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Polyhedral Subdivisions and the Newton Polytope
of the Product of all Minors of an m x n Matrix
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Abstract
We consider the Newton polytope L(m,n) of the product of all minors
of an m X n matrix of indeterminates. Using the fact that this polytope
is the secondary polytope of the product Ap,_y x Ap_y of simplices,
and thus has faces corresponding to regular polyhedral subdivisions of
Am_1 xA,_1, we study facets of ©(m,n), which correspond to the coars-
est, nontrivial such subdivisions. We make use of the relation between
secondary and fiber polytopes, which in this case gives a representa-
tion of ¥(m,n) as the Minkowski average of all m x n transportation

polytopes.
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1. Newton, secondary and fiber polytopes.

Given an m x n matrix A = (a;; ) of indeterminates, we consider the polytope X(m,n) C
IR™" defined as the Newton polytope of the product of all minors of A, that is, the convex

hull of all exponent vectors obtained when one expands this product as a polynomial in

o s ) and %(2,2) is the line segment
az1 Q22

the a;;. For example, whenm=n=2 4 =

joining (? ;) and (; ?) in R*.

We address here the problem of determining the polytope ¥(m,n) for general m and
n. Determining a polytope can be accomplished in several different ways, for example,
by giving a description of it set of vertices, or by determining a minimal set of linear
inequalities which define it. The latter amounts to describing all its faces of codimension
1, that is, its facets. This is the point of view we adopt in this paper. We begin a description
of ¥(m,n) by describing some classes of facets and giving a means to determine the linear
inequalities to which they correspond.

Our approach to 3(m,n) depends on the fact that it is equal to the secondary polytope
S(Am—1xApn_1) of the product A,,,_y x A,y [GZK;$3E.3]. (Here Ay denotes the standard
k-simplex, defined as the convex hull of the k + 1 unit vectors in IRk.) Thus, the lattice
of faces of ¥(m,n) is isomorphic to the poset of all regular polyhedral subdivisions of
Am_1 X Ap_; that add no new vertices. (A subdivision is regular if it supports a strictly
convex piecewise linear function, where strictly convex means there is a different linear
function on each maximal cell of the subdivision. See [GZK] or [BFS] for a discussion
of secondary polytopes and regular subdivisions.) Vertices of £(m,n) correspond to the
regular triangulations of £(A,,_; x A,_1), while facets correspond to the coarsest possible
regular subdivisions.

So to study faces of the secondary polytope (A,,_1 x Ap_1), it is sufficient to study
the structure of the associated regular subdivisions of A,,_; x Ap,_;. To do this, we

make use of the fact that secondary polytopes are (up to scalar multiple) equal to fiber

polytopes of projections of simplices, in this case, the projection of the (mn — 1)—simplex

onto A1 x.An_l. v

We begin with some definitions. If P C R™ and Q C R? are convex polytopes, and
7 :R" — R? is a linear map with 7(P) = @, then we define the fiber polytope (P, Q) to
be the Minkowski average of all fibers 7~!(q) over q € Q, i.e.,

SPQ) = g L@ da

Here the set-valued integral can be defined as the set of integrals of all sections v : Q — P

of m (i.e., 7 0 v is the identity on Q). Alternatively, it can be defined as a Riemann-type
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limit of Minkowski sums of sets 7~!(q) or as the convex set whose support function is
pointwise the integral, over ¢, of the support functions of the sets 7=1(g). See [FP], where
it is shown that 3(P, Q) C R" is a polytope of dimension dim P —dim @, whose face lattice
1s 1somorphic to a poset of polyhedral subdivisions of Q (the P-coherent subdivisions). In
particular, when P is a simplex, say P = Ap_;, the fiber polytope (P, Q) is (up to
scaling) the secondary polytope £(Q) (or, more precisely, the secondary polytope Z(A),
where A is the set of images under 7 of the vertices of P).

In the case of Z(A,m—1 X Ap_1), the corresponding map 7 : Ajn_1 — Ame1 X An_y
has as fibers all m xn transportation polytopes, i.e., polytopes of nonnegative m xn matrices
with prescribed row and column sums. Thus the study of the Newton polytope ¥(m,n)
is equivalent to the study of the aWsportatlon polytope. From this we conclude,

for example, that Z(m, n) has dimension (m—1)(n - 1).
In general, the fiber polytope is a subset of the fiber 7~!(zg) over the centroid of Q,

and the exact relationship between secondary and fiber polytopes is given by

2(Q) = (dmQ +1) vol(Q) T(An-1,Q).

