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IN MEMORY OF ALFRED TARSKI, 1902-1983

The theory of real closed fields can be decided in exponential space or parallel exponential
time. In fixed dimension, the theory can be decided in NC. ©1986 Academic Press, Inc.

1. INTRODUCTION

In his 1948 paper [14], Tarski gave a decision procedure for the first-order
theory of the rea] numbers with +,, and =, commonly known as the theory of
real closed fields. His decision procedure Was nonelementary (in the complexity-
theoretic sense). An elementary decision procedure was given by L. Monk [10],

[5] and independently by Monk and Solovay [117. Various improvements and
heuristics notwithstanding, that worst-case bound has stood since that time,

In this paper we give a new algorithm that can be implemented in exponential
space or in parallel cxponential time. We also conjecture that the problem is com-
plete in exponential space.

The main lemma is of independent interest: an NC (ie., (log n)o™ depth and
polynomial size) circuit
polynomial equatichs an

and inequalities has a real solufion ™8t was known how to

the number of variables is fixed; but the depth of the circuit
EIOWs exponentially with the number of varjables.
On the practical side, we do not expect to be able to implement our algorithms
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to ¢ dﬁﬁtcrmine whether a given set of rational, univariate
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on parallel machines or in VLSI, given the current state of technology. However,
some of the techniques we develop may help to simplify the sequential algorithms in
current use, notably the cylindric aigebraic decomposition method of Collins {5].
Collins’ method uses numerical approximation techniques that appear inherently
sequential; by contrast, our method is completely algebraic. We make use of recent
advances in parallel algorithms for matrix and polynomial algebra [6,2, 15], and
develop and improved polynomial decomposition algorithm [15].

Our parallel algorithm for testing consistency of polynomial equations and
inequalities employs a generalized Sturm sequence method, the basic idea of which
appears in Tarski’s paper [14]. Considerations of efficiency require that the idea be
developed considerably further; in its final abstract form, it becomes an elegant ten-
sor identity (Sect. 2.3).

The remainder of the paper is organized as follows. In Section 2 we describe how
to test the consistency of univariate polynomial constraints: &i\ﬁn a system X of
constraints of the form p(x) <0, p(x) =0, or p(x)> 0, does the system have a real
solution x? This algorithm is the main building block which will allow us to
eliminate one variable in the quantifier elimination procedure. This section is
divided into three subsections, as follows. Section 2.1 describes a simplifying
precomputation which will map a given system of polynomial equations and
inequalities into an equivalent system in which the polynomials are square-free and
pairwise relatively prime. Section2.2 describes Sturm’s theorem and a
generalization due to Tarski. These results will allow us to derive a linear
relationship between the consistent sign assignments to two polynomials p,ge 2
and certain Sturm computations involving polynomials in the Euclidean remainder
sequences of p and ¢. Section 2.3 extends the results of Section 2.2 to a tensor iden-
tity, which will allow solutions for two separate systems X', and X, to be combined
into a solution for ;U 2.

In Section 3, the algorithm of Section 2 is extended inductively to handle systems
of multivariate polynomial constraints. The algorithm can be implemented in NC
for fixed number of variables, and exponential NC or sequential exponential space
if the number of variables is allowed to grow as the size of the input. In Section 4,
we describe how to eliminate quantifiers in the theory of real closed fields using the
circuit of Section 3.

2. TESTING CONSISTENCY OF UNIVARIATE POLYNOMIAL CONSTRAINTS

Suppose we are given a finite set 2 of rational univariate polynomials p(x), and a

sign assignment ¢: X —~ {—1,0, 1} representing the system of equations and strict
inequalities

pix)<0 if o(p)= —1,
=0 il o(p)=0,
>0, if o(p)=1.
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The system is said to be consistent if it has a real solution. We write | 2]| < n if there
are at most n poynomials in X, each pe X is of degree at most n, and all coefficients
of pe X can be represented with at most n bits. We will give an algorithm in NC
(ie., a uniform family of circuits of depth (logn)?") and size n9") to determine
whether a given system (Z, ) with ||| < n is consistent. In general, we know of no
NC circuit that finds a real solution of (X, ¢), even if it is known that one exists;
however, we can test cons:stency‘f and even determine the cardinality of the set of
solutions.

