o Qﬂ.ﬂd{
hoe RAGSCGUAD | Bahely

On the trace formula for quadratic forms
and some applications

by

Eberhard Becker and Thorsten Wormann

Mathematisches Institut der Universitat Dortmund

4600 Dortmund, Fed. Rep. of Germany

Introduction

This paper deals with a variant of the trace formula for quadratic forms which allows
applications to some algorithmic problems of real algebraic geometry. The formula
will be applied to the counting of real zeros on 0-dimensional varieties under side
constraints, as well as to the 0-dimensional case of the Brocker-Scheiderer result about
the description of basic open semi-algebraic sets. Furthermore, it can be used to give a
'visible’ argument for Tarski's theorem on Quantifier Elimination in the theory of real

closed fields.

It is only fair to admit that our method is nothing but a modern version of old ideas
of Hermite-Sylvester who had already shown how to count real zeros by calculating
signatures of appropriate quadratic forms. What has been added to their approach is
a certain algebraic machinery that enables us to treat multivariate problems more uni-
formly. In an analogous approach P. Pedersen has independently developed a similiar
method to count real zeros, also starting with Hermite ideas.



1 The trace formula

Trace formulae of various kinds frequently occur in the literature on quadratic forms.
In particular, M. Knebusch made an extensive study of such formulae, cf. [K1], [K2],
[K3]. So, our topic is basically well-known. However, in our approach we will formulate
a trace formula under much weaker assumptions which allows new applications to real
algebraic geometry. The main difference is that degenerate forms are allowed. In
addition, the ring extensions involved need not be Frobenius and, moreover, as in

Mahé’s work [M, (4.11)], the real spectrum of rings instead of the space of signatures
1s used.

Our framework is the following. Let A be any commutative ring, 7 : A — B any ring
homomorphism rendering B into a finitely generated projective A-module. Moreover,
let M be a finitely generated projective B-module, equipped with a B-bilinear map
¢ : M x M — B. Note that the non-degeneracy of ¢ is not assumed. If s : B — A
1s any A-linear map then we can define the transfer s.() which is an A-bilinear map
on M, considered as an A-module, and which is defined as follows:

S.(@) : M x M — A (m,n) — s(o(m,n))

We will primarily deal with the trace map

§ = t?‘B/_.; : B — 44,

cf. [DeM. I; II1, §2]. Nevertheless, other linear forms occur as well and deserve a study
in their own right as will be indicated at the end of this section.

The ring homomorphism 7 : 4 — B induces a ’restriction’ map 7" : Sper B — Sper A
between the real spectra of A and B. We will freely use notions and results from the
theory of the real spectrum as described in [C-R], [BCR], [Bel]. Note that Sper A =
Spec,A = R — Spec A etc. if other notations are used. If a € Sper A is given, any
3 € Sper B with 77(J) = a is called an extension of a, written: 8 | a. By [C-R. 4.3,
p. 40] or [Bel] one knows that the canonical map B — B ® 4 k(a) yields

r71({a}) =~ Sper(B ®4 k(a)),

where k{a) denotes the real closed field attached to o and '~’ means ’homeomorphic’.
In our present situation, B &4 k(a) turns out to be a finite~-dimensional k(a)-algebra.
hence Sper(B ®4 k(a)) and the fiber over a are finite sets.

The final notion we need is that of the signature of a bilinear form ¢ on a finitely
generated A-module A at a point a € Sper A : sgn,(¢). By definition sgn,p =
sgn(p Ga k(a)) where, of course, the scalar extension ¢ ®4 k(a) is defined on the



finite-dimensional k({a)-vectorspace Af @4 k(a) and the unadorned sgn is the usual

signature of k(a), cf. [BCR. Ch. 15].

After all these preparations we can state

Theorem 1.1 (The trace formula) Under the hypothesis above the following formula
holds:

sgna(trBM)_(g,o): Z sgng(p)

Bla
BESper B

Proof. We start off from the situation A — B, M a B-module equipped with the
B-form p and the A-form tr.(p) = (175)4) (). To calculate sgna(trp4),(¢)) we have
to carry out a scalar extension relative to the morphism A — k(a) and we then face the
following situation: k(a) = B®4k(a). M @4 k(a) considered as a B ® 4 k(a)-module
equipped with two bilinear forms:

1) the B G4 k(a)-valued form ¢ defined by
smGaenZy)=glmn) Sy

and

2) the scalar extension tr.(y) @4 1 which is k(a)-valued.

To facilitate the notations we set

Mi=Ma, A(O)B =B &4 k(o),hf(\cp) =1r.(p) ©a l.

Being a finite-dimensional k(a)-algebra. B decomposes uniquely into a direct sum of
ideals B,. which are local k(a)-algebras (= : k(a)-direct sums):

B= @ B;, B, = €;B.¢; (indecomposable) idempotents.

1=1

Since M is a B-module it splits correspondingly:

M= @ M, M = e, M

1=1



Since M, = ;M distinct M!s are orthogonal relative to ¢». Set o; = @p,- Then
wi is Bi-valued, and we claim tr.(2),, = (). (9i)- To prove this first note

tra(e) = (trgpa)) (9), which is due to the compatibility of trace map with scalar

——

extensions. Consequently, tr.(0);, = (trgya)) (vi) = (trBjk(a)), (i), since B; is a
direct ideal summand of B.