Thus E(An_1,Am-1 X A,_1) consists of m X n matrices with row sums % and column
sums % In order to make the identification between the Newton polytope ¥(m,n) and the

secondary polytope Z(Am—_1 X An_1), we normalize volume so that vol(A,_1 X Ap_1) =
(m+n—2)

e (All simplices in A,,—1 X A,_; have the same volume, which we take to be

1; see §5). Thus, X(m,n) consists of matrices with row sums (m't:_l) and column sums
(m+n—l

M ) Thus when m = n = 2, the row and column sums must be 3, as seen above.

In §2, we consider the general case of fiber polytopes and give a concrete description of
the isomorphism between faces and coherent polyhedral subdivisions. This is specialized in
§3 to the case of faces of ¥(m,n) and regular polyhedral subdivisions of Ap—; X A,_1. In
particular, for each © € R™", we give a description of the subdivision Ilg corresponding
to the face of £(m,n) having outward normal ©. If © is a 0-1-matrix, the maximal cells
of Ile can be read directly from the minimal line covers of the 1's of © (sets of rows and
columns including all the 1's). In some cases the resulting subdivision can be shown to be
coarsest possible, and so the corresponding © will be normal to a facet of X(m,n).

Thq notion of an indecomposable welghtmg of a blpartlte graph is deﬁned in §4, where

it is used to characterize facet normals, as well as to give a lower bound on >n the codimension
of certain faces of ¥(m,n). In §5, formulas for the support function are derived for fiber
and secondary polytopes. In the case of £(m,n), the value of the support function A, at
a 0—1 matrix © can be expressed in terms of the minimal line covers of ©. This calculation

1s carried out in §6 for some special © and for small values of m and n.
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Finally, some notational conventions. For P a convex polyhedron in R" and 6§ € R",
we denote by P? and Py the faces of P where the linear form (6, -) achieves its maximum
and minimum, respectively. Note that P=% = Py. For a set X C R", we denote by
cone X (resp. pos X) the set of all nonnegative (resp. positive) linear combinations of the
points in X. We will denote the i** row and the j** column of a matrix B by B; and B/,
respectively. The set {1,...,n} will be denoted [n].

2. Coherent subdivisions and faces of (P, Q).

We consider first the general fiber polytope Z(P, @), where P = conv{pi,...,pm} C R",
Q = conv{qi,. .,qgm} C R and 7 : P — Q a linear map such that =(p;) = ¢;. By
Theorem 2.1 of [FP], each face £(P,Q)? of (P, Q) corresponds to a certain (coherent)
polyhedral subdivision IIs. We describe this corres ’r_la“en‘cam this section and specialize it
to obtain the correspondence between faces 6f~“fﬁé"§é’éo/riéary polytope X(Q) and regular
subdivisions of ). As in [BFS], [FP] and [GZK], by a polyhedral subdivision of Q we mean

a collection II of subsets of {q1,...,¢m} whose convex hulls form a polyhedral complex
that covers Q).

The fiber 7~!(q) over a point ¢ € @ can be written as
) ={peR* |p=> Xipi, P hgi=¢, D Ai=1 X120} (21
=1

Let (y0,y) = (Y0,91,.--,Yq) denote a point in R**!. For § € R™ define the polyhedron
5(6) = { (yan) € IRd+1 | Yo + <y3qi) 2 (0’pi>’ 1= ]-a' sy } (22)

For y € 5(8), define
oy =1{ g | yo+(y,q:) = (6,pi) }- (2.3)

The following gives a concrete description of the lattice isomorphism given by Theorem

2.1 of [FP].

Theorem 2.1. In the correspondence between faces of the fiber polytope L(P,Q) and
polyhedral subdivisions of @, the face £(P,Q)? corresponds to the coherent subdivision

,/ !,r

Ip={ay|yes5)}
s heci
Proof: By general linear programming duality we can write 25 4w ke
7 sun
. J\J
) v
oo e maz{ (6,p) |p€nTN(q) } =min{yo +(¥,9) | (bo,y) € S(6) }. (24) " gabrnde W
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Since max{ (6,p) | p € 7~!(g) } is finite precisely when ¢ € @, we have that (1,q) is
an element of the relatively open inner normal cone N(S(6),y) to the polyhedron S(6) at
some point y if and only if ¢ € Q. In fact, for y € relint S(6)(, 4, we have

/ o . (1,9) € N(S(8),y) = pos{ (1, z)|z€ay}

T ot 276

ThusIL:= { o, | y € S(6) } is a polyhedral subdivision of Q; it is given by the intersection
of the (‘2

o
\\L\'

sets of generators of the cones in the) normal fan of S(#) with the hyperplane yp = 1
in R4,
By Theorem 2.1 of [FP], o € Il if and only if for ¢ € conv o, the maximum value of
(6, p) over the fiber 77!(g) is attained on the face

7~ 1(0) := conv{ p; | ¢ = n(p;) €0 } (2.5)
of P. That is,
7 Hg)’ =77 (o) N7 (g). (2.6)

For ¢ € relint conv g, the face 7~1(q)? contains a point p € relint 7=1(o), and so

maz{ (6,p) | p € 7" (q) }

is attained at a point p = ) A;p; for which A; > 0 whenever ¢; € . Thus for any (yo,y)
solving

min{ yo +(v,49) | (vo,y) € S(6) },

¢; € o implies yo + (y,¢i) = (0, p:), and so o C oy. Thus Il refines II.