For the real closed field algorithm, we will need more: for a given &, |2l <n, we

will need to produce list of all consistent sign assngnments Although there are‘

exponentially many possible sign assxgnments at most 2n” ¥ 1 of them are con-
sistent. This is because there are at most n” roots in all, and the signs.of ‘the
polynomials are constant in intérvals between roots. We show how to produce such
a list in NC or in space (log n)°".

e — 4

2.1. Simple Refinement

A polynomial is simple if it is square-free, i.c., if it has only simple roots. A set of
polynomials X is called simple if the elements of X are simple and pairwise relatively
prime. Given X with |2 <n, we show how to produce in NC a szmple refinement,
that is, a new set of polynomials I” such that I is simple, ||I']| < O(n*logn), and
each pe X is a product of powers of elements of I'. A sign assignment for /" will uni-
quely determine a sign assignment for 2. This precomputation step is not essential,
but is taken only to simplify the presentation later on.

The straightforward divide-and-conquer approach using iterated gecd com-
putations yields nonpolynomial growth in degree and coefficient size, so care must
be taken.

A single polynomial can be refined using the squarefree decomposition algorithm
of [15]. Thus we can assume without loss of generality that all pe X are simple.
Let 0( p) denote the set of roots of p. Note

() 0(p)=0(ged(1))

pel

U 6(p)=6(lcm(1)) (1)

0(p)=0(lem(Z)/p)

where /= 2 and 7 denotes complementation in 8(lem(Z2)), the set of all roots of all
pe . Since |2} <n,

|0(lcm(X))| < n

The 0(p), pe 2, are generators of a Boolean algebra on 6(Iem(X)) with Boolean
operations given by (1). The simple refinement we seek consists of the atoms of this
Boolean algebra, 1.¢., all nonempty sets of the form

(Wa’\w

,__Q)
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() 0(p)n () 0(p)

pel pel

where ITuI'=2% and InI'=. By (1) these atoms are represented by the
polynomials

p(I, I'y = ged(1)/ged(ged(I), lem(I'))

of nonzero degree. These will be determined in log n stages. At some intermediate
stage, suppose we have all the atoms of the Boolean algebra generated by 2, €2,
given by a list of pairs (I, I') where Jul'=2, and InI'=(J, and all atoms of
2, < X presented in a similar way. Each atom of X, U X, is an intersection of an
atom (I, I') of Z, and an atom (J,J') of X,. This intersection is represented by
p(IuJ, I'uJ'). Computing all such polynomials and discarding those of degree 0,
we are left with a list of pairs (K, K') representing all atoms of X, U X,. After logn
stages we have built a list of all atoms for 2. The corresponding polynomials
provide a simple refinement of Z. The entire computation can be done in NC using
the multiple-polynomial ged algorithm of [15].

If I" is a simple refinement of X, then any consistent sign assignment for /" gives a
consistent sign assignment for X. Any consistent sign assignment for I” assigns at
most one 0, since the elements of I” are relatively prime. We wish to refine I” further
to get 4 such that any consistent sign assignment for 2 is obtained from a con-
sistent sign assignment for 4 in which exactly one 0 is assigned. This is done by
appending the polynomial '

r=lem(Z) (x —b)(x+ b)
to X before refining, where

b=1+ max |a;/a;|,

O0<isk—1

the g, are the coefficients of lcm(X), and a, is the leading coefficient. All roots of
lem(X) lie in the interval (—b, b) [8], and r has a root in every interval between
any two roots of lem(X). Thus without loss of generality we can limit our attention
to sign assignments that assign exactly one 0.

2.2. A Generalization of Sturm’s Theorem

We have reduced the problem to the following: given p and Z, { p} U Z simple,
1{p}uZ| <n, list all consistent sign assignments assigning 0 to pand —1 or 1 to
the elements of 2.

If = ¢, the problem is merely to determine whether p has any real roots. This
can be solved using Sturm sequences (see [13]). This technique uses the coefficients
of the polynomial remainder sequence for p and p’, which can be obtained as sub-
resultants, or determinants of submatrices of the Sylvester matrix of coefficients of p
and p’, in NC [4].
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Sturm sequences work as follows. Let p,, p, be square-free, relatively prime
polynomials in one variable, and let g, be R, a<b, such that neither a nor b is a
root of p, or p,. Consider the Euclidean remainder sequence

Po
P

Pr+1 =9k P — Pr—1

P

where p, , , is the negative of the remainder obtained by dividing pi_, by pi. pa 18
a constant nonzero polynomial, since by assumption po, p, are relativly prime.
Count the number of sign changes in py(a),..., p.(a), count the number of sign
changes in po(b),..., p.(b), and subtract. Denote the result of this computation by
S(po, P1»a, b). Sturm’s theorem states that S(p, p’, a, b) is the number of real roots
of p in the interval (a, b).