From t@) = (17gjk())(P) we further get that the M;’s also provide an orthogonal

——

decomposition relative to tr.(). Putting the information together we have derived so
far:

r

() sgnaltra(p)) = sgn tr.(2) = 3 5gn (trB,pk(a). (#0)

i=1

Setting C = B;, N = AM,.v» = ¢,k = k(a) we are dealing with a finite-dimensional
local k-algebra C and a C-form ¢ living on a finitely generated C-module N. We
have to calculate sgn (trew) (¢)-

We start by observing that in this case N is in fact a finitely generated projective
C-module since we started out from a projective B-module and all the constructi-
ons above preserve projectivity. Since (' is local, N is a free C-module. Let M
denote the maximal ideal of C. Then the reduction § = ¢ ®¢ 1 is a bilinear form
on M = M ¢ C/ag = M/ agyy whichis a finite-dimensional vector space over the
field C'/ag = C. We want to prove sgn (trep) (¢) = sgn (trgy) (¥). In our case,
char C/ pq # 2. 50 ¥ has a decomposition § = &1 L @2, 91 non-degenerate and ; a
Null-form: ¢, =< 0,...,0 >. Using [Ba. (3.4), p. 11] we obtain a C—decomposition of
(N,¢): 0 = o1 L o with ¢ free and non singular and ¢, having all its values in M.
Now. by [Ba, (3.5), p. 13, 1 admits an orthogonal basis, and therefore we are facing
the following situation:

c=<1;>L ... l<r,>L pr (N, N)C M, z; € CT.

Clearly =<7, >L ... 1< T, > L Null-form, and since the trace map tr¢); vanishes
on M = rad C our last claim will follow in general once it is proved in the special case
g=<z>71€C".

We use the fact that C has a *Wedderburn-decomposition” C = Co & M, Cp a sub-
algebra (in fact a subfield), clearly satisfying Co =~ C. By using trex(M) = 0, and
(trep) lco= [C : Co] - trey | one easily checks sgn treyp <  >= sgn trg <7 > which
then, as said above, implies our general claim.

Going back to the equation (*) we now have to compute sgn (trg ). (Pi). Since
k(a) is real closed there are just two cases: B; = k(a) and B, = k(a)(v/-1). In the



second case, 7; is a torsion form, if considered in W(B;), and so is (”F.-Kk(a))_(‘r") in
W(k(a)) =~ Z. Hence sgn (1B k(o)) (@) = 0. In the first case, (tT§,|k(a))_(¢g) =
and using this we get the following refinement of (*):

(#%) sgna(¢)= D sgn()
E.-:k(a)
We next interpret the right hand side of (*+) by using Sper B. As proved in [C-R,
prop. 4.3, p. 40], see also [Be], the natural morphism B — B ®4 k(a) induces a
homeomorphism (= bijection in our case) between the fiber of Sper B — Sper A over

a and Sper(B @4 k(a)). From the above decomposition B = @B; one derives that
the points f3; extending a corresponds in a 1-to~1 manner to those of the B; satisfying

Bi/M- = k(a). More precisely, if such a B; is given the associated B; is defined as

the homomorphism (pr = projection):
(x*x%x) B— B®4k(a) 2> B; — B,-/M_ = k(a) = k(5)
Here and in the sequel we consider a,3.... as maps. We next have to compute

(M 2B k(3),¢ @B k(8)) if B = 3; for some extension B;. Since k() = k(a) we are
studying the following situation:

M

|

B 4 k(a)
1l Sa
A

Using the k(a)-isomorphism
(M &4 k(a)) @Be  k(a) kla) @ M @p k(a) = M ®p k(B)

MmMRz)Qy—m®@azy

which is a special instance of [C-E, prop. 2.1, p. 165} and taking into account the way
B is composed (* * x) we finally obtain:

(M ©5 k(B:). v @B k(B:)) = (M, 7).



This shows that sgng (¢) = sgn(y ©p k(3;)) = sgn P,, and the proof is complete. O

In the literature. other linear forms s : B — A are considered as well. In deriving a
similiar transfer formula for such more general linear forms one has to cope with the
following problem. Dealing with sgn,s.(¢) one decomposes M ®4 k(a), B ®4 k(a),
@¢®al,s@a1: B — k(a) into pieces M. Bi.pi,si : B; = k(a) and studies s;.(:).
But, in the case of sgng (), i belonging to Bi, one is concerned with M; and B,.
Hence, s.,(¢:) has to be compared to B;. As shown above, ¢; =< 71 >1 ... 1<
z, >1L ¢,z; € C",¢(N,N) C M,. From B‘/M = k(a), ; € B; and the fact that B;
is a finite dimensional local k(a)-algebra we get l:c,- =a;-€,a; € k(a)",& € C*. Thus
o =< a; >1 ... L< a, >1 9. Invoking Frobenius-reciprocity as in [K2, (1.1), p.
169], which is valid for arbitrary linear forms, we obtain

sis(pi) = (8. <1>) <ay,...,an>1 5i. ()

and F; =< aj,...,a, >1 Null-form. Thus

.

sgn 8i.(wi) = (sgn s;, <1 >) - sgn @; + sgn si ().

Setting m(3i.a) = sgn s, < 1 >€ Z we finally get
SgNas.(y) = Z m(3.a)sgng(p) + Z sgn sz, (¥3)-
Blo Bla

In order to derive a transfer formula in the sense of Knebusch, cf. [K2. K3], one needs
assumptions implying the vanishing of the second sum on the right hand side. If we
either assume that B | A is étale. forcing B @4 k(o) to be separable, or that ¢ is
non-degenerate then ¢ does not even occur. If we assume that s ®4 1 vanishes on the
radical of B ®4 k(a) for all a € Sper A then si.(¥) is a Null-form; e.g. this happens
if s is of the type s(z) = trpj4(aa) for some fixed a € B. Summarizing we get

Proposition 1.2 In each of the following cases

- B| A étale,
- only non-degenerate forms are considered,

- s®41=0 on Nil(B®k(a)) for each a € Sper A

there are integers m(B.a), for every a € Sper A, B € Sper B such that | a, allowing
the following transfer formula:

6



Sgngsy) = Z m(3,a)sgns(p)

Bla

for any one of forms ¢ being considered.

The case of an étale extension is dealt with in [M, (4.11)].
Note that m(8,a) =1 if s = trg,.

If we are neither in the first or third case of the proposition the restriction to non-
degenerate forms is essential. To see this consider Knebusch’s example of a Frobenius
algebra in [K3, p. 177]:

A=1R,B=1R[t],t*=0,{1,t} R-basis of B.

