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Abstract
We investigate a special class of polytopes, the zonotopes, and show that
their flag f-vectors satisfy only the affine relations fulfilled by flag f-vectors of
all polytopes. In addition, we determine the lattice spanned by flag f-vectors of

zonotopes. By duality, these results apply as well to the flag f-vectors of central
arrangements of hyperplanes.

1 Introduction

The flag f-vector of a convex polytope is an enumerative invariant of its lattice of
faces, containing more information than the usual f-vector. While the latter counts
the numbers of faces in each dimension, the former counts the numbers of chains (Rlags)
having any possible set of dimensions.

The Euler relation is the only affine relation satisfied by f-vectors of all polytopes.
For simplicial (or simple) d-polytopes, there are l_%lj additional relations, called the
Dehn-Sommerville equations, which provide a complete description of the affine space
generated by all such f-vectors [8]. The information contained in the f-vector of a
simplicial polytope is nicely summarized in the form of the h-vector [16].

In the case of the flag f-vector, there is a large set of equations that are satisfied
for all polytopes. The corresponding affine space has dimension given by the Fibonacci
sequence [1]. The cd-index provides an efficient way to summarize this information [2).

In the case of simplicial, simple and cubical polytopes, the flag f-vector reduces
directly to the f-vector. In this paper we investigate another special class of polytopes,
the zonotopes, and show for these that there is no reduction whatsoever; that is, we
show that the flag f-vectors of zonotopes satisfy only the affine relations satisfied by
flag f-vectors of all polytopes. This strengthens a result of Liu {12, Theorem 4.7.1].
Zonotopes are of particular interest in the study of hyperplane arrangements (see [18]),
to which they are dual. A direct consequence of our result is that the cd-index of a
central hyperplane arrangement is the most efficient encoding of the affine information
of its flag f-vector.

We define the basic terminology used throughout this paper. For a convex d-
dimensional polytope @, and for a subset S C {0,...,d — 1}, we denote by fs the
number of chains of faces (flags) in Q, F1 C --- C Fy, with S = {dim F}, ..., dim F}}.
The vector consisting of all the numbers fs, S C {0,...,d — 1}, is called the flag
f-vector of Q. The affine span of the flag f-vectors of all polytopes (more generally,
of all Eulerian posets) is described by a system of linear equations, known as the
generalized Dehn-Sommerville equations {1].

*Supported in part by NSF grant DMS-9500581.
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Forany S C {0,...,d -1}, weset hs = S5 (=1)!I*>Tl f7. Define a polynomial
In the non-commuting variables a and b, called the ab-indez, by

Y(Q) =) hs-us,
S

where us = zp+--24-1, zz =bifi € Sand z; = a if ¢ ¢ S. An implicit encoding of
the generalized Dehn-Sommerville equations is given by the fact that ¥(Q) is always
a polynomial in the variablesc =a+b and d =a-b+b-a. We call the polynomial
the cd-index of Q.

As an example, the cd-index of a polygon () is given by

V(Q)=c*+(fo—-2)-d (1.1)
and the cd-index of a 3-dimensional polytope @ is given by
V(Q)=c+(fo—2) -de+ (fa—2) - cd. (1.2)

In Section 2, we discuss the operations of taking pyramids and prisms, and we
use them to give a direct proof that the flag f-vectors of all polytopes span the linear
space determined by the generalized Dehn-Sommerville equations. We next discuss
zonotopes and three operations on them - projection, Minkowski sum with a line
segment and prism. We use the coalgebra techniques of [7] to determine their effect on
the cd-index. In Section 4, we show the the cd-index of an n-fold iterated Minkowski
sum is a polynomial function of n, and we use this in Section 5 to show that the flag
f-vectors of zonotopes also span the space of all flag f-vectors. This result is extended
in Section 6 by determining the lattice spanned by the cd-indices of all zonotopes. It
is the ring of all integral polynomials in ¢ and 2d. In terms of flag f-vectors, this is
equivalent to saying that fs is divisible by 25|, Some observations and concluding
remarks are indicated in the final section.

The authors thank Gabor Hetyei for reading and making useful comments on an
earlier version of this paper.