For sufficiently small a and sufficiently large b, the value of S(po, py,a, b) is
independent of the choice of @ and b. We denote this value by S(po, py)- By Sturm’s
theorem, S(p, p') is the number of real roots of p. S(py, p;) can be computed
efficiently as follows: if /(q) is the leading term of g, then evaluating /(g) at —1 gives
the same sign as evaluating ¢ at any number smaller than all the real roots of g;
similarly, evaluating /(¢g) at 1 gives the same sign as evaluating ¢ at any number
larger than all the real roots of g. Thus if we substract the number of sign changes
in the sequence [/(po)(1),..,(p,)(1) from the number of sign changes in
Hpo(— 1), [ p ) — 1), the result is S(po, p,). Define

¢,={x| p(x)=0and g(x)>0}
é¢,={x| p(x)=0and g(x) <0}
where ¢ is simple and relatively prime to p. Sturm’s theorem then says that
S(p, p')=lc,l +1¢,l.

The following generalization is implicit in Tarski’s paper [14].

LemMMa (Tarski). S(p, p'q)=lc—lc,l.

Proof. Let pq..., p, be the Euclidean remainder sequence as defined above with
po=p and p, = p'q. Consider a point ¢ moving from —oco to +co. Let S(z) denote
the number of changes of sign in the sequence po(7),.., p,(f). S(#) is constant
between roots of the p,, so S(t) can change only when ¢ skips over a root of some

= Tod
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p:. The assumption that p is simple implies that p, is constant and nonzero. At a
root of p;, O<i<n, p;, (1)= —p,_ (1) #0, so the net change in S(¢) as ¢ skips
over that root is 0. Thus the only roots that can change the value of S(r) are roots
of p. There are four cases, depending on the signs of p’ and ¢ at a root of p. If
p'>0and ¢>0, then p'g>0 and S(¢) decreases by 1 as we jump over that root. If
p'>0 and ¢<0, then p'g<0 and S(¢) increases by 1. If p’ <0 and ¢>0, then
p'q <0 and S(¢) decreases by 1. If p’ <0 and ¢ <0, then p'g>0 and S(¢) increases
by 1. Thus S(¢) decreases by 1 whenever ¢ >0, and increases by 1 whenever ¢ <0,
so the net gain or loss going from — oo to + oo is as stated in the lemma. J

2.3. A Tensor Identity

If = {q}, the values of S(p, p') and S(p, p'q) determine the values of |c,| and
|c,| by solving a simple linear system of order 2:

[1 1][|cq1] 2[ S(p, p') ]
1L —1]lle,| S(p, p'q)
The 2 x 2 matrix is denoted 4. The value of |c,| (resp. |¢,|) determines whether the

sign assignment p=0, ¢>0 (resp. p=0, ¢<0) is consistent. For £={q,,q,},
there are four linear equations in four unknowns:

1 1 1 1 leymcyl S(p, p')
1 -1 1 —1 leinel ) 1 S(p p'qy)
1 1 -1 -1 leynél | | S(p, p'g2)
1 -1 -1 1 |€, N &y S(p, P'9:92)

Here ¢; and ¢, abbreviate c,, and ¢, respectively. The 4 x4 matrix 4, is the
Kronecker (tensor) product of 4, with itself:

1 1 1 1
I -1 1 —1] [4, A,
1 1 -1 -1 “[A,—Al
1 -1 -1 1

}:A1®Al.

A, is nonsingular, since Kronecker products of nonsingular matrices are again non-
singular. After making the four Sturm queries on the right, the system can be solved
for the four unknowns. Each unknown corresponds to a sign assignment to ¢, and
q,; the unknown is nonzero exactly when the corresponding sign assignment is con-
sistent.

In general, for X' = {q,,.., q,}, we get a 2" x 2" linear system A,c =s, where ¢ is a
vector consisting of all elements of the form

ldyn - nd,, d;e{c;, ¢}, 1<i<gn,
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and s is a vector of all eilements of the form
N (p, Il >

where [T7/=1],c,9, /1S Z. A, is a 2" x2" Hadamard matrix, obtained by taking
the Kronecker product of n copies of 4,. A, is nonsingular (in fact, 4, !=2""4,),
so we could in principle make all the Sturm queries s and solve the system for c.
The nonzero elements of ¢ correspond to the consistent sign assingments. Unfor-
tunately, the system is far too big for this computation to be done in NC.