The unique o € Sper A has a unique extension 3 to B. Consider the A-linear form
s given by s(1) = 0,s(t) = 1. Then s. <t >~< 1,0 >, hence a formula sgn,s.(y¢) =
m - sgng() cannot exist.

As an example where the last condition of prop. 1.2 is deliberately violated is the
famous Eisenbud-Levine formula, cf. [E-L]. In that case one studies linear forms

§: B — k k afield with s # 0 on the Nilradical of B, and such forms are needed for
the application in mind.

If (B | A)is a Frobenius extension then Knebusch’s transfer formula for signatures. cf.

olsp) =) n(r)r()

Tlo

can be derived from our formula above as he has kindly pointed out to us. To this
end, let Sign A denote the set of signatures o : W(A) — Z as in [K5. §5]. It is known
that the natural map Sper A — Sign A, a — 0, is surjective (a € Sper A induces
A — k(a), hence 0, : W(A) = W(k(a)) = Z), cf. [K5, §5] or [K4, §§1,3]. In [K3.
(1.1), p. 169] it was shown that there is a unique choice of the multiplicities n().
They are all strictly positive in the case of s = trg4, cf. [K2, (3.4), p. 72}.

To derive the trace formula for signatures let ¢ = 0, and fix a. Then, for any non-
degenerate form: o(p) = sgn(p @4 k(a)) = sgny(p). f B|la thenog|o,. i 7|0
then n(7) = Zﬁm(ﬂ,o), summing up all 3's with o = 7. With this definition we
obviously get from our trace formula

o(s.(9) =Y n(r)r(p).

Tlo

-]



If s =trp;4 then m(3,a) = 1 hence n(7) > 0. Moreover, n(7) > 0 in the unique trace
formula, as cited above. Therefore, if ¢ = o, then any extension 7 | o arises from an
extension f | a, i.e. 7 = 0g.

0]



2 Counting real points

In this section we are going to apply the trace formula to the counting of real points
on O-dimensional affine varieties over real closed fields. We will use the book [BCR] as
the basic reference for real algebraic geometry.

Let R denote a real closed field. It is one of the basic computational tasks in real
algebraic geometry to decide whether a given semi algebraic $ C R™ is empty or not.

Here, wlog, S may be thought to be given as the set of solutions in R" of a system of
the following type:

F(X1, .., X0)=0,... F(X1,...,X) =0,

Gy( X1, X)) > 0,...Gy(Xy,. .., X0) >0
with polynomials Fi,...,G, € R[X),...,X,]. The decision about 'S = @’ or 'S # @

should be made by using the coefficients of the polynomials involved in the above
presentation of S.

Our problem can be rephrased as follows. The equations Fy = 0,..., F, = 0 define an

affine variety 1V with coordinate ring R[X;... ’Xn]/(F , and the polynomials
1~

. F)
Gh...., G, gives rise to regular functions g;,...,g, on V (g; being the coset of G; in
R[V]). In case K D R is a field extension, V(K) denote the set of points of V with
coordinates in K.

In this setting S can be described as follows:
S={zeV(R)|q(x)>0..... gs(x) > 0}.

If V' is a O-dimensional variety. i.e. Krull-dim R[V] = 0 or, equivalently,
#V(R(V/~-1)) < oo, we will attach to this representation of S a quadratic form ¢
over R such that

1
#S = 5: 897 -

To count real points by calculating the signature of appropriate quadratic forms is
a topic really begun in the last century by Borchardt, Jacobi, Sylvester and, first of
all, Hermite. They studied the case V = IR and V = IR?, and their method is often
referred to as the Hermite-Sylvester method. A very comprehensive account of this
approach, complete up to about 1939, can be found in the reprint of a survey by
Krein and Naimark, cf. {Kr-N]. Also the books of Knebusch-Scheiderer [K-S] and
Benedetti-Risler [B-R, p. 17 ff] are recommended for further information.

Our general treatment of arbitrary 0-dimensional varieties stems from a geometric
interpretation of the trace formula of §1. Quite astonishingly, P. Peddersen in a nearly
simultaneous and completely independent study also introduced the same quadratic

9



forms to achieve the joint goal: counting real zeros on zero-dimensional varieties, cf.
[P1]. A brief account of our method has already been published in [Be2].

Now, let V be a 0-dimensional affine variety over the real closed field R with coordinate
ring R[V]. Each real point € V(R) gives rise to the evaluation map e, : R[V] — R,
f — f(z), which in turn yields the point a, € Sper R[V] defined as o, = (M, R}),
M. = ker e;. From dim R[V] = 0 one concludes Sper R[V] = {a: | z € V(R)}. If
¢ =< f1,...,f, > is any diagonizable quadratic form over R[V] (as } € R[V] no dif-
ference is made between bilinear and quadratic forms) then ¢, :=< fi(z),..., fo(z) >
1s a form over R and we have

sgna.p = sgn < fi(z),..., fo(z) > .

In our geometric context, the trace formula of §1 now reads
Proposition 2.1 For any f1,...,fs € R[V]

sgn ((trapyr). < fiooo s fa>) = Y sgn < fula),.., folz) > .

reV(R)

We are next going to specialize this geometric trace formula. If s = 1, f; = 1, then
sgn tr. <1 >= #V(R). For given fi,..., fs € R[V] we form the ’scaled Pfisterform’
e=<[lJfi> < fi....,fs >. An immediate calculation shows

25 0f fi(2)>0,...,f(z) >0

sgn @, = .
gn Pz { 0, otherwise

Summarizing these two cases we get

Proposition 2.2 a) sgn((trppr). <1 >) = #V(R),

b) sgn((trapyr)e < TI1fi >< fi,..o fs ) = 22 - #{z € V(R) | fi(z) >
0,...,fs(z) > 0}

Clearly, the right-hand sides in the last proposition give the number of points one is
interested in. However, if it comes to actual computation one necessarily has to deal
with the left-hand sides of the above equations in an explicit and efficient way. In the
following we will outline one possible way to cope with the trace forms themselves.
There are clearly other methods and best efficiency is not claimed. In forthcoming pa-
pers by Pedersen, Roy and Spzirglas [P3] the complexity of all the algorithms involved
will be discussed in great detail.

