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Polynomial-Size Nonobtuse Triangulation of Polygons

Marshall Bern®

Abstract

We describe methods for triangulating polygonal re-
gions of the plane so that no triangle has a large angle.
Our main result is that a polygon with n sides can be
triangulated with O(n?) nonobtuse triangles. We also
show that a convex polygon can be triangulated with
O(n?) right triangles. Finally we show that any trian-

- gulation (without Steiner points) of a simple polygon
has a refinement with O(n*) nonobtuse triangles.

1. Introduction

One of the classical motivations for problems in com-

putational geometry has been automatic mesh gener- -

ation for finite element methods. In particular, mesh
generation has motivated a number of tna.ngulatlon
a.lgonthms, such as finding a triangulation that min-
imires the maximum angle [§]. A triangulation algo-
rithm takes a geometric input, typically a point set or
polygonal region, and produces an output that is a tri-
angulation of the input. For a point set, this usually
means partitioning the region bounded by its convex
bullinto triangles, such that the vertices of the triangles
are exactly the input vertices. Triangulating a polyg-
onal region usually means partitioning the region into
triangles such that the vertices of the triangles are ex-
actly the vertices of the region’s boundary.: In both
cases, the output must be a simplicial complex, that is,
triangles intersect only at shared vertices or edges.
Mesh generation applications, however, invariably
place further requirements on the triangulation, stem-
ming from numerical analysis. Angles larger or smaller
than certain bounds are frequently forbidden. To sat-
isfy such angle bounds, it may be necessary to augment
the input by adding new vertices, called Steiner points.
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Because the complexity of the finite element compu-
tation depends on the size of the mesh, the number
of Steiner points should be kept small. Until recently,
computational geometers neglected the more realistic
Steiner versions of triangulation problems, and concen-
trated on problems that do not allow extra vertices.
An upper bound of 90° has special importance in
mesh generation. A triangulation with maximum an-
gle 90° is necessarily the Delaunay triangulation of its
vertex set. In finite element methods for solving cer-
tain partial differential equations, a Delaunay mesh—
or failing that, a nonobtuse Delaunay mesh—leads to
a matrix with nice numerical propertices, such as di-
agonal dominance [1].- For a second, more geometric,
motivation, notice that each (closed) triangle in a tri-
angulation contains the center of its circumscribing cir-
cle exactly when all angles measure at most 90°, The

“perpendicular planar dual” of such a triangulation can

be formed by simply joining perpendicular bisectors of
edges. Practitioners often use a mesh and its dual—
sometimes with bent edges in the dual—to discretize
vector fields [1]. In general, a straight-line embedding
of the planar dual of a triangular mesh can be formed
by placing dual vertices at the meeting point of angle
bisectors [3]; however, a perpendicular planar dual sim-
plifies the calculation of flow or forces across element
boundaries.

1.1. 'Su-mmary of Results

In this paper we consider the problem of ttiangul;.ting
a polygonal region so that all angles measure at most

90°*. We give the first algorithm that produces such a -

nonobtuse triangulation with size (number of triangles)
bounded by a polynomial in n, the number of sides of
the input polygon. The only previous provably-correct
algorithm, due to Baker et al. [1], has no size guarantee.
Indeed, the size of the triangulation produced by the
algorithm of Baker et al. depends on the geometry of
the input, and hence can be arbitrarily large, even when
n is fixed. )

Our main result is that an arbitrary polygon can be
triangulated with O(n?) nonobtuse triangles. The poly-
gon need not be simple; it may contain polygonal holes.
We also describe a related algorithm for triangulating a
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convex polygon with O(n?) right triangles. Finally, we
consider the problem of refining a given triangulation
of a polygon (without Steiner points) into a nonobtuse
triangulation. We achieve O(n*) triangles for arbitrary
simple polygons, and O(n?) for the special case of a
polygon with a “Hamiltonian” triangulation, that is, a
triangulation whose dual is a path. All our algorithms
can be made to run in time O(nlogn + k), where k is
the size of the output.