On the other hand, any p = Y Aip; solving maz{ (6,p) | p € #~1(¢) } must satisfy
Ai = 0 when ¢; € o and so, by strict complementarity, there is a (yo,y) € S(0)(1 4 with
Yo + (v, ¢i) > (6, pi) whenever ¢; ¢ 0. Thus g, C 7, and we conclude Il = II. «

One way to understand this association 8 — Il is to observe that, for fixed 8, the

maximum in (2.4) varies piecewise-linearly in ¢. The subdivision Il gives the associated

e ot

‘reglons of hnearlty A consequence of the proof of Theorem 2.1 is that the lattice of faces of

Do e e A e
the subd1v1s1on Hg 1s the lattice of faces of the normal fan to the (necessarlly unbounded)

polyhedron S' (9) o

S U O —

Corollary 2.2. The lattice of faces of the subdivision Ilg is anti-isomorphic to the lattice
of faces of the polyhedron S(6). In particular, the maximal cells of the subdivision Il

correspond to the minimal faces of S(6). «

In the case of the secondary polytope of ), we have m = n and P = A,_y, and so
(2.1), (2.2) and (2.3) simplify, respectively, to 7~1(g) = { A € R" | 3 Xigi = q }, the set of
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all convex representations of ¢, S(6) = { (yo,y) € R**! | yo + (y,qi) > 6i, i=1,...,m },
the set of all downward pointing normals to the convex hull of the points (1, ¢;,6;), and
oy ={ ¢ | yo + (y,¢i) = 6; }, the set of points on some bottom face of this convex hull.

3. Regular subdivisions of A,,_; X A,_; and faces of X(m,n).

We consider here the case of the secondary polytope £(A,,—1 X A,_1), which corresponds
to the special case of the situation described in §2 in which P is the (mn—1)-simplex Apmn_1
and Q = Apm_1 X A,_1. As in the general case, we make more explicit the association
between faces and subdivisions of A,,_; X A,.;. For faces defined by 0-1 normals, this

T
assocmtlon leads to con51derat1on of the classmal combmatorlal notion of a line cover of a

0—1 matrlx e e

We deﬁne the map 7 in this case as follows. We consider elements of IR™" to be m xn
matrices; unit vectors are then the 01 matrices E;; having a single 1 in the :** row and
“th

7" column. Then

Amp1 ={X € R™ | X = (2;5) 20, Y zij=1}

=conv{ E;; |1 € [m], j €[n] }.
For X € R™", let r(X) € R™ and ¢(X) € IR" denote the vectors of row sums and
column sums of X. The map « is then defined by n(X) = (r(X),c(X)). We define
vi; := w(E;;) = (ei,€j), where e; and e; are the ¢** and j** unit vectors in R™ and R",

respectively. Thus
{
Am_y X Ap_y =conv{v;j |t €[m], j€n]}. \J (e

o
For (a,b) € Apm—1 X Ap_1, the fiber \IUT’\
7r—1(a b):{XeIRman>() T(X):a C(X):b} [

has been studied in the optimization hterature under the name transportation polytope; LZ
see [KW] and [YKK] Note that in this case, the constraint ) ;. z;; = 1 in (2.1) is implied
by r(X) = a. As in §2, we observe that for © = (6;;) € R™",

maz{ (0,X) | X € v~ (a,b) } =maz{ (0,X) | X >0, r(X)=a, «(X)=b}

(3.1)
=min{ (u,a) + (v,b) | ui +v; > 6;; }.
If we let
S(0)={(v,v) e R™ xR" | u; +v; > 6;; } (3.2)
and define, for (u,v) € S(0),
Ouwr = { vij | ui +v; =6;5 }, (3.3)

interpreting Theorem 2.1 and Corollary 2.2 in this case leads to the following
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Theorem 3.1. Forany © € R™", the face £(m,n)® of the secondary polytope ¥(m,n) =
E(Amm—1 X Ap_1) corresponds to the regular subdivision Ilg = { 04y | (u,v) € S(O) }.
The lattice of faces of Ilg is anti-isomorphic to the lattice of faces of the polyhedron S(0©),

and so Ilg is a triangulation precisely when S(0) is simple. <

Note that in this case, S(O) is simple if every 1-face is on precisely m + n — 1 facets.
S(©) has no vertices so a maximal cell of Ilg is of the form o,,, where (u,v) lies on a
1-face.