Let V be given by a set of polynomial equations

Fl(‘Yls"'s-X,ﬂ) = 0....,F,(.¥1,...,Xn) = 0,

10



ie. by setting o = (Fiy...,F,) < B[X,,..., Xn] we have R[V] = R[Xh---»xn]/m.

Note that or is not assumed to be a radical ideal.
The elements f; are represented by polynomials Gy, 2 =1,...,s.

Let k be the field obtained by adjoining to Q all the coefficients of Fy,..., F; and, in
the second case of prop. 2.2, of Gi,...,G,. We set aig := (F1,... JF) k[ Xy, .., Xal.
A careful reading of the following reasoning will show that all the necessary arithmetic
operations can be carried out in k. Note ar = aoR(X1,... , Xn)-

In prop. 2.2 only forms over R[V] admitting an orthogonal basis occur. So, it is enough
to deal with the case ¥ = (trpyr). < h >, where h = G + a, G € k[Xi,..., Xs).
To derive a matrix for 1 one needs an R-basis of R[V]. This can be achieved by
obtaining a Grébner-basis for arg using the Buchberger algorithm which is performed

inside k. From such a Grébner-basis of aro one gets a k-basis of k[XI"“’X"]/m
0

which remains a E-basis of R[Xy,..., X under scalar extension. To see the details

ot
of this argumentation one may consult e.g. [Bu]. We also use this reference as a source
for all what is needed about Grobner Bases and the Buchberger algorithm.

We will proceed differently to get finally an R-basis on an appropriate R-algebra which
has more structure and allows an easier way of determining the signature. However.
costs are due for deriving this other algebra.

Set A = R[V’]. Being a finite-dimensional R-algebra, A admits a Wedderburn decom-
position

A=J&® A,J = Nilradical, A subalgebra

where the natural projection 7 : A — A/y = Areq induces an R-isomorphism A ~
Area. We now resume arguments presented in the proof of the trace formula. Setting
h=u&h ued, he A we get

sgn (trap). < h >= sgn (trgg). <h >.

Being only interested in signatures we should therefore continue with the determination

of sgn (trzp). < h >. To this end we have to calculate \/ar out of o since A =

R[Xa,.. o X"]/\/_. To determine \/or we use the following observation of Seidenberg.
ar

cf. [Se]. First note that for any : = 1,...,n
oo N k[XS] # (0),

namely, if not so, then, because of ot Nk[X1,. .., X,] = oo, we had an injection (over k)

k(X — R[X]/ which is impossible since R[‘\]/az is an algebraic k-algebra. Now
o

let g; # 0 be arbitrarily chosen in oo N k{X;},i=1,...,n. Using gcd—-calculation inside

11



k[X;] we make g; squarefree: §; = —%—. Then clearly §; € \/or,i = 1,...,n, and, as
g ged{g1.9,)

Seidenberg noticed,

\/a:: (magls"'sgn)'

To prove this statement first note that each R-algebra R[X‘]/(~) is separable as
gi

char R = 0. Consequently, also B = @/, R[Xi]/(j) is separable, i.e. a finite

product of field extensions of R. Obviously there is a natural epimorphism

R[X1,..., X4 R[X1,...,Xn]
B — 1 —_ 1y ’ N .
/(gl" vgn) /(mygl’ "gn)

showing the latter algebra to be separable, hence (ar, g1, ..., §a) is a radical ideal. This
proves the claim. The same argument applied to org shows (/arg = (0to,G1y---+Gn)-

In order to calculate trar < % > one needs an R-basis of A. So far, there seems to
be no advantage to use A instead of A. However, it is the so called (folklore) Shape

Lemma, cf. [GiTrZ), that guarantees a distinguished set of generators of \/atg, hence
of /ot = \/otg - R[X;...., X,]. Thus we get a nice basis for A.

Shape Lemma. Let k be a infinite perfect field, b any 0-dimensional radical ideal
in k[X1,...,X,]. Then, possibly only after a linear change of coordinates, i. e. Yi=
Xii=1,....n=-1Y, = X, + z;l'l X, - ', for some t € k, there are polynomials
g1, Gn-1,9 € k[T),g # 0, square free, degree g; < degree g such that

b= (Y —g(¥2), s Yao1 = gno1(¥a), 9(¥2))

Proof: Set V ={z ek | F(z)=0 for all F € b} where k = algebraic closure. Since
dim b = 0, V is finite. We consider the projection pr : V — E,(Z1,. .-+ Tp) ¥ Tn.
Assume it to be injective, i.e., by definition, V to be in ’general position’. The Galois
group G = Gal(k | k) operates naturally on V, and pr(V') is the union of full conjugacy
classes. This implies the existence of a square {ree polynomial (note: k perfect) g € k[T]
such that pr(V) = {z € k | g(z) = 0}. For each z, € pr(V)let (z},...,z37",2,) be the
unique point in V over z,. By using the Lagrange interpolation formula and making
use of the Geaction on V' one actually gets polynomials gi,...,gn-1 € k[X], degree
gi < degree g such that, for all z, € pr(V),(g1(2n),.--,gn-1(Zx), Ts) is the point over
z,,. This shows that b and b’ = (X; — g1(Xs), .., Xnc1 — gn-1(Xn), 9(X5)) have the

same point,s in k. Since k['xl’ <o ’A’n]/bl ~ k[X"]/( (X )) is separable we see that
giAn

also b’ is a radical ideal. Hence, b = b’ by Hilbert’s Nullstellensatz.