2 Polytopes span

For a field k of characteristic 0, let F be the polynomial algebra in non-commuting
variables ¢ and d over the field k, that is, F = k{c, d). (In fact, everything we do here
works in any characteristic other than 2.) If we set the degree of ¢ to 1 and the degree
of d to 2, we define Fy to be all polynomials in F that are homogeneous of degree d.
Recall that a derivation f on an algebra A is a linear map satisfying the product
rule f(z -y) = f(z) -y +z - f(y). Observe that it is enough to determine how the
derivation acts on a set of generators, and hence we may describe a derivation on F
by giving its value on the elements ¢ and d. Define two derivations D and G on F by
D(c) =2-d,D(d)=c-d+d-c, G(c) =d, and G(d) = ¢ - d. Observe that both
these derivations increase the degree by 1, that is, they are maps from F; to Fap1-
For a polytope @ we denote the pyramid over @ by Pyr(Q). Likewise, denote the
prism over @ by Pri(Q). We similarly denote two linear maps Pyr, Pri :  — F, by

Pyr(w) = w- ¢+ G(w)

and
Pri(w) = w - ¢ + D(w).

The following results are proved by using coalgebra techniques in [7] (see Theorem 4.4
and Theorem 5.2).
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Proposition 2.1 For a polytope Q we have thal
¥(Pyr(Q)) = Pyr(¥(Q)),
¥(Pri(Q)) = Pri(¥(Q)).

Lemma 2.2 The linear span of the two sets Pyr(F,) and Pri(F,) is the linear space
fd+1'

Proof: Define a third derivation G’ on the algebra F by G’(c) =d and G’(d) = d - c.
It follows that w - ¢ + G(w) = ¢ - w+ G'(w) for all w € F (see [7, Lemma 5.1]).

Observe that Pri(w) — Pyr(w) = D(w) — G(w) = G'(w). Thus the statement
of the lemma is equivalent to that Pyr(F;) and G’'(F4) span the space Fyp;. Let
V = Pyr(Fq) + G'(Faq).

Let w be an element in F4. Then we have that ¢ - w = w-¢ + G(w) — G'(w) =
Pyr(w) — G'(w). Hence c - w belongs to V.

Let v be in Fy_1. Then we have that G'(c-v) =d - v+ c - G'(v). Since c - G’'(v)
belongs to V' by the previous paragraph and G'(c - v) also belongs to V, we have
d-veV.

Since a monomial in Fy4; begins either with a ¢ or a d, we conclude V = Fart-
n

From Lemma 2.2, we conclude directly the basic result that the linear span of all
flag f-vectors has dimension given by the Fibonacci numbers [1].

Theorem 2.3 Beginning with a point, one can produce, by repeated use of the oper-
ations Pyr and Pri, a set of polytopes whose cd-indices span F.

We note that this approach does not identify a specific basis, as was done in (1]
and [10]. We end this section with a useful fact.

Lemma 2.4 The four linear maps D, G, Pri, and Pyr are injective.

Proof: Let fgi) be the linear span of all monomials of degree d containing ¢ d’s.
Define two derivations Dy and Dy by: Dy(c) = 0, Do(d) = ed + dc, Dy(c) = 2-d,
and D;(d) = 0. Observe that D = Dy + D; and D; is a linear map from .7-'((;) to
FH)

Define a linear map ¢ : ]_-(gi) — k(zo,...,z;] by

¢(c"odc™d - -dc™) = zfoar - al.

This map takes the linear space fy) isomorphically onto the linear space of homoge-
neous polynomials of degree d — 2 - i in the variables 2o, ..., z;. Moreover, we have

?(Do(w)) =(zo+2- 214+ 2 -2i_1 +2;) - $(w).

Since the ring of polynomials is an integral domain, we have (Zo+2-z1+- - +2-2;1+2;)
is not a zero divisor. Hence Dy : f(gz) —_ ]—'521 is an injective map. The linear map
D corresponds to a block matrix, where the blocks on the diagonal are described by
Dq and the blocks below the diagonal are equal to zero. We thus conclude D is also
injective.

For the other three linear maps the proof is similar. The only difference is that
we obtain another polynomial of degree 1 for each linear map. For Pri, G and Pyr we
get, respectively, xo + 221 + -+ 22;, xo+---+2;_1 and 20+ - - - + ;. |
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3 Zonotopes

The Minkowski sum of two subsets X and Y of R? is defined as
X+Y={x+yecR? : xeX yeY}

Notably, the Minkowski sum of two convex polytopes is another convex polytope. For
a vector x we denote the set {A-x : 0< X < 1} by [0,x]. We denote by aff(X) the
affine span of X that is, the intersection of all affine subspaces containing the set X.

We say that the nonzero vector x € aff(Q) lies in general position with respect to
the convex polytope @ if the line {A-x+u € RY - Xe R} intersects the boundary
of the polytope @ in at most two points for all u € R?. Alternatively, x € aff(Q) is in
general position if x is parallel to no proper face of @.