Our angle bound is the best possible for polynomial-
size triangulations. Our work with John Gilbert [2]
shows that any smaller bound on the largest angle
- would require the number of triangles to depend not
only on the size of the input, but also on its aspect
ratio,

1.2. Related Work

The original computa.txonal geometry result motivated
by mesh generation is that the Delaunay triangu-

lation of a point set maximives the minimum an-
gle [7, 10, 11, 14]. (It is a curiously similar fact that, for
points in convex position, the farthest point Delaunay
triangulation minimizses the minimum angle {6].) For
polygons the minimum angle is maximised by the con-

strained Delaunay-triangulation [9]. It is also known -

how to compute the triangulation that minimizes the
maximum angle [5] for both point sets and polygons.
Theoretical work on Steiner triangulation problems
is less common. In an earlier paper [2], we developed
algorithms based on quadtrees for a number of Steiner
triangulation problems. In a certain strong sense, we
solved the problexm of Steiner-triangulating point sets
and polygonal regions with no small angles (when the
minimum angle bound is sufficiently lmall) For each
input our algorithms produce an output‘that has sise
within a constant factor of the optimal size. The num-

ber of triangles required necessarily depends not only-

on the size of the input, but also on its aspect ratio.
We also showed how to triangulate point sets with no
. large angles. If the angle bound is less than 90°, the
solution is essentially identical to that for no small an-
gles; but if the only requirement is that there be no
obtuse angles, the point set can be triangulated with
only linearly many Steiner points.

Gerver [8] showed how to compute a “dissection” of
a polygon (that is, vertices embedded within sides of
triangles are allowed) with no angles larger than 72°,
assuming all interior angles of the input measure at
least 36°. As mentioned above, Baker et al. [1] gave a
nonpolynomial algorithm for nonobtuse triangulation,
thereby showing that every polygon has such a trian-

gulation. Their algorithm also avoids small angles, and .
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Figure 1. Side merger.

is thus inherently nonpolynomial. (For technical rea-
sons, Baker et al. assumed the input polygon has inte-
gez coordinates, but stated that this restriction could be
lifted.) Our earlier result that point sets can be trian-
gulated with O(n) nonobtuse triangles led us to suspect
that the Baker et al. result could be improved, and that
polygons too could be triangulated with a polynomial
number of nonobtuse triangles.

2. Obtuse with subdivided legs

In this section, we develop the main subroutine of our

. algorithm for general polygons. In the next section, we

shall present the full algorithm.

Throughout this paper, we use Aypofenuse to mean
the longest side of a triangle and legs to mean the other
two sides. A subdivision point is a vertex of a polygon
at which the angle measures 180°. A nonobtuse (nona-
cute) angle is one measuring at most (respectively, at
least) 90°. The measure of angle Zabc is denoted |Zabc].

Suppose we are given a triangle ace with hypotenuse
ae as its horisontal base, with |Zace] > 90°, and with
subdivided legs. In this section we show how to triangu-
late this input with nonobtuse triangles, without adding
any new subdivision points to the Jegs. -Our overall stat-
egy is to replace the legs by ones sloped alightly closer
to the horizontal, while keeping the base fixed. The
region between the old legs and the new legs is trian-
gulated in such a way as to reduce the total number of
subdivision points by one.

We illustrate one of our reduction techniques in Fig-
ure 1. Assume that there are at least three subdivision
points on side ac, and let b be the one adjacent to apex
c. Let |Zace] > 90° and let ¥ be a point in trisngle
ace, somewhere on the line extending from & perpen-
dicular to ac. Project all subdivision points along ab
perpendicularly away from ab onto al/, adding edges
between each point and its projection. This step di-
vides triangle abb’ into one right triangle and at least
two trapezoids. A trapezoid is good if adding one of its



Figure 2. (a) Apex merger.

two diagonals divides it into two nonobtuse triangles.
A key observation is that all trapezoids will be good if
LbaV is sufficiently small.

Now imagine moving V, starting from b, along the
perpendicular to ac. There will be a last position for
¥ at which all trapesoids are good. Fix ¥ at that po-
sition, and let trapezoid ’zyy be one that would be-
come bad if & were moved further, as shown in Figure
1. This means that |{yz’y/| = 90°. Further assume
that z/zyy’ is not the last trapezoid along ab, that is,
y # 6. Then we merge trapesoid z’zyy with the next
trapezoid above it. This merger is accomplished by
removing point y and edge yy/ to form a quadrilat-

_eral z’zz3’ with the one subdivision point y. This face
can be triangulated with three nght triangles by adding
edges =’y and yr’.