We consider next subdivisions Ilg where © = (6;;) is a 0-1 matrix. In this case, we
define a line cover of © to be a pair (I,J), with I C [m],J C [n] such that for all (7, 5)
with 6;; = 1, either 1 € T or j € J. A line cover (I, J) is said to be minimal if both I
and J are minimal. Note that line covers of © correspond directly to 0—1 vectors in the
polyhedron S(©).

Given 0-1 matrix © and line cover (I,J), we say 6;; is ezactly covered by (I, J) if
6;j=1and (1,5) ¢ I x J,or 6;; =0 and (¢,7) € ([m]\ I) x ([n] \ J). Define

ory = { vij | 0ij exactly covered by (I,J) }. (3.4)

Corollary 3.2. For 0-1 matrices ©, the maximal cells of the subdivision Ilg are precisely

the cells o5 where (I,J) is a minimal line cover of © with J # [n].

Proof: We first show for every (u,v) € S(©) there is a 0—1 vector (#,7) € S(0) with oy, C
oap. We can assume that both v > 0 and v > 0 since, for example, if u; = min{u;,v;} <0,
then ' = u —uje >0, v = v+ uje > 0 and oy = Gyy. In this case, set u; = [u; > %]
and o; = [v; > 1] for all i and j, where [R] is 1 or 0 depending on whether the relation R
is true or false. Then u; + v; = 0 implies @; + 0; = 0, and u; + v; = 1 implies @; + ¥; = 1,
and so 04y C O45-

Since always 0 [,] C O[m] ¢, there is no loss in eliminating the former from consid-
eration as a maximal cell. Since the lineality space of the polyhedron S(©) is generated
by (w,v) = (1,...,1,-1,...,—1), there can be at most one 0~1 point (u,v) on a 1-face
of S(O) unless either v = (1,...,1) or v = (1,...,1). Thus in cases with I # [m] and
J # [n], I and J can be recovered from o7 (given ©), and so the correspondence between

maximal cells and minimal covers is bijective. <

1 1
1 0
triangles 0, = {v11,v12,v21} and 02 = {v12,v21,v22}. The cell o1 corresponds to the

minimal line cover ({1,2},0) (as well as to (0, {1,2})), while o, corresponds to ({1}, {1}).

, m=n = 2. Here Ilg is a triangulation of a square into

Example 3.3. © = (
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Note that the cell 04 N oy does not correspond to a line cover; however o; N 03 = 04, for

u=(1,1)and v = (3,0). Finally, note that if @' = (8 (1)), then Mg = Ior.

Corollary 3.2 gives a simple means to verify that certain 0—1 matrices © are facet
normals of the secondary polytope X(A,,_1 X A,_1). We consider the case in which the
1's in © form the union of two rectangles. We call a 0—1 matrix © a generalized hook if
there are proper nonempty subsets I' C I C [m] and J' C J C [n] such that ©;; = 1 if
and only if (¢,5) € (I' x J)U (I x J'). Included in this class are all 0—1 matrices having all

1's only in one row or one column.

Proposition 3.4. Suppose O is a 0-1 matrix which is a generalized hook. Then the face
Y(m,n)® is a facet.

Proof: We consider first the case in which I' = I (and, without loss of generality J' = J).
Then the 1's of © form a rectangle with rows in I and columns in J. There are only two
minimal line covers of ©, (I,0) and (0, J), and so by Corollary 3.2 the subdivision I e
has only two maximal cells. Thus II¢ must be maximal in the refinement order, and the
conclusion follows.

In the case I' # I and J' # J, © has three minimal covers, (I,0), (8, J) and (I', J'),
and so Ile has three maximal cells. We show IIg to be maximal in the refinement order
in this case by showing that the union of no two of these cells is convex.

Let 0y = 019, 02 = 0y y and 03 = op p, and choose 1y € I', 12 € I\ I', i3 € [m] \ I,
j1 € J' j2 € J\ J" and j3 € [n]\ J. It is straightforward to verify that 1vi,j, + Jviyj, €
conv(oy Uoz)\ (01 U0z), 2045, + 3viyj, € conv(oy Uos)\ (02 Uos) and FVitj, + 3Viyj, €

conv(oy Uos) \ (o1 Uos). <

When min{m,n} < 2 or mar{m,n} < 3, all facets have 0—1 normals. That this fails
to hold in general is shown by the following example, constructed with E. Babson from a

larger example suggested by A. Schrijver. See [BB] for further details.