From [7, Prop. 6.3] we have the following result. Let @ be a d-dimensional convex
polytope and x a nonzero vector that lies in general position with respect to the
polytope ). Let I be a hyperplane orthogonal to the vector x, and let Proj(Q) be
the orthogonal projection of @ onto the hyperplane H. Observe that Proj(Q) is a
(d — 1)-dimensional convex polytope.

Proposition 3.1 The cd-indez of the Minkowski sum of Q and [0,x] is given by
¥(Q +[0,x]) = ¥(Q) + D(¥(Proj(Q)))-

A zonotope is the Minkowski sum of line segments. That is, if x1,...,%x, € R?
then the zonotope they generate is the Minkowski sum

Z =[0,x1]+ -+ [0,x,].

A (central) hyperplane arrangement is a finite collection H of linear hyperplanes in
R?  An arrangement is called essential if the intersection of all its hyperplanes is
the origin. An arrangement H induces a subdivision of R? into relatively open cells,
whose closures are ordered by inclusion. The resulting poset is a lattice, called the face
lattice of H. An arrangement H C R? has a natural flag f-vector with components
fs(H), where S C {1,...,d}. The face lattice of Z is anti-isomorphic to that of
the central arrangement H of the n hyperplanes with normals x4,...,x, [5, Prop.
2.2.2]. If Z is d-dimensional, then its flag f-vector and that of its dual hyperplane
arrangement are related by fg(Z) = fa_s(H), where S = {iy,...,4} C {0,...,d-1}
andd—-S={d—1t,...,d— 11}

Two important and useful facts about the combinatorial behavior of zonotopes
are the following:

1. The face lattice of Z is determined by the oriented matroid of the point config-
uration {x1,...,%,} [5, Prop. 2.2.2], and

2. The flag f-vector of Z is determined by the matroid of the configuration
{x1,...,%n} [6, Cor. 4.6.3].

For a zonotope Z we note that, up to combinatorial type (that is, up to face
lattice), the prism over Z can be realized as the zonotope Pri(Z) = Z + [0, x] for any
x ¢ aff(2).

We define a zonotope M(Z) by

M(Z)=Z+[0,x],
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where x lies in general position with respect to Z. While the combinatorial type of
M(Z) depends on the choice of x, the flag f-vector is invariant. This follows since
the underlying matroid of M(Z) is always a free extension (of the same rank) of the
matroid of Z, that is, an extension such that x lies on no proper subspace spanned by
the generators xy,...,x,.

Finally, we define the zonotope 7(Z) to be the projection of M(Z) along the
direction x, that is, onto the hyperplane orthogonal to x. Observe that 7(Z) is the
projection Proj(Z) in a general direction. The zonotope 7{Z) is well-defined up to
flag f-vector since its underlying matroid will be the one obtained by contracting x
in the matroid of M(Z).

Directly as a corollary of Proposition 3.1 we have

Corollary 3.2 For a zonotope Z we have

U(M(2)) - ¥(2) = D(¥(x(2))).

The operations Pri, M, and 7 were used by Liu [12] to give a lower bound on the
dimension of span of the flag f-vectors of zonotopes. The relationship between these
operations is given by the following lemma. The second relation was first observed by
Liu in [12, Theorem 4.2.7). We say d-zonotopes Z and W are equal up to flag f-vector
if, for every S C {0,...,d — 1}, fs(Z) = fs(W).

Lemma 3.3 For a zonotope 7 we have, up to flag f-vector,
m(M(2)) = M(x(Z))

and

n(Pri(2)) = M(Z2).

Proof: In each pair it is enough to check that the underlying matroids are the same.
For m(M(Z)), one makes a free extension of Z by x and again by y (both in
aff(Z)}, then contracting y. The image of x under this contraction is still free with

respect to the images of xi,...,X,, so the resulting matroid is the same as that of
M(=(2)).

For m(Pri(Z)), the description is the same, except now neither x nor y is in aff(Z).
In this case, the images of xy, ..., x, will have the same matroid as M(Z). |

4 Polynomial functions

In this section we define polynomial functions and derive some of their properties.

These functions play a role in the proof of our main theorem. Let V and W be vector
spaces over the field k.

Definition 4.1 A function f :N —— V is called a polynomial function of degree d if
it can be written in the form

e (e () o )

where vo,...,vg €V and vg #0. We call vy the leading coefficient.

Observe that (Z) is defined by the Pascal relations in any characteristic. We define
the difference operator A by Af(n) = f(n+ 1) — f(n). The following proposition
contains the essential results we will need about polynomial functions.