Merger moves such as the one just described lie at .

the heart of our algorithm. Our first two lemmas give
the basis of an induction. Lemmas 3 and 4 give “corou-
tines” for the inductive step; each of these lemmas calls
the other on a tna.ngle with at most n —~ 1 subdivision
points.

Lemma 1. Iface is a right triangle with one subdivi-
sion point on a leg, ace can be triangulated into three
right triangles, with one subdivision paint on base ae. 8

Lemma 2. If triangle ace is obtuse with no subdivi-
sion points, then it can be triangulated into two nonob-
tuse triangles, adding one subdivision to base ae. If
obtuse ace has one subdivision point on a leg, ace can
be triangulated into at most five nonobtuse triangles,
adding at most two subdivisions to base ae.

Proof: If ace has no subdivision points, then we drop
an altitude from ¢ to ae and we are done. Assume that
ace has one subdivision point b on leg ac. Extend a
perpendicular to ac at b and a perpendicular to ce at c.

... If these meet inside ace, then add their meeting point

" m and edges bm and em. Triangle ame has no sub-
division points. If the perpendiculars meet outside of
ace, then let ¥ be the point at which the perpendicular

(b) Delayed apex merger.

at b crosses ae. Add b¥ and ¥c; the remaining ébtiue
triangle ¥ce has no subdivision points. B

Lemma 3. Assume triangle ace basn > 2 subdivision
points, all on one leg. Using O(n) nonobtuse triangles,
we can reduce the untriangulated portion of ace to a
nonacute triangle with n — 1 subdivision points.

Proof: Without loss of generality, assume ac is the
subdivided leg, and let b be the subdivision point clos-
est to c. If |Zace| = 80°, we simply add edge be and
reduce to the case of an obtuse triangle with n — 1 sub-
division points. So assume |[Zace] > 90°, and consider
extending a perpendicular to ac at b and a perpendic-
ular to ce at c. Assume these meet at point m in ace.
If Zbam is sufficiently small, then all subdivision points
along ac can be projected onto am along perpendicu-
lars to ac, forming only good trapezoids. See Figure
2(a). We triangulate these trapezoids, add edge em,
and are done. This move, in which we reduce the num-
ber of subdivision points by combining the apex and an
adjacent subdivision point using the meeting point of
perpendiculars, is called an aper meryer.

So assume meeting point m does not work. Then find
the last point ¥ in triangle ace along the perpendicular
to ac at b, such that the projection forms only good
trapezoids. Notice that |[(¥ce| > 90’ since the apex

. merger did not succeed.

"If ¥ lies on base ae, then we add edges bb’ and Ve,
triangulate all the good trapezoids, and drop an alti-
tude from ¢. Now there is no untriangulated portion of

ace, and the number of Steiner points on base ae is at

most n + 1.

So assume V lies interior to ace. By our choice of ¥,
either some trapezoid along ab can be merged with the
one above it, or the last trapezoid—containing b and
4 —is the one whose diagonal forms a right angle. In
the first case, we perform a merger as shown in Figure

1 (called a side merger), add edges ¥c and Ve, and °

project ¢ onto Ve by dropping an edge perpendicular to
Ye. The resulting triangle al’e has n — 1 subdivisions
on two legs.
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Figure 3. (a) Triangle d’de is triangulated recursively.

In the second case, shown in Figure 2(b), we add
edge be and project c onto be as above, producing point
d. Wenowperformmapexmergerofbmddunng
meeting point m in the new triangle abe, and project
¢ perpendicularly onto me. Notice that triangle mbe
has been split into three right triangles. We have again
reduced to the case of n — 1 subdivisions on two legs,
handled by Lemma 4 below. &

Observe that the method given above either merges
a pair of points without adding anything to the base, or
completely finishes off all the subdivisions on ac. The
same will be true of our method for the case of sub-
divisions on both legs. Therefore we assert that our
method produces at most n + 1 subdivision points on
base ae, and at most n if ace is right. Because each
reduction uses O(n) triangles, the total number used

will be O(n(n — n; + 2)),.where n,; is the number of

subdivisions added to the base. We use these bounds
recursively in the analysis of the general inductive step
below.