Example 3.5. The matrix

21 00
1 010
G)_0110
0 0 0O

gives a facet of £(A3z x A3) that does not have a 0~1 normal.

S L \)g\ .



4. Facet normals and weightings of bipartite graphs.

We give a characterization of normal vectors to facets of the general fiber polytope L( P, Q),
where 7 : P — @ as in §2, in terms of a decomposition property for the polyhedra S(8).
When specialized to the polytope (A1 X A, 1), we get a correspondence between facet

normals and indecomposable weighted vertex covers in bipartite graphs.

Note that since £(P,Q) C R" and generally dim X(P, Q) = dim P —dim Q < n, facet
normals are only determined up to the addition of an element of K(w, P) := (ker )+ +
(aff P)t. For § € R", recall the polyhedron S(8) = { (y0,y) € R*™! | yo + (y,q:) >
(8,pi), i=1,...,m }.

We say a direction § € IR" is decomposable if § € K(m,P) or if § = 6; + 6, and
5(0) = S(0:1) + S(62) (Minkowski sum), with not both 6; and 63 in K(, P) + cone(#).
Otherwise we say 6 is indecomposable. Note that we always have S(6;+62) D S(61)+.5(62).

Theorem 4.1. For § € IR", the face (P, Q)? is a facet of £(P,Q) if and only if 8 is

indecomposable .

Proof: Assume 6 ¢ K(x,P). If £(P,Q)? is not a facet, then § = 6, + 8, where L(P, Q)%
and S(P, Q)% are faces properly containing X(P, Q)? and

S(P,Q)° = S(P,Q)" NS(P,Q)".
Then for almost every q €

maz{ (8,p) | p € 77'(q) } = maz{ (61,p) | p€ 7 '(q) }
+maz{ (62,p) | p€ 77(g) }
min{ yo + (¥,9) | (vo,y) € S(61) }
+min{ yo + (y,9) | (vo,y) € S(62) }
=min{ yo + (v, 9) | (v0,y) € S(61) + S(82) }
> min{ yo + (y,9) | y € S(6) }.

(4.1)

From the equality of the first and the last expressions above, we conclude that S(0) =
S(61) + S(62). Since both L(P,Q)% and T(P, Q)% properly contain %(P,Q)%, we have
neisther 6, nor 6, in K(x, P) + cone(#), so 8§ must be decomposable.

Conversely, suppose Z(P,Q)? is a facet of Z(P,Q). If § = 6; + 6, and S(F) =

S(61) + S(62), then a similar argument allows us to conclude that

Y(P,Q)° Cc T(P,Q)" NnX(P, Q). (4.2)
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Since (P, Q)? is a facet, both T(P, Q)% and T(P, Q)% must be either L(P, Q)? or £(P, Q),
so both 6, and 6, must lie in K(7, P) + cone(d). Thus 6 is indecomposable. «

In the case of ¥(m,n) = L(Apm_1 X Ap_y), K(m, P) is the linear span of the m +n
0—1 matrices consisting of a row or column of 1's. This is the same as the space of all
additive matrices, that is, matrices of the form X = (z;;) with z;; = a; + 8; for « € R™
and 8 € R™. We call matrices © and O' equivalent if © — @' is additive. In this case
2(m,n)® = £(m,n)®’; that is, equivalent matrices yield the same face (see Example 3.3.).

We can interpret coordinates of © € IR™" as weights on the edges of the complete
bipartite graph K, , and S(©) = { (u,v) €¢ R™ x R" | u; + vj > 6;; } as the polyhedron
of weighted vertex covers of the weighted graph ©. So a weighting © of K, , is indecom-
posable if it is not additive and whenever © = 01 + 02 and S(0) = S(0,) + S(0,), then

both ©; and O, are nonnegative multiples of © plus additive matrices.

Corollary 4.2. Facets of the secondary polytope L(Am—; X Ap_1) correspond to inde-
composable Weightings@f Knn. <

The matrix given in Example 3.5 gives an indecomposable weighting of K, 4 that is

not equivalent to a 0—1 matrix.

Remark 4.3. It is shown in [BB] that a 0-1 weighting © of K,, » corresponding to a
subgraph of Ky,_j n—1 (i.e., © has a zero row and a zero column) yields a facet (and,
hence, is indecomposable) if this subgraph is connected. In fact, if © corresponds to a
subgraph of Ky, _1,n—1 having k components, then codim £(m,n)® < k. We show equality
here.