In the case that or is not in general position we have to adjust it. Using the above
mentioned coordinate transformation one sees that all but finitely many t’s will put o
into the desired general position. o



In our situation, if we had o1y in general position, then

_ R[Xj, X,,/ ~ R[T]/ ;

& (‘Xl '—gl(‘\/'n)a"-w-'\fn-—l —gn—l(‘xn)’g(}‘ )) (g(T)) with
g € k[T]. Also, and this is crucial, A would admit the simple basis 1,7T,...,TN"!
N = degree g. Relative to this basis the matrix for (ier) < h > shows additional
features which allows a more accessible determination of its signature. Before turning
to this point we must find the generators of oy as given in the Shape Lemma. It
is the key point for our calculation that this set of generators allows a conceptual
characterization as was first pointed out by Gianni and Mora, cf. [Gi-Mo)]. Using the
definition of a reduced (= minimal) Grobner basis one readily verifies that, under the
above conditions on ¢y,...,¢._1,9,

X - gl(-Xn)s oy Xnoy — gn-—l(X'n)ag(Xﬂ)

form the reduced Grébner basis relative to the lexicographical order satisfying
Xi>Xo> ... > X,.

By the remarks above we derive the actual computation of /oty hence of
A= RN *X"]/ . One first determines g; € ao N k[ X}, 9; # 0,2 = 1,...,n,
N

e.g. by Grobner bases techniques, cf. [Bu]. One then determines the reduced Grobner
basis of (019,§1,....9x) = \/org relative to the term ordering above. If this basis is not
as expected then a random choice of the parameter t in the coordinate transformation
will help to get this position and a second Grobner basis computation will do the job.

Having done all this we are constructively given polynomials ¢i,...,gn-1,9 € k[X,]
and an R-isomorphism

=A XN —g(T)X,—=T@i=1,...,n-1).

Next we use the standard basis 1,¢,...,t " where t = T + (g(T)), N = degree of g.
Given h(T) € k[T] we have to detexmme the matrix of (trj ). < h(t) > relative to
this basis. At the place (7. ) of this matrix we find

trr(h(1)t ) = Z h{a)a't 2.
a€R(V=1)

gla)=0
Invoking the symmetric function theorem we get that the right hand side is a Z~
polynomial in the coefficients of A(T') and ¢g(T'). The chapter 4 of [P2] is devoted to a
study of algorithms for evaluating symmetric functions. One may use those methods.
but there is another way to determine tr,ﬂR(h(t)t'). One expands the rational function

T

T-{T(ZgT)—) in the formal power series field k((T~')) and passes to E((T-l)) S k((T-Y)).

Writing ¢(T') = [[(T — a) we get W(T ”g((;)) v, 20 T Ea 7= + H(T) for some
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polynomial H € k[T]. After multiplying by T we finally get: T-"—(-%-T—) = TH(T) +
.tk = TH(T) + Y520(3, h(a)d')T~!. Hence trp(h(t)t') is the coefficient of

g 1-aT-1
T-!in this expansion.

The resulting matrix is a so called Hankel matrix H = (@;4;-2)i j=1,...~ built up from a
sequence ayg, . ..,asn-2 € k. There are efficient methods for determing the signature of
a Hanke! matrix, e.g. by a theorem of Frobenius. To see the details one may consult

[G] or [1].

So far we have outlined a method to compute sgn (tr4r). < h >. This clearly implies
the determination of #V(R) = sgn (trar). < 1 >. However in the case of the second
statement of prop. 2.2 we would be forced to cope with as many as 2° calculations
of the type sgn (tryr). < hi >. Even for fairly small values of s this would be
beyond any feasible limit. In the next section we show that in fact the simultaneous
inequalities f; > 0,..., f, > 0 can be replaced by just a single one h > 0, and a single
one can be handled as above. The reduction of the s inequalities to just one is not
without expenses. So one should look for other methods. The fundamental B-K-R
algorithm of [BKR] applies to several inequalities by an ingenious procedure using only
one inequality in each step. For further reading one may turn to Pedersen’s paper or
the forthcoming ones by Pedersen, Roy and Spzirglas. Also, after the reduction to the

univariate case A = R[T]/(g(T)) other methods are available as well, c.f. [GLRR].
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3 The O0-dimensional case of the Brocker—
Scheiderer theorem

It was proved by C. Scheiderer [S] and L. Brocker (unpublished) that in any n-
dimensional affine variety V over a real closed field R a basic open set S = {z €

R) | fi(z) > 0,..., f.(z) > 0} can in fact be described by at most % inequalities
(7 = maz(l,n)):

S={zeV(R)|hi(z)>0,..., hx(z) > 0}, hy,..., hx € R[V].

This amazing theorem is a real challenge to computation since all known proofs do not
offer constructive methods to find hy,..., hx.

In the sequel we consider the case of dim V = 0 and will propose an algorithm to find
hy starting with a description of V and polynomials representing fi,..., f,.

So let V' be described by polynomials as
ViFi=0,....,F,=0

where F1(X1,..., Xn),..., Fo(X1,..., X)) € k[X,,..., X, ] for some k C R. We also as-
sume f1,..., f; € k[X1,...,X,]. Finally weset otg = (Fy,..., F,)Qk[Xy,..., Xp], o0 =
ooR[X. ... .. X,]. As explained in the last section, e.g. by Grobner-bases techniques,
we find the following generators of |/org (possibly after a coordinate transformation)

X] -91(\ ) Xn—l ’gn—l(‘Xn)ag(AXn)

with g1,...,9 € k[X,], g square-free, deg g; < deg g,(: = 1,...,n — 1). Setting
N(g) ={a € R| g(a) =0} we find an isomorphism

¢ :V(R) = N(g),(z1,...,Zn) — T4

sending our regular functions fi( X’l,..._,_\n),. f(X’l, ,Xn) into the univariate
polynomials f;(¢1(T),...,gn-1(T),T) = f; € k[T],t = 1,...,r. After this transforma-
tion we are concerned with the set

(3.1) S={a€R|g(a)=0,f(a)>0,...,f,(a)>0}.