We now make the key observation that since ||{p, q,,.., ¢} <n, p is of degree
at most #, therefore all but at most n of the elements of ¢ are 0. Thus 4,c=sis
equivalent to a much smaller system, obtained as follows: drop out the zero
elements of ¢ and the corresponding columns of 4, to obtain a rectangular system
of order at most 2" x n. The resulting matrix is of full rank, therefore a basis can be
found among its rows. Drop out all rows of the matrix not contained in this basis,
and the corresponding elements of s. We are left with a nonsingular square system
of order at most #n, in which the vector ¢ contains all nonzero elements of the form

ldyn - nd,|, diefc,c}, 1<ign

We described the smaller system by constructing the 2” x 2” system first and then
reducing it. This cannot be done in NC. However, we show below that the smaller
system can be constructed without constructing all of 4, first. The computation will
proceed in stages; at each stage, two n x n solutions for subsets [, " = X will be
combined via a tensor product construction, given in detail below, to yield an
n® x n? solution for I'u I". This n?x n? solution will then be reduced to an nxn
solution as above (delete the zero elements of ¢ and the corresponding columns of
A; find a basis among the rows of the resulting matrix, and delete the other rows
and the corresponding elements of s).

The tensor product construction proceeds as follows. Suppose I, I"' < X, ¢ and ¢’
are vectors of length m and n, respectively, such that ¢ contains all nonzero
elements of the form

Ne,n N ol Icr
gel qgel —1
and ¢’ contains all nonzero elements of the form
Ve, [V &, Jcr,
gelJ qel" —J

s and s are vectors of length m and n, respectively, containing elements of the form
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S(p,p'HI), Icr,
S(p,p’ﬂ]), Jer,

respectively, and A4 and A4’ are nonsingular square matrices of order m and n,
respectively, such that

Ac=s, A =s".

Moreover, assume that these equations hold independently of the sizes of the non-
empty sets of the form

Ne,n ()&, V=P

gel qge X —1
(this assumption will be explained more fully below). Let A® A" denote the
Kronecker product of 4 and 4’, obtained by replacing each entry a; of 4 by the
matrix a;A. A® A’ is nonsingular since 4 and A’ are. We index the entries of
A® A’ by four indices i, j, k, I, where i, j give the position of the block a;A" and &, /
give the position of the entry a,a), within the block.

The vectors ¢ and ¢’ are combined into a new column vector cc’ consisting of m
column vectors placed end-to-end, each one of length n. The entries of cc’ are
indexed by two indices i, j, where i gives the position of the block and j gives the
position of the entry within the block. The i, jth entry of cc’ is lene'l, where |e| is
the ith entry of ¢ and |e’| is the jth entry of ¢".

The vectors s and ' are combined into a new column vector ss’ consisting of m
column vectors placed end-to-end, each one of length n. The entries of ss” are
indexed by i, j as above. The i, jth entry of ss” is

S <,,, 11 (IAJ))

where S(p, p’' T11) is the ith entry of 5, S(p, p' [1J) is the jth entry of s, and 4
denotes exclusive-or of sets.

The following equation gives the relationship between these constructs.

LEMMA. (A ® A')(cc')=ss'. Moreover, this equation holds independently of the
sizes of the nonempty sets of the form

) c,0 ) &, Ic”X.
gel qe 2 -1
Proof. In order to explain the use of the tensor product, we must first refor-
mulate the lemma in terms of linear algebra. Let B be the Boolean algebra of sub-
sets of roots of p generated by the sets c¢,, ge X, with the usual set-theoretic
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Boolean operations. B extends to a real vector space B, namely the free vector space
over R generated by the atoms (minimal nonzero elements) of B. If B has k atoms,
then B is isomorphic to {0, 1}* with componentwise Boolean operations, and B is
isomorphic to R*. We may then regard B as a subset of B via the inclusion
{0, 1} < R. The atoms of B correspond to bit strings (0, 0,..,0, 1, 0,..., 0), and these
also provide a basis for B. Define a multiplication on B componentwise:

(@ys @) (b1 by = (ayby,.... agby).

Under this operation, B becomes a commutative algebra with identity (1, ,.., 1),
which we denote by 1. Restricted to B, multiplication is just intersection. In fact, all
the Boolean operations of B can be expressed using the arithmetic operations of B:

anb=a-b
avb=a+b—a-b
a=1—-a
The identity element 1 of B is the top element of B, and the zero element 0 of Bis
the bottom element of B.
The size function |-| is a finitely additive, real-valued function on B, and as such
extends uniquely to a linear functional
w B—R.