6 L. J. Billera, R. Ehrenborg and M. Readdy

Proposition 4.2 Let f : N — V be a polynomial function of degree d.

(i) If 6 : V — W is a linear map then the composition o f : N — W is a
polynomial function of degree at most d. If ¢ is injective, then the degree is d.

{11) The function Af(n) is a polynomial function of degree d — 1.

(111) If g s a function from N to V such that Ag(n) = f(n) then g is a polynomial
function of degree d + 1 with the same leading coefficient as f.

(v) The vector f(0) is in the linear span of f(1),..., f(d +1).

Proof: Let f(n) be the polynomial function of degree d

v () ()0 o0 )

(i) Observe that

o nm =otva)- () +otvan) (") +oo o) (1),

which is a polynomial function of degree at most d. When ¢ is injective, we have
®(vq) # 0 and hence ¢ o f is of degree d.
(i) It is straightforward to obtain

Af(n):vd.(df1)+vd_1»(df2)+~-~+v1.<g),

which proves (i1).
(iii) By induction on n we have

g(n) = vq - (dil>+vd_1~(3)+---+vo- (’1’>+g(0),

which is a polynomial function of degree d + 1. The leading coefficient is v4, which is
the leading coefficient of f.

(iv) By property (ii) we know that A¢f(n) is a polynomial function of degree 0,
hence it is a constant. Thus A4f(0) = A4f(1). But A4f(0) is a linear combination of
f(0),..., f(d) and A?f(1) is a linear combination of f(1),..., f(d+1). The coefficient
of £(0) in A?f(0) is (—1)¢, which is nonzero, and hence the relation A%f(0) = Adf(1)

]

gives the desired result.

Observe that Proposition 4.2 and its proof is valid in any characteristic for the
field k, since (—1)? is never zero. Moreover, it applies to Abelian groups (Z-modules)
as well. This last fact will be used in Section 6.

The main result of this section shows that the cd-index of iterates of the operation
M 1s a polynomial function.

Theorem 4.3 Let Z be a d-dimensional zonotope. Then the mapping n — ¥(M™(Z))
is a polynomual function of degree d — 1 into Fy, with leading coefficient D?~1(c).
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Proof: The proof is by induction on d. The base case is d = 2. Assume that Z is
a 2-dimensional zonotope, that is, Z is a 2k-gon. Then M(Z) is a (2k + 2)-gon, and
M"(Z) is a (2k + 2n)-gon. By equation (1.1) we have the cd-index of M"™(Z) is given
by ¥(M™(Z)) = c?+(2k+2n~2)-d = 2-n-d+c?+(2k —2)-d. This is a polynomial
function of degree 1 in n with leading coefficient 2 - d = D(c).

Assume that d > 3 and let W = n(Z). Observe that W is a (d — 1)-dimensional
zonotope. Now by Corollary 3.2 and Lemma 3.3 we have

AWM (2)) = WMPH(Z)) - B(M™(2))

D(¥(M" (x(2)))
D(¥(M™(W))).

Il

il

By the induction hypothesis we know that n — ¥(M™(W)) is a polynomial function
of degree d — 2 with leading coefficient D4~2(c). Since D is an injective linear map
(see Lemma 2.4), by property (i) in Proposition 4.2 we have n — D(¥(M"(W)))
is polynomial function of degree d — 2. Its leading term is D4~ 1(c). Finally, by
property (iii) in the same proposition we complete the induction. |

5 Zonotopes span

Let G4 be the linear span of the cd-indices of zonotopes of dimension d. Liu proved
that dimGy > dimGs_; + dim G453 [12, Theorem 4.7.1]. In this section we prove that
dimG, = dimGy_1 + dimG,4_», that is, G4 equals Fj.

Since zonotopes are polytopes, we know that G4 C F;. We first prove a variation
of Lemma 2.2 that substitutes D for Pyr in order to be able to operate solely with
zonotopes.

Lemma 5.1 The linear span of the two sets D(F;) and Pri(F;) is the whole space
Fatr-

Proof: Let V be the subspace of F; which is spanned by D(F;) and Pri(F,), that is,
V= D(Fg) + Pri(Fy).

Let w € F4. Since w - ¢ = Pri(w) — D(w) € V, we know that every cd-monomial
which ends with a ¢ belongs to Pri(F;) + D(Fy).