Lemma 4. Assume triangle ace hasn > 2 subdivision
points, with at least one on each leg. Using O(n(n—n,))
nonobtuse triangles, we can reduce the untriangulated
portion of ace to a nonacute triangle with n, < n -1
subdivision points.

Proof: Let b and d be the closest subdivision points

to ¢ on ac and ce, respectively. Let n, represent the
number of subdivision points on the right leg ce.

We first try each of the two possible apex mergers.
Say that the perpendiculars to acat b and toce at ¢
meet at point m in ace, such that all trapezoids along ac
are good. In this case, we add edges md and me. We
then triangulate mde recursively, outputting at most
n, subdivisions on base me. Thus we have reduced the
problem to triangulating ame, an obtuse triangle with
one fewer subdivisions. -

So assume no apex merger is possible, and let ¥ be
the last point in triangle ace along the perpendicular to
ac at b such that the projection from ab onto a¥’ forms

only good trapezoids. Since no apex merger is possible,

a

(b) Triangles bde and mbe are triangulated recursively.

Lb'ce and LV'de are both obtuse. -

Now if ¥ lies on base ae, then we add edges bb', b'c, -

and b'd; drop an altitude from ¢ to ¥’d; and triangulate
the trapezoids along ab. This reduces the problem to
triangulating ¥de, an obtuse triangle with at most n—1
subdivisions. .

If ac has only one subdivision point, then either an
apex merger of b and ¢ is possible, or ¥’ lies on the base.
So assume ac contains at least two subdivision points,
that is, n, < n — 2, and ¥ lies interior to ace. By
our choice of ¥, either some trapezoid along ab can be
merged with the one above it, or the last trapezoid is
the one whose diagonal forms a right angle.

" . .In the first case, we can perform a side merger aud -

reduce the number of subdivision points. We add edges
Ye,¥d, Ve, and an altitude from c onto ¥d, as shown in
Figure 3(a). Triangle b’de has n, subdivisions. Triangle:
¥de is triangulated recursively with O(n.(n, — ny +2))
triangles, outputting n; subdivisions on its base Ve.

Then triangle al’e will have n; < n, + 1 subdivisions
on leg ¥e and n — n, — 2 on leg al’ (one fewer due to
the merger and another fewer because ¥’ is the apex),
30 we are done.

In the second case, we cannot do a side merger be-
cause the next subdivision point f below b is too close
to b. As in Lemma 3, however, we can do a “delayed
apex merger”. We add edges bd, be, and drop an al-
titude from ¢ to bd. See Figure 3(b). We perform an
apex merger of f and b at meeting point m in triangle
abe. We then triangulate bde recursively, outputting
ny < n, + 1 € n — 1-subdivisions on de. Right trian-

gle mbe is handled by Lemma 3, outputting at most n;

subdivisions on me. We have now reduced the problem
to triangulating ame, a triangle with n — n, — 2 sub-
divisions on its left leg and at most n, + 1 on its right
leg. Furthermore, we used only O(n) triangles for each
reduction in the number of subdivisions. 8

Theorem 1. An obtuse or right triangle with n sub-
divisions on its legs can be triangulated with O(n?)
nonobtuse triangles, without adding any new subdivi-
sions oa the legs. 8
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3. Arbitrary Polygons

We now show how the method of the previous section
can be applied to an arbitrary polygon, possibly with
holes. First we partition the polygon into some simple
shapes, by cutting it with horizontal and vertical lines.
Each such shape can be either triangulated directly, or
can be divided into obtuse triangles (with subdivided
legs) which can then be further triangulated as before.

Draw a vertical line segment through each vertex of
the polygon, extending to the boundaries of the poly-
gon. These lines divide the polygons into slebs, which
we define as quadrilaterals with two vertical sides, pos-
sibly with subdivision points on the vertical sides.