Suppose we have found h(T) such that S = {a € R | g(a) = 0,h(a) > 0}. Then
{r € V(R) | filz) > 0,...,f(z) > 0} = {1‘ € V(R) | h(z,) > 0}. Hence, we have
to settle the case (3.1) under the assumption that ¢ is squarefee. We first want to
point out that, in our case, the Brocker-Scheiderer result is an immediate consequence
of the geometric trace formula and some simple quadratic form theory. Setting ¢ =
<IIfi> < fi,..., f- > we will ind h € R[T] with ¢ = 27" <h>< h > over

15



A= R[T]/(g(T))' As g is squarefree we have A = [ R x [[ R(V—1) where each

factor R corresponds to a point z € N(g). If some fi(x) = 0 then ¢. = Null-
form of dimension 2 and if all fi(z) # 0 either o, hyperbolic or pz = 2"x <1>.
Since quadratic form theory over R and R(v/=1) is completely known one easily finds
h € R[T] as desired.

The algorithms we are going to propose will work in the following two cases:
a) R=1R,

b) R = R{e}...{en}, an iterated Puiseux-series field with ¢ infinitesimal small
relative to IR{e;} ... {ei-1}.

For definitions cf. [BCR, (1.2.3), p. 10].
1% case: R=1R

Once the binary case r = 2 in (#) is settled a recursive procedure will cover the general
case. So, consider the situation

g(a) = O’fl(a) > Oaf?(a) > Oag’fl’f2 € k[T]

and notice that we do not know the zeros of g in k. The following reasoning will make
use of the a € N(g) only on a conceptual level; the algorithm itself entirely deals
with g, fi, f2, i.e. their coefficients. The set N(g) being finite implies that there are
polynomials, say,

sgn fi,sgn f2 € R(T)

such that (sgn fi)(a) = sgn(fi(a)).i = 1,2 holds. Now, set H = sgn f1 - sgn fa
(14 sgn f1 + sgn f,) then one readily verifies for all a € N(g):

(3.2) H(a) >0+ fi(a) >0, fa{a) > 0.

Thus, it remains to compute sgn f; as defined above. As a matter of fact, we don’t
know of any way to do that. If one could compute the square root of positive functions

in A = R[T]/( () then an application to \/_f_2 would help to find sgn(f) € A. But,
g

no method is known to us. However, looking at (3.2) and the definition of H one
observes that any pair of sufficiently close approximations of sgn(fi),: = 1,2 will serve
as well. In fact, if for i = 1,2, s.(f;) denote a polynomial with

| s.(fi)—sgn fil<e on N(g) and s(fi)(a)=0 whenever fi(a) =0

and if 0 < € < 3 then setting H, = se(f1) - s (f2) - (1 + s(f1) + sc(f2)) we also get on
N(g):
(33) H >0+ fi>0,f2>0

16



Consequently, given f € IR[T}, we have to find an approximation of sgn(f) on N(g)
by a polynomial s.(f) € R[T]. This will be basically achieved by a global Newton

method applied to the ring Ag = IR[T]/( (7))’ the latter being considered as a ring
g

of functions on N(g). To display the basic idea we assume that all of the following
operations can be carried out in Ao. We are going to write down the Newton sequence

for the equation X? — 1 = 0 in Ay starting with the initial value fo = f, i.e. we get
(fx) where

frv1 = %(fk +—), fi € Ao

1
S
Looking at the parabola defined by y = 2? — 1 and taking the geometric interpretation
of the Newton method into account one readily checks that (fi) converges to sgn f on
N(g).

However, to carry out this idea we have to cope with the situation that f or some f;
are not units in Ag, i.e. that some fi are not relatively prime. That this can happen
accounts for a more careful approach. The basic idea will be kept nevertheless.

Proposition 3.1 Given f,g € R[T] one can construct a sequence of polynomials (T})
in R([T], without knowing the zero-set N(g), such that

(i) him Fi(a) = sgn f(a) for every a € N(g),

ko

(i1) Fila) =0 for every a € N(g) satisfying f(a) = 0.

Proof: 1*' case: f,g relatively prime. We are going to construct two sequences
(9x)s (Fx),k > 0, in R[T] subject to

14

a) go = 9,9k | gk-1, N(gx) = N(g),
b) Fo = f, F) and gi relatively prime,

1

Fipi(a) = 5 (Fk(a) + 1

—_— for all « € N(g).

Fk(0)>

Since, by assumption, there is no a € N(g) with f(a) = 0, condition (ii) is empty, and
so the sequence (F}) has the desired properties. Assume gi, Fi are constructed. Then

fe = Fe+(gx) € ]R[T]/(gk) = Ay is a unit in A. Hence we can form fiy = (et 71;)

in Ax. Note that f;! can be computed by the Euclidean algorithm applied to F and gi
in R[T}. Choose any Fiy; € R[T] representing fi4+1 in Ag. Set gis1 = gr/gcd(Fis1,9k)-
Since g. as a divisor of g, is squarefree we get that Fj4; and g4 are relatively prime.
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Fis1(a) implying f#(a) + 1 = 0 which is impossible in view of a € R, fi €
Hence, the 1°! case is settled.

Clearly, N(gk+1) € N(gx), but any = € N(gx)\N(gk+1) would satisfy gi(a) = 0 =
R[T).

2"¢ case: Since g is squarefree the polynomials § = g/gcd(g, f) and f are relati-
vely prime. So we find a sequence (F}) doing the job on N(g) which is N(g)\N(f).
Using again that ged(g, f) = 1 we find by the Euclidean algorithm a polynomial, say,
(f,g)"" € k[T] satisfying (f,g)™'- f=1 mod §. Now set

x=(f9)7f

then on N(g):
g o1 fla)#0, te a€N(g)
x(e) =144 fla) =0, ie a¢g N(3),

so x is the characteristic function of N(§). Hence, setting Fi := x - Fk, we get the
desired sequence. O

It remains to decide when to stop the sequence (F) in order to get the approximation
1
| Fila) = sgn f(a) |< 3 for a € N(g).