Consider v € F3_;. We have that D(v-¢) = D(v) -c+2-v-d, and hence
v-d=3-(D(v-¢)— D(v) c). Wehave D(v-c) € V. Moreover D(v) -¢ € V by
the previous paragraph. Hence v-d € V, and we conclude that every cd-monomial
belongs to V. ]

The following result shows that the flag f-vectors of zonotopes made by the suc-
cessive application of the operators Pri and M, beginning with Z = 0, span the space
of all flag f-vectors of polytopes.

Theorem 5.2 The cd-indices of d-dimensional zonotopes linearly span the space of
cd-polynomials of degree d, that is, G4 = F.

Proof: The proof is by induction on the dimension d; the case d < 2 is clear. We
assume that the theorem holds for d > 2, hence G4 = Fy, and prove it for d + 1.
Assume that {Z1,...,Zn} form a spanning set of zonotopes of dimension d. Since
V(Pri(Z;)) = Pri(¥(Z;)) we have that Pri(F;) C Gas1.
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By combining Theorem 4.3 and property (iv) in Proposition 4.2, we know
that ¥(Z;) lies in the linear span of ¥(M(Z;)),...,¥(M%(Z;)). Hence, we know
that {Mj(Zi) | 1<i<N,1<j< d} is a spanning set of zonotopes. Observe
that every zonotope in this spanning set is the Minkowski sum of a line seg-
ment with a d-dimensional zonotope. Hence we can describe this spanning set as
{M(Wy),...,M(Wn.4)}.

By Lemma 3.3 and Corollary 3.2 we have

(M (Pri(Ws))) — ¥(Pri(W;)) = D(¥(m(Pri(W))))
= D(¥(M(W))).

Since both M (Pri(W;)) and Pri(W;) are (d + 1)-dimensional zonotopes, we have
D(¥(M(W;))) € Gay1. But since {M(W;)} forms a spanning set for F;, we obtain
that D(F4) C Gay1. By Lemma 5.1 we obtain that Gir1 = Fay1, which completes
the induction. |

Since the face lattice of a central hyperplane arrangement is an Eulerian poset,
it has a cd-index, obtainable from that of its dual zonotope by reversing each cd-
monomial.

Corollary 5.3 The cd-indices of essential hyperplane arrangements in R% Linearly
span the space of cd-polynomials of degree d.

6 The integral span

We turn now to the problem of finding the tntegral span of flag f-vectors of zonotopes.
This leads to an integral c-2d-index for zonotopes and central arrangements.

Let R be the ring in the non-commuting variables ¢ and d over the integers Z,
that is, R = Z({c,d). As before let the degree of ¢ be 1 and the degree of d be 2.
Let R4 be all polynomials in R that are homogeneous of degree d. We view R4 as an
Abelian group. Similarly, let 7 = Z{c,2d) and let 73 = T N R4. For a cd-monomial
w, let p(w) be the number of d’s that occur in w. A generating set of 7 is 2°(%) . ),
where w ranges over all cd-monomials of degree d.

Observe that Lemma 2.2 and Theorem 2.3 have the following integer analogues.

Lemma 6.1 The Abelian group Rayy is generated by Pyr(R4) and Pri(Ry).

Theorem 6.2 The Abelian group R4 1s generated by the cd-indez of d-dimensional
polytopes.

The goal of this section is to prove the analogous result of Theorem 6.2 for zono-
topes. Let 54 be the subgroup of R4 generated by the elements ¥(Z), where Z ranges
over all d-dimensional zonotopes. We begin by showing that 7; C 8;. This proof is
essentially the same as the proof of Theorem 5.2. We need the following lemma.

Lemma 6.3 The Abelian group Tyy, is generated by Pri(73) and D(Ty).

The proof differs from the proof of Lemma 5.1 in only one point. We do not divide
by 2; we use the relation 2-v-d = D(v - ¢) — D(v) - ¢ and the fact that the monomial
v - d contains one more d than v, that is, p(v - d) = p(v) + 1. We thus have that the
generating set of 7411 lies in the integral span of Pri(7;) and D(Ty).

The results in Section 4 also apply to Abelian groups as well as vector spaces.
Hence the proof of Theorem 5.2 generalizes to a proof of the following result.
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Proposition 6.4 The Abelian group T; is contained in the the group Sy.