Each vertex of a slab will be either an original input
vertex, or a point where a vertical line touches the poly-
gon boundary. Draw a horizontal line segment through
each slab vertex, and extend the line segment to the
last possible vertical segment. In other words, each
endpoint of a horizontal segment should lie either on
a vertical segment, or on the vertex inducing the hori-
zontal, and each horizontal segment should be as long
as possible with this property. A polygon so divided is
shown in Figure 4. -

Lemma 5. The above steps partition the polygon
into regions of four types: (1) rectangles with unsub-
divided sides; (2) right triangles with hypotenuse on
the boundary of the polygon and vertical leg possibly
subdivided; (3) obtuse triangles with two sides on the
boundary of the polygon, and one leg vertical and pos-
sibly subdivided; (4) slabs with two sides on the bound-

ary of the polygon, and two possibly-subdivided verti- .

cal sides, that cannot be simultaneously cmsed bya
borizontal line. -

Proof: Any other shape must have a vértex from
which a line segment can be extended vertically or hor-

" izontally.. The construction only creates vertical and
 horizontal line segments, so any other scgments must

be on the polygon boundary. 8

Theorem 2. Any n-vertex polygon (with holes) can
be triangulated with O(n?) nonobtuse triangles.

Proof: We apply the procedure above to subdivide
the polygon into the shapes listed in Lemma §. The
rectangles are easy. The right and obtuse triangles can
be triangulated by the method of the previous section.
The slabs can be divided by a diagonal into two obtuse
triangles, that can then be triangulated by the method
of the previous section.

We create O(n) horizontal and vertical line segments,
50 there are O(n?) rectangles. Each other shape con-
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_Figure 4. Polygon cut by horizontal and vertical lines.

tains a portion of the polygon boundary between verti-

cal line segments, so there are O(n) such regions. There
are O(n) subdivisions in all these regions, arising from
the horizontal line segments. Therefore the method of
the previous section, when applied to the nonrectangu-
lar regions, creates O(n?) triangles. 8

4. Convex Polygons

‘We now show how a convex polygon can be triangulated
with all right triangles. We start out by partitioning
the polygon vertically and horizontally as in the gen-
eral case. However there is an important additional re-
quirement. The choice of horizontal and vertical axes is
made so that the longat diagonal of the polygon (called
the main diagonal) is oriented horizontally. Thus this
diagonal will appear in its entirety as one of the hori-
sontal segments of the partition. We assume that the
main diagonal is not part of the boundary of the poly-
gon; otherwise the polygon can be divided into right
triangles more simply by orienting the partition so that
the main diagonal is vertical.

Our algorithm, explained below, periodically ertends
the partition by adding a new vertical line from bound-
ary to boundary of the polygon. When we add a new

vertical line, we also add horizontals from its endpoints

to the last verticals as before, and lengthen each other

bhorizontal segment for which the new vertical is now .

the last vertical. We extend the partition only O(n)
times; thus we end up with O(n?) rectangles and O(n)
subdivided right triangles. Our method for removing
subdivisions in these triangles is based on Lemma 1,
the fact that a right triangle with just one subdivision
point on a leg can be triangulated by adding a subdi-
vision to the hypotenuse. Our strategy is to carefully
extend the partition until each triangle has at most one
subdivision point.

Consider, without loss of generality, the chain of tri-
angles extending up and to the right from the left end-

point of the main diagonal. For each subdivision point

-
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Figure 5. Convex polygoi with path from subdivision poult

on one of these triangles, we “bounce™ a path as fol-
lows. First draw a horizontal segment from the point
to the polygon’s boundary, and extend the subdivision
by drawing a vertical line where the horizontal meets
the boundary. This eliminates the original subdivision
point, but creates a new one below the main diagonal.
Now repeat the process to move the subdivision back
above the main diagonal. Figure § depicts a convex
polygon with its partition extended by a path.

The new subdivision point may fall on the chain ex-
tending up and to the left of the right endpoint of the
main diagonal, instead of on the original chain. How-
ever it can be shown that, if this happens, the reverse
cannot be the case: paths from the up-left chain cannot
end on the up-right chain. If we first process the chain
that can send points to the other chain, there will be no

. problem. So we now ignore points sent to the opposite
chain.

For a subdivision point p at beight y from the main
diagonal, define f(y) to be the height of the new subdi-
vision point that would be created by bouncing a path
from p. This function has the following psoperties.

Lemma 6. The function f(y) is continuous, mono-
tone, and piecewise linear with O(n) breakpoints.