On N(g) N N(f) we have Fi(a) = 0. so no problem arises. On N(g)\N(f) we have
Fisi(a) = 3(Fi(a) + F(a))' In particular, | Fi(e) |> 1 for k > 1, @ € N(g)\N(f)
For those a’s we get by induction, if k > 1

2l -1

| Fk+1 '—2_[—,

)< ,llFA (o) | +

hence, choosing any bound M for sup | Fi(a) |, then for k > 1 one gets
o€N(g)

| Fuaila) = sgn fle) |< 3

pronded M+ < 3. Le. log,(3M) < L.

The final task remains to find a bound A . There are at least two ways. Set F = Fj}.
k>1.

I) Consider H(X) = Resy(g(Y),X — f(Y)) then for 8 € R:
H(B)=0<+= = f(a) for some a € N(g).

As is well-known the real roots of a polynomial 2 can be bounded in absolute value
by 1+ ||A|| :== 1 + max{| coefficients }.
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IT) A less sophisticated bound can be obtained as follows:

N
| Fla) =1 Y aat 1< 3 lai |- la F< IF] - (1 + g™
0

Clearly, Fi can be chosen with deg Fi < n — 1 where n = deg g. Hence, M <
%l - (1 + (g™t

We are going to summarize.

Proposition 3.2 If k > 1, weN(g) | Fr(@) [S M and the Fy are chosen with deg Fi <

n —1 where n = deg g then we have
1
| Frri(a) — sgn f(a) |< 3 for all a € N(g)
provided | > logy(3M). The bound M can be obtained as described above.

2™ case: R = R{€}...{en}

Basically. we follow the same approach as in the case R = IR. If f € R[T] there is a
further polynomial denoted by sgn f which satisfies

(sgn f)(a) =sgn f(a) forallroots a of g in R, ie o€ N(g).

As above, we try to find a polynomial h subject to
. 1
| hia) = (sgn f)(a) |< 3 for all a € N(g).

To this end we want to use the Newton-method, i.e. we start by studying the sequence
fivr = 5(fi + /l—k),k > 0,fo=f+(g(T)),in Ay = R[T]/(g(T))' However, in our

present case, even if all fi are units, the sequence ( f;) does not necessarily converge to
sgn fon N(g). This failure is due to the fact that the order of R is non-Archimedean.
We will remove this problem by modifying f into f € R[T] where sgn f(a) = sgn f(a)
for @ € N(g) and f allows a convergent Newton-sequence.

To prepare the construction of f we first study the behaviour of the mapping a, b — a+%
where a,b € R*,ab > 0. We will make use of the (Henselian) valuation v of R which
arise from the recursive construction of R, is trivial on IR, has value group I' = Q x
...xQ, n-times, lexicographically ordered in ascending order of the factors, and residue
field IR. In fact, every ¢ € R" has a unique presentation a = €}’ ...€" u,ry,...,r, € Q,

u a unit. We get v(a) = (r1,...,7n) € I', and a > 0 iff the residue class of u > 0 in R.
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As usual, an element a is called infinitely small (resp. large) if |a |< r (resp. |a |> 1)
for all r € R,7 > 0. Equivalently, a is infinitely small (resp. large) if and only if
v(a) > 0 (resp. v(a) < 0).

In particular, if a is any positive element with v(a) > 0 then v(1 + a) = 0. Using this
one readily checks the following statements.
(¥)  Assume ab > 0. Then
a) 02> v(a)>v(b) = v(a+y)=v(a).
b) v(a) 2 v(b) 2 0= v(a+ ) = v(}).
Consequently, for any a € R and setting b= J(a + 1):
(+%)
a) v(a) < 0= v(b) = v(a).
b) v(a) > 0= v(b) = —v(a) < 0.
¢) v{a)=0= v(b)=0.

Now we consider the following Newton-sequence z441 = 3(Tx + 7 ) Zo = a. Assume
v(z9) = v(a) = 0. Then v(z,) = 0 for every k € IN. We can erte xk = € + m; where
ex € R*,v(my) > 0. Then €4y = %(ck + -}k-), hence (€x) converges in IR to sgn ¢ =
sgn a. This means we find for given r € R}  k(r) € IN such that | zx — sgn(a) |<T
for all k > k(r).

Therefore, if an arbitrary element a € R* is given and sgn (a) should be computed via a
Newton-sequence we first have to replace a by @ subject to v(a) = 0, sgn (a) = sgn (a).
Clearly, there is no problem if a is given explicitly. However, in our application we deal
with the elements f(a),a € N(g) without knowing the roots a € N(g), having only
f.g at our disposal. Asin the case R = IR we consider H(X) = Resy(g(Y), X — f(Y)).
We know that the roots of H in R are exactly the values f(a),a € N(g).

Therefore we are facing the following problem: given a polynomial A € R[T] design
an algorithm constructing, on the input a € R*, an element @ such that for all a €
N(h),a # 0 we get v(@) = 0,sgn a = sgn @. The following algorithm is based on the
observations listed in (x) above.

1°* step. Construct a list of elements (x;);=;...n~ of R such that

x>01—1 N,

1)
2) v(z1) > 1‘2) >...>v(zN),
3) for every a € N(h ),a # 0 there is some z; with v{az;) = 0.

1,...




