

{A\Vl = ‘Yg = 0} s {1‘(2 = X3 = X4 = 0} and {X1X3 = C, X2 = X4,X4 = i\/E}

Problem B)

In order to find L—points in V2(a) we put the describing matrix of the
lattice L? into diagonal form,i.e. we have to consider the solvability of the
svstem

X =y, X =y

Hence.it the field L allows a decision procedure for equations of the type
X/ = b we can decide whether Vi(a) # 0. In the case of a real closed field
L = R the decision procedure is as simple as this:

e fodd: A/ = b is solvable in R,

o feven :A/ = bis solvable in R iff b > 0.
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In a real closed field the diagonalization of the matrix A is not needed.
Assume af # 1) and let A € M, ,(Z) describe the lattice L™ .Further set
by = (=1)%|b;| and consider the extended matrix

€1
Al | =(Ale
€r
If 13 is an integral matrix let B the reduction mod 2.We prove

A
+

Vﬁ(a) # )= rgle(Z) = 18R, (Ale)

i) if Via) #£0 and g, (4) + s = rg(A4) then { ok
has 2° minimal prime ideals.

Proof: We resume the arguments of the first section.Choose unimodular
matrices U, V" such that

fi

f
AV = 2 it 0

2fk+s

0

where fj...., fi are odd and f; # 0.

Since ox # (1) we find Ub = (c1,-..,Chts,1,...,1)". Setting Ue =
(ry,...,n)" this means ¢; = (=1)"|¢],i = 1,...,7 and

7 =0 mod 2,|¢;| =1ifi >k +s
Then [7AVy = Ub is solvable over R iff

Mol = - = Mgys = 0 mod 2

Now rg (4) = rg (UAV) = k and rg(A[é) =rg (UAV|U%) = k + 1 iff some
1 £ 0 mod 2 tor k < i <k + s. Thus i) is proved. After the normalization
of section 1 we see that R\/ai is generated by X1 —aq,..., X§ — a,

Xﬁ_H — (1,1‘7+],...,XI%+S — a,. This shows that there are 2° minimal prime

ideals. Obviously s = rg A— rgIFZZ. n
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In our example we find rgd = 2,rg(Al€) = 2 iff ¢ > 0. Hence Vr(a) # 0 iff
¢ > 0. In that case v/a = ¥a.

Problem C

We have to consider only cells with dimai = 0, ie. dimL® = #A. After
diagonalizing L® we have to count the number of zeros of a system

le1 =a,..., X" =a,

n

in L. This number is given by the number of roots of unities in L. If L = K
then #VA~(a) = VAR LA] or the p-free part of it if charK = p > 0. If
L = R areal closed field then #V2(a) = 2°,
s=rg A— 1'81}“22-
Problem D
After diagonalizing L and considering only the essential variables we have
to calculate

(le1 —ag,..., X" —a,)"

Once this is done we know (a%)*. Now, the intersection (a£)* N Sa can be
done by Grobner basis methods since this ideal can be understood as an
elimination ideal, of [EiSt] e.g. . Then we know 7' ((¢X)* N Sa) and finally,
again using Grobuer basis techniques, a* results as the intersections of these
ideals for A € T,a% # (1).

This procedure applies to all *-radicals even if they are not binomial ideals.
It however the *-radicals of every binomial ideal is again binomial then it
seems worthwlhile to trace back the tree of (5.1). In fact, at each non-terminal
node we pass from an algebra A and an ideal a to the two algebras A[X ']
and A4/(X)) and the ideals b = aA[X; '] and ¢ = (a+ (Xi)) /(Xi). The
decomposition law (2.6) yields

a* = (b*NA) N7 (m(a)*).

Thus in the case of binomial ideals all intermediate results are still binomial
ideals.
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