Proof: B)-' construction, f is the composition of four
-such functions, corresponding to the four chains among
which the path bounces. 8 '

As a consequence, f(y) — y is also continuous and
piecewise linear. We partition the plane into horizontal
strips 30 that within each strip f(y) — y has the same
sign (positive, negative, ot sero). We extend the parti-
tionbybouncingpuhsdpoinhwithheightsuwhich
£(y) — y changes sign; these paths form rectangles and
therefore do not introduce new subdivisions; because
there are O(n) breakpoints, there are O(n) strips and
therefore O(n) rectangles drawn in this stage. The rect-
angles ensure that no triangle of the partition contains

portions of more than one strip. Because of the follow-

ing fact, we may consider each strip independently.

Lemma 7. For each y, f(y) is in the same strip as
y- 8

Now consider a triangle with more than one subdivi-
sion point in a strip where f(y) >y, andlet pand ¢ be
the lowest two points in this triangle, with p lower than
¢. Bouncing the path from ¢ creates a new subdivision
pointhighathanq,mdcutooﬂ'utrimgleinwhichp
is the lone subdivision point. We can repeat this pro-
cess until all subdivision points in the strip are alone.
Each extension creates a new lone subdivision point;
therefore, after O(n) extensions all subdivision points
are alone in their triangles. In strips where f(y) < v,
the process is similar, beginning with the highest two
points that are not alone. Finally, in a strip where
§(¥) =y, bouncing a path from a subdivision point cre-
ates a rectangle. So in this case, all subdivision points
can be immediately removed.

At this point, every remaining subdivision point is
alone in its triangle. Applying Lemma 1 to the trian-
gles, and adding diagonals to the internal rectangles,
gives our result:

" Theorem 3. Aﬁy convex polygon with n vertices can
be triangulated with O(n?) right triangles. 8
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5. R.eﬁning a Civen Triangulation

In this section we consider the problem of refining a
given triangulation (without interior Steiner points) of
a simple polygon into a nonobtuse triangulation. The
edges of the input triangulation must appear in the out-
put, poesibly subdivided. This problem is a special case
of—and perhaps a first step towards solving—the more
general problem of refining an arbitrary straight-line
planar graph with nonobtuse triangles. The more gen-
eral problem has applications to computing a mesh on
a polyhedral surface, and to learning polygons from ex-
amples given by a “helpful teacher”. Salzberg et al. 3]
bave shown that, if the inside and outside of a poly-
gon can be simultaneously triangulated without obtuse
angles (allowing infinite nonobtuse wedges and right-
angled strips), then a teacher who picks examples as
advantageously as poesible can teach a polygon to a
nearest-neighbor classifier, using a number of examples
proportional to the size of the triangulation.

Our strategy for this problem is to again cut the input
into cases that we can handle: rectangles and obtuse
triangles with subdivided legs. The cutting procedure,
however, is more complicated. We process triangles in
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Figure 6. Triangle ace is backwards obtuse.

a preorder traversal of the tree that is the planar dual
of the initial triangulation. Each triangle after the first
one then has one “inbound” edge (the one shared with a
triangle earlier in the order) and two “outbound™ edges.
Ideally each triangle is obtuse with its hypotenuse an
outbound edge. Our preprocessing step dices up “back-
wards” obtuse triangles, propagating O(n?) subdivision
points up the tree, in order to achieve this ideal sit-
uation. The ideal situation can be triangulated with
quadratic increase in complexity.

Lemma 8. If ace is a nonobtuse triangle with subdi-
visions on only one side, then ace can be triangulated
into nonobtuse triangles, adding new subdivisions only
to the other two sides. '

Proof: Let ac be the side with subdivisions. Consider
the perpendicular projection ¢’ of e onto ac. We add
edges between ¢ and the subdivision points adjacent to
¢’ (though we do not add ¢’ or edges to ¢). This divides
ace into one nonobtuse triangle without subdivisions
and either one or two nonacute triangles that can be
triangulated by the method of Section 2. 8

Theorem 4. Any triangulation of a polygon (without
holes) with n vertices can be refined into a nonobtuse
triangulation with O(n*) triangles.