2" step. For each @ € R* compute @ as the continued fraction

1

a=(za,...,zNna] = 710 + T
Ta + 1
raa +

1

1
N+ —
TNa
We first show that @ has the desired properties if h(a) = 0,a € R. Obviously, sgn @ =
sgn a for every a € R. Let v(az;) = 0. Then v(az;) > ... > v(az,-) 2> v(az;) =0>
1

...2v(azn). Let @; = ;0 + denote the ’lower’ part of @.
1 P
Tipa+

1

NG
From (*) we deduce v(@;) = 0, sgn @; = sgn a. Again by using (*) we derive v(a) = 0.
0

Thus, it remains to construct the list (z,);=;,.n. Let h = Zn: a; X', a # 0 and h(a) =
Since h(a) = 0 there exist ¢ < j such that a;a; # 0';31d v(a;a') = v(a;a’), ie.
v(a) = J—i—‘(v(fj)) Therefore, if we can produce a positive element z;; € R* with
v(zy;) = —7171>(ag/aj) for each pair (7,) such that 0 € ¢ < j < n and a;,a; # 0 then
the list (z,) is obtained from ordering the z;;’s accordingly. We have %7'- =€'...€r u,
u a unit. Then set z;; = €' ... where s = 3'%'.'7"" k =1,...,n. These elements
have the desired properties.

Next, we transfer this algorithm to the global setting of polynomial functions on N (g).
Let f € R[T] and assume first that f and ¢ are relatively prime. We will produce a
polynomial f such that f(e) = (f(a)) for every a € N(g). As already remarked above
the values f(«) are the zeros of h = Resy(g(}), X—f(Y)) in R. Then construct the list
(z;) attached to h in the algorithm above. In R(T) we calculate the continued fraction
[z1f....,znf] =: f*. Using the recursion formulae for denominators of continued
fractions we see that the denominators arising during the computation are of the type
fr-H,r=0,1, H € R[T] a polynomial without zeros in R. This implies f*(a) =
[z:f(a),...,anf(@)] = (f(a)) for all @ € N(g). Set f* = 4, A,B € R[T] and
g = g/gcd(g,B) where we assume B = fTH as above. Then N(g) = N(g) and
ged(B,g) = 1 since g is squarefree. From a presentation 1 = BC + Dg, C,D € R[T]
we derive that B(a)C(a) = 1 for every a € N(g) = N(g). Hence, f*(a) = A(a)C(a)
and f := A - C is one of the wanted polynomials. Clearly, this polynomial f can be
further reduced modulo § without loosing the property we are interested in.

We now drop the assumption that f and g are relatively prime. Then pass to fo = f
and § = g/gcd(f,g). Compute f, relative to f and g as above, i.e. fo(a) = (f(a)) for




every a € N(g) satisfying f(a) # 0. As in the case R = IR we find a polynomial x
satisfying x(a) = 1 if g(a) = 0, f(a) # 0 and x(a) = 0if g(a) = 0 = f(a). Then set
f=x"Jo

Thus, in both cases we have constructed f € R[T] satisfying for every a € N(g):
fla) = 0if f(a) = 0, f(a) = (f(a)) if f(a) # 0. Now the Newton-method can be
applied to f to construct a sequence (Fy) in R[T] approximating sgn f. Now, since
fla) = 0if f(a@) = 0 and sgn f(a) = sgn f(a) otherwise, from (Fi) we obtain a
polynomial k € R[T] satisfying | h(a) — sgn f(a) |< 3 as desired. 0O

(8]
o



4 A remark on Quantifier Elimination

The results of the first section allow us to give a very short and condensed quantifier-
free expression for:

(1) 3z:9(z) =0A fi(z) >0A ... A fu(z) >0 where g # 0;

(ii) 3z : fi(z) >0A ... A fu(z) > 0.
By some well known arguments of model theory this can be extended to a proof of
Quantifier Elimination in the theory of real closed fields. Let R be a real closed field

and Z C R asubring. If g = a, X" + ¢, X" ' + ... 4+ a0, f1,.- -, fm € Z[X],ax # 0,
we can use Prop. 2.2 to reformulate (i) as follows.

Let A := R[X]/(g( \,))

Then (1) becomes:

and z the canonical image of X in A.

(+) \/ sgn(trapr). <Ifi(z) > ® < fila),..., falz) >=k.
k=1

This transfer decomposes orthogonally into transfers of the type

(trar)- < h(z) >
where h is expressible as h = f;' - ... f&r for €1,...,em € {1,2}. We can restrict
ourselves to this case.

We are now going to sketch that (x) is equivalent to a disjunction of quantifier-free
expressions, polynomial over Z[1/a,], in the coefficients of g, f1,..., fm.

We note that 1,z,...,z""! is a linear basis of the R-vectorspace A. With respect to
this basis we get a matrix-presentation B for (trsr). < h(z) > with entries

bi; = (trap).-(h(z)z'z?) 4,j=0,...,n~1.

Definition 4.1 The polynomials M; € Z[Z,,...,Z;] defined by the recursion formula

-1
M;+> ZiM,_i+jZ;=0,j € Ny,

i=1

are called Waring-polynomials.

We need to use the following classical result.



Lemma 4.2 For monic g we have
traip(z?) = Mj(an_1,...,0a0,0,...) j € Ny

trAlR(:rO) =n

Hence, if h = ¢, X* +... 4 co we can express the (¢, ;)-th entry of the matrix B, setting
My:=n as:

k
trA|R .’II.I‘J ZC[ tTAl l+'+J)
1=0
k
an—l ag
= M (222,200,
= an an

There exist ways of expressing the signature of the symmetric matrix B by applying
Descartes rule of signs to the characteristic polynomial xp of B. But these are not the
most effective methods.

Hxp=d, X" +do; X" 1+ ...+ dylet Ny and N. be the number of sign changes in
the sequences

do.. . ,dn
do. —dy, ... .(=1)"d,

respectively. Then Descartes rule implies that the signature of B is equal to the integer
J,\'+ - ."\7_.
Thus, the case i) is settled.

To deal with (ii) we use an idea of [KK]. Let F := [] fi; then we see that the polynomial
=1

F

_ 232
=T

) = Fi(1- F%)

has a root between any two adjacent roots of F, and also has a root in each of the

intervals (—o0, @), (@32, 0c), where a;, a; are the smallest and the largest root, respec-
tively.

Using those roots of g as testing points, we can replace ii) equivalently by:
Jr:g(z)=0A fi(z) >0A ... A fu(z) >0

Thus, we have arrived at the first case.
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