Suppose O = 61 g , where A and B are nonnegative nonzero matrices. Let

0 0 0 B
5(©2) and so © is decomposable. By (4.2), (m,n)® C Z(m,n)® N T(m,n)®2, and so
codim £(m,n)® > 2. (Alternately, one can use Corollary 3.2 to show that the subdivision

0, = (A 0) and O, = (0 0 ) It is straightforward to show that S(©) = S(0,) +

Ilg is a strict refinement of Ilg,.) Repeating this argument leads to the following.

Corollary 4.4. If

A O 0
0 A, 0
0= ) ,
0 0 ... A
where A1, Ay,. .., Ay are nonnegative nonzero matrices, then codim $(m,n)® > k. q
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5. The support function of £(m,n).
The support function hp : R®™ — IR of a polytope P C IR" is defined by

hp(0) := maz{ (z,0) | z € P }
for § € R"; thus

Pl={zeP|(x,0) =hp(d) }. (5.1)
Support functions are always positively homogeneous (hp(t) = thp(), for t > 0) and
subadditive (hp(60 + 6') < hp(8) + hp(6')), and we have

P={zeR"|(z,0) <hp(f), forall 6§ cR" }.

See, for example, [R] for a general discussion of support functions. We note that if P =
{z| Az <b}, then hp(8) = min{ (A1,6),...,(An,0) }.

We first consider the support function of a general £(P, Q). Let § € IR" and for each
o € Iy, let A(c) be any fixed triangulation of the polytope o. For 7 € A(o), denote by
z. the centroid of the subset 7=1(7) of P (see (2.5)).

Proposition 5.1. For § € IR",

hsre®) =——= 3 Y (volr) (6,2.). (5.2)

UOIQ o€lly reA(o)

Proof: By definition of fiber polytopes and properties of the Minkowski integral, we have
for each § € R"

1

1
hy_)(p’Q)(e) = volQLhﬂ—l(q)(G) dq = volQ Z /h,,_l(q)(ﬂ) dq. (53)
o€, V7

The function h,-1(4)(9) is given by (2.4) and, for fixed 6, is a linear function of ¢ € o € .
By (2.6) and (5.1), for a simplex 7 € A(o) and g € T we have h,-1(4)(6) = (6, p), where p
is the unique point of 7=1(7) such that n(p) = ¢. Thus by (5.3) we get

hs(p,g)(6) = u;Q Yo > | () dg= 50%5 Yo D, (volr) (8,2r).

o€lly reA(a) VT o€lly reA (o)

Note that volT = 0 if 7 is not a maximal simplex of A(c). For a triangulation A
refining [Ty, Proposition 5.1 follows directly from {FP; Cor. 2.6]. There is a slight advantage
to the more general formulation here in that it allows one to use arbitrary triangulations

of each cell of II,.
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To give the support function for secondary polytopes, we must be a bit more careful
about the scaling involved in passing from fiber polytopes. Recall that if @) is a polytope
with n vertices then the secondary polytope 3(Q) is homothetic to the fiber polytope
N(An_1,Q), e,

2(Q) = (dmQ +1) vol(Q) E(An_1,Q)

[FP; Thm. 2.5]. Again, letting Il be any regular subdivision of @ and for each o € Ily,
A(o) a triangulation of o, define e, := 37 . e; = (dim Q + 1)z, for each 7 € A(0).

Corollary 5.2. For 6 € IR,

hsg)(8) = ) ) (volt) (B,er). (5.4)

o€lly reA(o)

Denote by hp,, the support function of the Newton polytope £(m,n). This is a
subadditive function on the space of m x n matrices ©. Determining hm,,(0) for all
integral matrices © is equivalent to determining a complete set of inequalities determining
E(m,n). Restricted to 0-1 matrices, hn,, can be viewed as giving a monotone, subadditive
function on subsets of [m] x [n] (or shapes fitting in an m X n array); i.e., for S, T C [m]x[n],
if S C T, then hpmp(S) < hma(T), and if SNT = 0, then hpn(SUT) < hmn(S) + hma(T).
It would be of interest to determine hp,,(.S) for all S C [m] x [n]. We give below a formula
for hmn(S) in terms of line covers of S and describe how to evaluate it for certain simple
shapes.

By (5.4), we can relate the evaluation of hpn(©) to the subdivision IIg. Since each
simplex in A,y X Ap_; has the same volume by the unimodularity of its coordinates (see,
e.g., [Hai; Lemma 2)), the support function h,,, is obtained from (5.4) by setting vol T =1
for each maximal simplex 7. In particular, when © is a 0—1 matrix, the indicator function
of some shape S, we can view this shape as a subset of the vertex set of Ay,,_1 X Ap_1. In

this case, the inner product in (5.4) counts the number of vertices in the set SN 7.