It remains to show the inclusion in the other direction, that is, Sy C 7. For S a
subset of {0,1,...,d —~ 1}, we call S sparseif for all 4, {i,i+1} € Sandd—1¢ S.
Suppose that S has cardinality p. Let w be a cd-monomial of degree d containing p
d’s. We say that w covers the sparse set S if ug appear in the expansion of w = w(c, d)
as an ab-polynomial w = w(a+b,ab+ba). More explicitly, we can write w = c’o.d-
ctt.d---.d-c», where i > 0. Define jo, .. .y dp—1 by jo = 10 and ja41 = Jr+ 2+ ihey1.
Observe that the hth d in w covers the positions j; and jn4+;. Then w covers the sparse
set S if and only if S is contained in the set {jo,jo + 1,741,751 + 1,..., jp-1,Jp—1 + 1}.
(Compare this notion with Stanley’s definition of Wy [14].)

For a cd-monomial w and a cd-polynomial F(c,d), we denote the coefficient of

w in F'(c,d) by [w]F(c,d).

Definition 6.5 For a d-dimensional polytope Q and a sparse subset S of {0,1,...,d—
1}, define ks by

ks = > [w]¥(Q),
w
where the sum ranges over all cd-monomials w of degree d that cover S and contain

exactly |S}] d’s.

We call the vector (kg), where S ranges over all sparse subsets, the flag k-vector. As
an example, let d = 8 and S = {0,3,5}. Then we have

ko,3,5) = [d°c*]¥(Q) + [d®cdc]¥(Q) + [ded’c]¥(Q).
As a refinement of Proposition 1.3 in [14] we obtain the following relation.

Proposition 6.6 The coefficients of the cd-monomials containing p d’s can be ez-
pressed as an integer linear combination of ks’s where S has cardinality p. That is,
for w containing p d’s we have

[W¥(@) = D qus ks,
IS]=p
where the sum ranges over sparse sets S and q, 5 are integers.

The proof follows by ordering the sets and the monomials by lexicographic order. It
1s then easy to see that the defining relation of ks corresponds to an lower triangular
matrix with 1’s on the main diagonal. Thus this linear relation is invertible over the
integers.

Lemma 6.7 For T a sparse subset of {0,1,...,d — 1} we have that

hr = Z ky.

Ucr

The proof is by expanding the cd-index in terms of a’s and b’s and collecting terms.
Combining Lemma 6.7 with the relation fs = Y 1 hr we obtain

fs=)_ 25Ul gy, (6.1)
Ucs
By the Principle of Inclusion-Exclusion the inverse of this relation is

ks = Z(—l)'S\Ul LQSNULL £ (6.2)

Ucs



10 L. J. Billera, R. Ehrenborg and M. Readdy

Lemma 6.8 For a zonotope Z we have that 215! divides fs.

Proof: Observe that a zonotope is centrally symmetric and every face of a zonotope
is a zonotope. Hence every face of the zonotope Z is centrally symmetric.

We may count fs, where S = {i; < --- < ¢}, by first choosing a face F;, of
dimension i;, then choosing an ¢j_1-dimensional face of Fj,, and so on.

But since at each selection the face Fj, is centrally symmetric (including Z), we
know that there is an even number of choices of F;;_,. By multiplying together all
these factors of 2, we obtain 2/5!. [ |

Lemma 6.9 For a zonotope Z we have that ks = 0 mod 2151,

Proof: It is enough to observe that 2!5! divides 215™Ul. f;. |

By combining Proposition 6.6 and Lemma 6.9 we obtain

Proposition 6.10 The cd-indez of a zonotope Z of dimension d belongs to Ty. That
15, Sq C71y.

Proof: 1t is enough to prove for a zonotope Z and a cd-monomial w that the coefficient
of w in ¥(Z) is divisible by 2°(*) where p(w) = p is the number of d’s occurring in w.
That s, [w]¥(Z) = 0 mod 2°.

Indeed, by Proposition 6.6 and Lemma 6.9 we have

[w]¥(Z) = Z qu,s ks =0 mod 27,
ISl=p

where S ranges over all sparse subsets of {0, 1,...,d — 1} having cardinality p. ]

Combining Propositions 6.4 and 6.10 gives us the main result of this section.

Theorem 6.11 The Abelian group generated by the cd-indices of zonotopes of dimen-

ston d 1s precisely Ty, that s, all integral polynomials of degree d in the variables c
and 2d.

As a direct consequence of this theorem, Proposition 6.6 and equation (6.2), we
get the following.

Corollary 6.12 The lattice spanned by flag f-vectors of all d-zonotopes is the set of
all integral vectors f = {fs} where fs is divisible by 2151,

Since in the relation fs(Z) = fa—s(H) between a d-zonotope Z and its dual

(essential) hyperplane arrangement H, the sets S and d — S have the same cardinality,
we obtain the following.