Proof: Let T be the tree that has a vertex for each
triangle of the input and an edge between each pair of
triangles that share a side. Root T at any vertex corre-
sponding to a triangle with an esterior side, that is, one
lying along the boundary of the polygon. Each triangle
will have its sides labeled as inboxnd or ostbound. The
side that the triangle shares with its parent in T is la-
beled inbound; the other twosides are labeled outbound
(whether exterior or shared with a child triangle).

If at this point each triangle is nonobtuse or is ob-
tuse with its hypotenuse labeled outbound, then we can
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refine the triangulation as follows. We split the root tri-
angle into two right triangles by dropping an altitude.
Each subsequent triangle in the tree starts with some
pumber of subdivision points on its inbound side, and
we use Lemma 8 and the procedure of Section 2 to tri-
angulate each triangle, adding new subdivisions only to
outbound sides.

So assume that there is at least one backwards ob-
tuse triangle with its bypotenuse labeled inbound. See
Figure 6. We first process triangles in “upward® order
given by a postorder traversal of T. A backwards obtuse
triangle that has no backwards descendants is handled
by simply dropping an altitude onto its hypotenuse; this
introduces a subdivision point to an outbound side of
the parent triangle.

We now carry this through inductively, by showing
how to partition a triangle, that has subdivisions on
its outbound sides, into rectangles and right triangles
with subdivided legs and hypotenuse that is part of an
outbound side.

Assume the triangle is ace and its inbound side is
horizontal base ae. If Zcae and Zcea are both acute,
then we partition ace by dropping vertical lines from ¢
and from all subdivision points onto ae. We then draw
horizontal lines from each subdivision point up to the
last possible vertical, as in Figure 4. This partitioning
introduces no new subdivisions to the outbound sides.
If one of Zcae and Zcea is right, then we partition in
the same way. This introduces new subdivisions to the
vertical side of ace; these will be corrected in the down-
ward pass of the algorithm.

So assume that one of Zcae and Zcea is obtuse, say
Lcea.
sion point on ac and ce across to the other side. Now
from vertex ¢, from each subdivision point, and from
each new vertex (where a horizontal hits ac or ce), ex-
tend a vertical line, up or down, until it contacts the
last possible horizontal, base ae counting as a horizon-
tal. As above, this partitioning introduces new subdi-

visions to the outbound sides, dealt with in the next—

downward—pass of the algorithm.

The downward pass of the algorithm uses Lemma 8
and the procedure of Section 2 to triangulate in an or-
der given by a preorder traversal of T. Each original
triangle is either unchanged, which implies that it is not
backwards obtuse, or it has been partitioned as above
into rectangles and small triangles with hypotenuse part
of an original outbound edge. Subdivisions added to
sides of rectangles are passed straight through, slicing
the rectangle into smaller rectangles that can be trian-
gulated at the end. The small triangles within any one
original triangle are triangulated in any order, after the
rectangles have been sliced.

We draw horizontal lines from each subdivi- |
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The total number of vertices (subdivision points and
apexes of obtuse triangles) to propagate downwards is
O(n?). This bound follows from the fact that, in the up-
wards pass of the algorithm, each apex of a backwards
obtuse angle adds only O(1) new subdivision points per
original triangle. The downwards pass of the algorithm
is quadratic as before, so overall we have obtained a
nonobtuse triangulation with O(n*) triangles. 8

In the case that the dual graph of the triangulation
is simply a path, then we can improve the size bound to
O(n?) by exploiting the fact that each triangle has an
exterior side. Incidentally, this condition defines an in-
teresting class of polygons: call a polygon Hamiltonian
if it has a Steiner triangulation whose dual is a path.
Equivalently, a Hamiltonian polygon is one that can be
swept by an extensible line segment with endpoints on
its boundary, without retracing any area. Hamiltonian
polygons simultaneously generalize monotone polygons
and spiral polygons (polygons with only one chain of
reflex vertices); they can be recognized in time O(n?)
by dynamic programming.

Theorem 5. Assume we are given a triangulation of
a polygon with n vertices, such that the planar dual of
the triangulation is a path. Then this triangulation can
be refined into a nonobtuse triangulation with O(n?)
triangles.