Thus u is an element of the dual space B* of B.
We now describe the elements of ¢ and s in terms of B and w. For I, J< X, define
[17=T1,c,q and define

A= H Cy’ H (I'Cq)a

gel geld

o,=2c— L.

The elements of ¢ are all of the form

ﬂ C‘I n m E‘l

gel qgel —1

(e J1,0-2)

= (o) I<r

and, by Tarski’s lemma, those of s are all of the form

S(P’ p' H ]> = |Cr11| - ‘EI]II

:#(Cnl)_/‘(l "“Cnl)
= ula,), I=T.
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Similarly, the elements of ¢’ and s’ are of the form u(e,~_,), JSI7, and u(o,),
Jc I, respectively.
Let

c= <o) | 1<i<m), s={u(e) | 1<i<m),
=) [ 1<j<ny,  s'=Lua)) | 1<j<n).

We claim that the i, jth element of cc’ is u(a, «;) and the i, jth element of ss is
u(o; ;). By construction, if a;=a,, ,, IS, and a/=a,,_,, J=I, then the
i, jth element of cc¢’ is

lu(alu./.(rfl)u(f'»./))'
Also by construction, if 0,=¢,, I< I, and o;=0a,, J< I, then the i jth element of
ss' 18
(T 14)-
Thus in order to prove the claim it suffices to prove the two equations

Aporku L =% g Xyps

O140=0;"0y

in B. The first is immediate from the definition of a, . For the second, we use the
fact that '

cp=I(c,nc)uli,ne,)
=c 0+ (I=c 1 —c,)—cl—c,)c(l1—¢,)
=2c,c,—c,—c,+1
to get
2c,—1=(2c,—1){2c,—1),
2c,—1=(2,~1)*=1.
It follows that
6, 6,=2cq;,— ) 2cp,—1)
=2cs—1
= 2epyan — DQ2epygnn—1)?
=04

This establishes the claim.

et e - A e A T R T
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We are now ready to restate the lemma. Recall the assumption that Ac=s and
A'c’ = s’ hoid independently of the sizes of the nonempty atoms of B. This says that
the equations

A(p(@;) ) = (o)
A'({plaf) d) = ulaj))

hold independently of the choice of (integral-valued) p. Among such yu, a basis I:or
B* can certainly be found. This implies that the above equations hold for all ue B*.
The lemma is then equivalent to:

If A({p(e;)>) = <p(a,)) and A'({p(e])>) = <u(o))) for all pe B*, then
(A® AN o aj)p) = {plo; 7)) for all#GB* (2)

Writing A({a,; )= {0,), | <i<m, to denote the m equations

mn

Y. Aa,=a, 1<i<m

in B, it is clear that A({(u(x,)>)=<pu(s,)> for all ueB* if and only if
A({a;>)=<{a;>. Thus (2) is equivalent to

If 4(Ca;d)=<o,> and A'({a;})=<0g;>, then (A®A) ;" a;))=
(o7 0;). (3)

A simple calculation verifies (3): the ijth element of (4 ® A')({a," &} D) is

¥ Z Ay Ao ) :( » A,kak> (z A,ka,> o,

k=11/= k=1 =1
This completes the proof. {

Let 2= {q,,..,q,} and let || { p} U Z| <n. We use the above lemma to construct,
in log n stages, an n x n system Ac =s such that ¢ gives all nonzero sets of the form

‘dlm ﬁd,,|, d,-e{Ci,E,-}, 1<l<na

or equivalently, all consistent sign assignments to the ¢ € 2 at roots of p. In the first
stage, we solve the n problems {p, ¢,},., {p,q,} in parallel. Then we combine
adjacent solutions using the tensor product construction of the previous lemma in
parallel to get solutions for the n/2 problems {p, q,, ¢2},-» { P> 41, 4.}- We con-
tinue in this fashion, combining adjacent solutions in parallel; every stage doubles
the number of g, in each solution. If at any time the order of the system exceeds n,
we reduce it to an equivalent order »n system as described above. After log n stages
we have an n x n solution for the entire set { p, q,,..., ¢, }. At no time does the order
of any intermediate system exceed n’. Each stage requires the solution of a non-
singular system of order at most n? as well as the computation of a basis; all these
computations can be done in NC [6, 15,2].

e s
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3. TeSTING CONSISTENCY OF MULTIVARIATE POLYNOMIAL CONSTRAINTS

The construction of Section 2 produced a family of circuits, denoted generically
by C, to list all consistent sign assignments of a set 2 of polynomials, | Z] <n. It is
crucial to observe that C did not need to know the actual values of the coefficients
of pe X, but only the signs of certain polynomials in the coefficients of p. These
polynomials arose in the Sturm computations, gcd computations, subresultants, etc.