Corollary 6.13 The lattice spanned by flag f-vectors of all essential hyperplane
arrangements in R? is the set of all integral vectors f = {fs} where fs is divisi-
ble by 2151,

7 Concluding remarks

Our method proves that zonotopes span, but is there a nice basis? We describe one
possible basis, suggested in [12]. To do so, we define two operations P and B on a
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zonotope Z, where PZ := Pri(Z) and BZ := M(P1i(Z)). Note that both result in a
zonotope of one higher dimension. Now if we write a BP-word of length d, that is, a
word of length d made with the letters B and P, we may view this as a sequence of
d operations performed on the 0-dimensional zonotope 0, and so as a d-dimensional
zonotope. Liu [12] conjectured that a basis for the flag f-vectors (and hence, the cd-
indices) of all d-dimensional zonotopes could be constructed by forming all BP-words
of length d ending in P and having no two consecutive B’s. This should be compared
to the basis for all polytopes given in [1], which was made up of similar combinations
of pyramid and bipyramid operations.

We have described the lattice spanned by all cd-indices of zonotopes. The next
natural problem is to determine all linear inequalities they must satisfy. It is known
that the cd-index of any polytope must be nonnegative [14]. What more can be said
about zonotopes? There is a family of linear inequalities known to be satisfied by flag
f-vectors of zonotopes.

Theorem 7.1 (Varchenko/Liu) If 7 is a d-dimensional zonotope and S =

{i1,.. . ix}, then
O (L Y
f,‘l(Z) 12——11,‘.,,Zk—lk_1,d-—lk

For the case k = 2 this was proved in [17] (see also [5, §4.6]), while for this
generality a proof is given in [12]. Theorem 7.1 bounds the average number of S~ {4}
chains in links of i;-faces of a d-dimensional zonotope by the number of S\ {i;} chains
in a (d 3 )-dimensional crosspolytope (all with the dimensions shifted appropriately).
It is easy to find polytopes for which the inequalities in Theorem 7.1 fail. For example
the cyclic polytope Cy(n) does not satisfy the inequality for S = {0,1} when n > 2d+1.

For 3-zonotopes it is enough to consider the pairs (fo, f2). In this case the convex
hull taken over all 3-zonotopes can be completely described as the cone with apex (8,6)
(corresponding to the 3-cube) and extreme rays (1, 1) and (2, 1). Along the ray (1,1)
can be found all zonotopes of the form M™(Pri(square)), while on the other ray one
finds all those of the form Pri(M"(square)) (prisms over even polygons). Other than
the fact that only even points appear, the problem of determining which lattice points
in this cone are actually realized by zonotopes (or by oriented matroids) appears to
be a difficult one. See, for example, [8, Chap. 18].

The cd-index of a zonotope does depend only on the underlying matroid, and not
on the oriented matroid. This suggests that there is a cd-index for matroids, in fact,
a c-2d-index, independent of whether they are orientable or not. The authors are
currently investigating the ed-index without reference to orientation.

For certain classes of polytopes and Eulerian posets the flag h-vector has been
given a combinatorial interpretation. We wonder if the flag k-vector can be also given
a combinatorial interpretation. Observe that we only define kg for sparse sets S. We
may extend the flag k-vector to all sets by inverting the relation given in Lemma 6.7. It
is known that the flag h-vector of a polytope, being the “fine” h-vector of a balanced
Cohen-Macaulay complex, must be the fine f-vector of another balanced simplicial
complex A [16, Thm 4.6]. Thus, in this case, the flag k-vector can be interpreted as
the fine h-vector of this A.

By the definition of the flag k-vector, ks > 0 for all sparse S whenever the cd-
index is nonnegative. Is there a larger interesting class of posets for which the sparse
flag k-vector is always nonnegative? For example, in the case just described this will
occur if the complex A is itself Cohen-Macaulay; here the full flag k-vector will be
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nonnegative. That the full flag k-vector is not always nonnegative can be seen by
examining the flag k-vector of a tetrahedron, for which ko 1} = —4.
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to contain the Adin g-cone, then our work would show that cubical spheres do not
satisfy the toric g-theorem, which holds for rational polytopes.

3. Adin’s cubical h-vector is a sum of alternating sums of components of the sim-

plicial

h-vectors of links of vertices. Is there a convenient interpretation of these

alternating sums? Charney and Davis considered such a sum in the context of
metric geometry, as did McMullen in his decomposition of the polytope algebra.

References

[1] R. Adin, A new cubical h-vector, Discrete Math., (to appear).

[2] E. Babson and C. Chan, On the Face Lattice of Cubical Spheres, preprint,
1996.