Proof: Assume we are at a generic step of the up-
wards pass, in original triangle ace. Assume outbound
side ac is subdivided, ce is exterior, and horizontal base
ae is inbound. I |Zcae| > 90°, then the procedure of
Section 2 will triangulate ace in the downwards pass of
the algorithm, adding new subdivisions only to exterior
side ce; thus, the upwards pass of the algorithm need
not partition ace. If [Zace] > 90°, then we drop an
altitude from ¢ to projection point ¢’ on ac. Triangle
c’ce has an exterior hypotenuse, 80 it requires no fur-
ther subdivision. The other triangle, ace’, has reduced

to the third case, in which both angles alongside the -

subdivided side are acute.

In the third case, the opposite vertex e projects per-
~ pendicularly onto the subdivided side ac. Add edges
from e to the subdivision points on either side of its
. perpendicular projection ¢/, as in Lemma 8. This splits
ace into either two or three triangles, depending on
_ whether there exist subdivisions on each side of ¢'.
An obtuse triangle with hypotenuse ce can be handled
without further subdivision, even if—as will be the case
in Jower levels of the recursion—side ce is not exte-
rior but only outbound. A nonobtuse triangle without
subdivisions—such as a triangle in the middie—can be
handled as is by the downwards pass, as Lemma 8 will
apply. The last triangle has one fewer subdivision point,

| l

Figure 7. Lower bound example for refinement.

s0 we partition it recursively. (The recursive call starts
by dropping an altitude to ae.)

Notice that the upward pass only leaves behind sub-
division points that do not propagate beyond their orig-
inal triangle in the downward pass. In other words, each
subdivision on ac either drops an altitude to ge or is left

in a triangle that the downward pass processes towards °

exterior side ce. Thus the downward pass results in
O(n?) complexity overall. 8

6. Conclusions and Open Problems

We have shown how to triangulate arbitrary polygons
using a polynomisl number of right and acute triangles.
This result demonstrates a strong separation between
the complexities of two desirable properties of finite el-
ement meshes. Forbidding angles larger than 90° in-
curs only polynomial cost in size, but forbidding angles
smaller than a fixed bound incurs cost dependent upon
the geometry of the domain. There are still a number
of open problems in “mesh generation theory”.

First of all, we would like to extend the results of Sec-
tion 5 to refining arbitrary straight-line planar graphs.
In particular, we do not know how to handle polygons
with line-segment holes so that Steiner points on each
side of a line-segment hole match up. As mentioned

- above, another special case of refining planar graphs is
- simultaneously triangulating the inside and outside of

a polygon.

Open Problem 1. Can every straight-line plm&
graph be refined into a polynomial-size nonobtuse tri-
angulation?

Second, the question of lower bounds is interesting.
We believe the correct bound to be quadratic. -

Open Problem 2. Can any nontrivial lower bound
be shown for the size of 2 nonobtuse triangulation?

Paterson obeerved [12] that for the problem of re-
fining a given triangulation, the complexity must be
quadratic, even for convex polygons and a largest angle

bound arbitrarily close to 180°. His exampleis a convex .

polygon with an “accordion” triangulation, shown in
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Figure 7. There are ©(n) long, skinny, nearly horizon-
tal triangles; the polygon also has ©(n) vertices evenly
spaced along the top of this stack of triangles. Be-
cause each vertex at the top must have a “downwards”
edge, there must be a path downward from each vertex
through the stack of triangles. Separate paths cannot
merge because of the angle bound. Thus each path
has complexity Q(n), and the total triangulation has
complexity 2(n?). Salzberg et al. gave a similar lower-
bound example for their learning problem {13].

Third, it would be interesting to give an algorithm
that uses only acute angles, so that all circumcenters lie
in the interiors of their elements. By carefully warping
rectangles and right triangles, it is possible to turn our
linear-size nonobtuse triangulations of point sets into

. acute triangulations (included in the journal version of

[2]). For polygon input, however, some new ideas are
peeded, as it is not possible to divide an obtuse triangle
into acute triangles, adding subdivision points only to
the base. )

Finally, there remains the question of extending these
results to higher dimensions. We believe the correct
analog of a nonobtuse triangle is a simplex that contains
its circumcenter; this generalization most closely fol-
lows the mesh generation application. Perhaps the sise
bound for a nonobtuse triangulation of a d-dimensional
polyhedron will turn out to be O(n¢), matching a
lower-bound example for the inside-outside triangula-
tion problem [13].
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