Corollary 5.3. For any shape S C [m] x [n],

hma(S)=)_ Y |Sn7], (5.5)

1,J reA(l,J)

where the first sum is over minimal line covers (I,J) of S (with J # [n]) and the second

sum is over maximal simplices of any triangulation A(I,J) of the cell o1y in (3.4).

The primary difficulty in evaluating (5.5) for any particular 0—1 matrix © is deter-

mining a triangulation of the cell o7 for minimal line covers of S. In certain cases this
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presents no problem. Recall the standard triangulation of A1 X A,_3 whose maximal
simplices have vertex sets determined by all monotone paths in an m x n array, i.e., paths
from the upper left entry to the lower right entry that only move down or to the right. In
[BCS], it is shown that lexicographically ordering these paths gives a shelling of this tri-
angulation. From this it follows that if one takes an initial segment of this triangulation,
in the lexicographic order favoring moves down (so the initial path in this order moves
down the first column and across the last row), stopping just prior to the addition of a
new vertex, then the simplices so defined form a triangulation of the convex hull of the
vertices involved. Thus if, after reordering rows and columns, the vertices of a cell o1 are

arranged in a block triangular form

E O 0

E FE 0

N E (5.6)
where the E's and O's represent rectangular arrays of 1's and 0's, then a triangulation of
o1g is formed by taking all monotone paths among the 1's in this array.

For example, if S is a generalized hook, then it is easy to check that the two or three
cells o1 in IIs can be put in the form (5.6).

There is a determinantal formula giving the number of monotone paths in the array
(5.6). Let \; be the number of 1's inrow m+1—iof (5.6), for: =1,...,m,son = Ay > Ay >
-+ > Am, and define the partition A = (Ay, Az,...,An) of the integer Ay + Ay + ... + A,
(The array (5.6) is essentially the inverted Ferrers diagram of A.) If u = (n,1,...,1)
partitions m+n—1, then the number of monotone paths in (5.6) is the number of partitions

in the interval [, A] in Young’s lattice (i.e., partitions with coordinatewise ordering) and

is given by the determinant of the m x m matrix

1 1 0 0 ... 0
Aamntly ), 1 0 ... 0

((Af—’.‘jH)): (Gl B ) IR E 1 ... 0, (5.7)
t—J+1 . . . . .
(™) am) () (ams) e Am

(Here we understand (§) = 0if a < 0, b < 0 or a < b. See [St; Exer. 3.63].) Note that

if (5.6) consists only of 1's, then the number of monotone paths is easily shown to be

(m+n——2

+72) (which is the number of simplices in any triangulation of Ap_; X Ap_1).

It appears to be a considerably more difficult problem to count the number of meet-

ings of these paths with a prescribed fixed set of cells, which is necessary for a complete
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evaluation of (5.5). In certain cases, this can be done, as is illustrated by the examples in

the next section.

6. Evaluation of h,,, for some simple examples.

We compute hp,,(©) for a 0-1 © having all it’s 1's in a single line, as well as certain other

values of hy », h3 3 and hy 4.

Proposition 6.1. If O, is a 0-1 m x n matrix with k 1's, all contained in a single line

(row or column), then

hmn(Ory) = Zk: (m +,Z :i ) 1)' (6.1)

i=1

Proof: By Proposition 3.4, such matrices correspond to facets of £(m,n). We can assume
that O() has 1's as the first k entries in the first row. In this case the subdivision He(k)
consists of two cells o7 and o3, corresponding, respectively, to the minimal line covers
({1},0) and (0, {1,...,k}). By (3.4), these cells have vertices indicated by the 1's in the
m X n arrays

1...10...0 1...1
and B,
E, 0

b

where E; is an (m — 1) x n array of 1's and E; is an m x (n — k) array of 1's. By the above

discussion, one sees that voloy = (™" %) — (m+£:f_2) (which is the number of paths

in an m X n array minus the number in an m x (n — k) array) and vol oy = ("‘tz f %).

Counting the incidence of these paths with the first k entries in row 1, we get

k

_ m—{—n—]—l m+n—k—2 m+n—k—2
= 33| (") () ()
zk:(m—i—n——]—l) .

(6.2)

Remark 6.2. When m = 2, £(2,n) is congruent to the permutohedron P,. (See [SZ;
Prop. 1.12] where this is proved for the Newton polytope of the product of mazimal minors
of a 2 x n matrix, from which one obtains ¥(2,n) by translation by the 2 x n matrix of 1's.)
In this case, the 2” — 2 facets of £(2,n) have normals given by all matrices ©y) consisting
of k 1's in the first row, 1 < k < n, and (6.1) reduces to hs (@) = (") - (k'gl) (cf.,
[YKK; §5.3.1}).
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Example 6.3. The case m =n = 3.