This observation allows us to construct circuits to handle multivariate
polynomials. Given a set of polynomials Z[x,,.., x,] in Q{x,,.., x,], we write
them as polynomials in x, with coefficients in the polynomial ring Q[ x,,..., x,_ ]
In order to list the consistent sign assignments of X[ x,,..., x, ], we need only know
the signs of certain polynomials X[x,.., x, ] in @[x,,.., x,_;]. A rough com-
plexity analysis of the construction of Section 2 reveals that o 3

Lo WA W L

FETx ey Xpe oy WS OUZ x5, X 1), <

Suppose we have built a circuit C,_, to list all consistent sign assignments of any
input set of polynomials X over Q[x;,.., x, 1, 1ZI <c|Z[x5 x5 If we
knew the set 2[x,,..., x, _] in advance, we could apply C,_, to Z[x,,.., x, ] to
obtain its consistent sign assignments; then each consistent sign assignment o of
2[xy,.., X, _,] would provide enough input information to the circuit C to enable
it to list all consistent sign assignments of X[ x,,.., x,] consistent with ¢. By doing
this in parallel for all such ¢, we would get the circuit C, listing all consistent sign
assignments of Z'[x,,..., x;].

The situation is a bit more complicated than that just described, because the
polynomials X[x,,.., x,_,] are not known to C at the time of input but are
generated along the way. Thus C must use C,_, as a subroutine, calling it at each
level to incorporate new polynomials into X[x,,.., x,_,] as they are generated,
and producing new consistent sign assignments that extend the old assignments
with signs for the new polynomials. Using the rough estimate

120X 1 s X NS NZ L X, D0,
we get

k—i .
12 Txgsm xS (DA B 7N xk]”3 > i<k

The depth of C, is the product of the depth of C, roughly (log |Z[x,,..., x,]II)?,
and the depth of C,_,. Inductively this gives

k -
[T (og(I£Txy ey x,117))°

k
depth(C) < [] (log 1 Zx 1, x,311)°
i=0
<

Mo

<94 (log 12 [x 5, x, T,
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which is still in NC for fixed number of variables k. If the number of variables can
grow linearly with the size of the input, however, then the depth becomes exponen-
tial. This is the source of the exponential upper bound in the quantifier elimination
procedure that follows.

4. ELIMINATION OF QUANTIFIERS

Once we have a circuit to produce the 2[x,,.., x,] and their consistent sign
assignments, the actual quantifier elimination circuit is straightforward. Suppose we
want to decide the truth of the sentence

'lel e annB('xla'", xn)

where B(x,,.,x,) is a Boolean combination of polynomial equations and
inequalities in x,.., x,. Let Z[x,,.., x,] be this set of polynomials, and generate
the sets &{x,,.., x;], 1 <i<n, as in Section 3. If @, =13, construct an \/-branch
with root r and one leaf for each consistent sign assignment of XZ(x,). If 0, =V, the
construction is the same, except we use an A-branch instead of an \/-branch. For
each leaf, the consistent sign assignment ¢ associated with that leaf determines a set
of consistent sign assignments for 2(x,, x,), namely those assignments that are con-
sistent with ¢. If Q, =3, we again construct an \/-branch from ¢, and each new leaf
15 associated with a consistent sign assignment of X(x,, x,) that is consistent with ¢.
Continuing in this fashion, at the bottom of the circuit we have consistent sign
assignments for Xx,,.., x,], which determine the truth or falsity of B(x,..., x,).
Starting from these truth values, the circuit associates a Boolean value with each
node, computing upward toward the root r. The final Boolean value associated
with ris true iff @, x,--- Q,x,B(x,.., x,,) is true. The circuit is not really a tree but
a directed acyclic graph; the depth and size of the circuit are roughly those of the
circuit C, constructed in Section 3.

The exponential-depth circuits produced above are uniform and can be simulated
in exponential space {3]. We have thus shown

THEOREM. The theory of real closed fields can be decided in deterministic
exponential space or parallel exponential time. In fixed dimension, the theory can be
decided in NC.

Since complex numbers can be encoded as pairs of reals, we also have

CoROLLARY. The theory of the complex numbers under +, -, and = can be
decided in exponential space or parallel exponential time. In fixed dimension, the
theory can be decided in NC.
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