From (6.1) we get h33(©(1)) = 6 and h33(0(2)) = 9. The only other 0—1 matrix corre-
sponding to a connected subgraph of K33, and thus to a facet of 3(3,3), which is not

equivalent to one of these two, is (up to row and column permutation)

O =

[ J S Y
oSO =
oo O

We show h3 3(0) = 14.

Corresponding to line covers ({1,2},0), (0, {1,2}) and ({1}, {1}), we have cells 0y, o3
and o3, having vertices indicated by

110
100},
111

O =

1
0
0

— =

0
and | 1
0

— et

0
L,
1

respectively. These make contributions 5, 5 and 4 to the sum (5.5).

One can check by direct calculation that all row and column permutations of ©),
O(2) and O give all the facet normals of ¥(3,3). Thus ¥(3,3) consists of all 3 x 3 matrices
having row and column sums 10, such that each entry is at most 6, any two entries in
the same row or column sum to at most 9, and any 3 entries, two in the same row and
the third in one of their columns, sum to at most 14. This polytope has 108 vertices and
so Ay x A, has 108 regular triangulations (see [BFS], [FP] or [GZK] for the definition of
regular triangulation). It is not known whether Ay x A (or, in general, A1 X Ap_yq)

admits triangulations that are not regular. «

Example 6.4. The case m = n = 4. We tabulate in Table 1 the values of hy 4(©) for
those 0—1 © corresponding to connected subgraphs of K3 3, and so known to correspond
to facets of ¥(4,4) by Remark 4.3, as well as the © of Example 3.5.

We have omitted row and column permutations of ©'s in the table (which have the
same values of hy4). We also omit ©'s which are equivalent to those on the table, and
which thus yield the same facet, although usually different, but easily derivable, values of
h4,a (using the fact that elements of ¥(4,4) have row and column sums equal to 35).

Note, for example that

0, =

OO = =
OO = =
o OO -
o O OO
o O RO
O O O
o O OO
— == O
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© hs,4(0) © h4,4(©)
1 00 0 1 110
oo o) w15 e
\o 0 0 0 \0000/
110 0 1110
0000 | 0 1 0 o gl
\o 0 0 0 00 0 0/
1110\ 0110
0 0 0 0 34 100 o g
\o 0 0 0 \0000/
110 0 1110
00 0 0 16 L0 0o 76
\0000/ \0000/
110 0 1100
oo e | (1Y) s
0000/ \0000/
/1110\ 1110
00 0 0 53 Lo 1o 86
\o 0 0 0/ 000 0/
01 10 210 0
o) e | (50|
\0000/ 0000/
Table 1
and
1110 000 0
1110 00 0 0
© =10 00 0]~92=0 0 0 1"
000 0 00 0 1

where ~ denotes equivalence (see §4). Here, hy 4(01) = hy 4(O2) = 62, while hy 4(03) =

h4,4(©4) + 35 = 65, since the row and column sums equal 35 in this case. Note also the

monotonicity and subadditivity of hy 4, as illustrated, for example, by the first, second and

fourth values in the left table.

The values in the table were all obtained by application of (5.5). In some cases, the

resulting cells o7 could only be partially triangulated by initial segments of the stan-
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dard triangulation. In these cases, a full triangulation was obtained by “placing” the
remaining vertices outside the partial triangulation, forming further simplices by joining
to exposed facets on the boundary. In this regard, the following observations are useful.
Full-dimensional simplices on the vertices of A,,_; X A,_; (which thus involve m +n —1
vertices) correspond to spanning trees in the graph K, ,. A simplex 7 of codimension 1
corresponds to an acyclic subgraph having 2 components. To form a full simplex contain-
ing 7, one must add an edge which joins these components. Each such edge is oriented
according to whether it meets the left or right side of the first component, say, and the
corresponding vertices of A,,_1 X A, _1 are on the same or opposite side of the hyperplane
generated by 7 depending on whether they have the same or opposite orientation. This
makes it fairly easy to determine, when placing a new vertex over a partial triangulation,

to which of the current facets it is to be joined.
A complete list of the normals of facets of ¥(4,4) has not been conjectured. The table

accounts for all the 0-1 facet normals having a zero row and column. There appear to be

many others; for example,

1100
0 1 10
G)—0011
1 0 01

can be shown to be normal to a facet (see [BB]). «

Looking at the Table 1, one is led to ask whether, on 0-1 matrices, the function

hmn can be viewed as giving the energy, in some unspecified sense, of the corresponding

configuration of 1's.
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