(3] L. Billera, C. Chan, and N. Liu, Kruskal-Katona for some cubical complexes,
Technical Report 94-64, Mathematical Sciences Institute, Cornell University,
1994,

(4] A. Bjorner, Subspace arrangements, First European Congress of Mathemat-
ics. Paris 1992 A. Joseph, et. al., eds., Progress in Mathematics Series, Vol.
119, Birkhauser, Boston, 1994, pp. 321-370.

[5] G. Blind and R. Blind, Convex polytopes without triangular faces, Israel
J. Math. 71 (1990), 129-134.

[6] H.S.M. Coxeter, Regular skew polyhedra in three and four dimensions, and
their topological analogues, Proc. London Math. Soc. (2) 43 (1937), 33-62.

[7] M.W. Davis, Some aspherical manifolds, Duke Math. Jour. 55 (1987), 105-
139.

(8] M.W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and
torus actions, Duke Math. Jour. 62 (1991), 417-451.

[9] B. Griinbaum, Convex Polytopes, John Wiley and Sons, Inc., 1967, New
York, NY.

{10] G. Hetyei, Invariants des complexes cubiques, Annales des Sciences
Mathématiques du Québec (to appear).
[11] W. Jockusch, The lower and upper bound problems for cubical polytopes,

J. Discrete & Comput. Geom. 9 (1993), 159-163.

16



as m — oc. Fixingd > 2and 1 <1 < %, consider the doubly indexed sequence
of cubical d-spheres CB_, indexed by m and n. By a diagonalization argument it

follows that for every k& > 1, there are cubical d-spheres C,fﬂ- such that
1 o(vd i 2
g (Ck,'vt) —t -t
g8(CE)) '

as k — oo. This completes the proof. O

Remark: For any degree d polynomial ¢(t), with ¢; = —g4—; > 0 for every ¢ <

[d—glj, and gy 2 0 if d is even, a similar construction yields cubical spheres 5% and
2

numbers r; with

1
— gc(sk,t) - tq(t)
Tk

as k — oo. This is achieved by noting that the g°-polynomials of two PL cubical
spheres are essentially added by removing one maximal cube from each and iden-
tifying the resulting boundaries. (The resulting complex is again a PL sphere [14,
Corollary 3.13].) To achieve a fixed ratio @ = ¢;/¢;, for example, we choose the
sequences P,, ; and P, ; as above and form the corresponding sequences Cl’ém and
C}%mJ. We simultaneously diagonalize these sequences by n; ,, = 24 gj-(Pm,j, t’)qikm
and 1, = 2"g{(Pn,,t)q;km, attaching C';:n": and C;i;"; along maximal faces, as
above. ' ’

6 Further Comments

1. Since we have shown that the Adin g-cone is contained in the closure of the
convex hull of f-vectors of PL cubical spheres, it would be especially interesting to
determine whether the same is true for cubical polytopes (Conjecture 5.2), and con-
versely, if the Adin g-cone contains the convex hull of f-vectors of cubical polytopes
(Conjecture 5.1). In fact, it would be nice to know if any of the results here remain
true if sphere is replaced by polytope. If the fissuring operation as applied in §3 were
to preserve shellability, then all of the spheres constructed there could be asserted
to be shellable rather than just PL.

2. It is natural to compare the Adin h-vector and toric h-vector for cubical com-
plexes. Both are invertible linear transformations of the f-vectors of cubical com-
plexes, symmetric for Eulerian cubical complexes, nonnegative for shellable cubical
complexes, and satisfy the reciprocity theorem for relative subcomplexes of balls
[16]. A major difference is that the Adin h-vector is a lower-triangular linear trans-
formation of the f-vector but the toric h-vector is not.

It would be of interest to determine if the toric g-cone contains the Adin g-cone.
(Hetyei [10] has done this for the corresponding h-cones.) Were the toric g-cone not
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ratio [11].

In general, it is not at all clear whether there exist k-stacked cubical polytopes
with many (k — 1)-faces relative to smaller faces. However for £ = 1, we have the
following, which was noted in [11] for d = 4.

Corollary 5.6 For anyn > 29 there exists a 1-stacked cubical d-polytope P with at
least n vertices, hence g(OP) lies on the ray ey, with g§(8P) arbitrarily large.

5.2 PL Cubical Spheres

Though we can go no further with cubical polytopes, we can show that Conjecture
5.2 holds for PL cubical spheres. We prove the following

Theorem 5.7 For each 1 < i < %, there exist PL cubical d-spheres with g¢ arbi-
trarily close to the ray e;.

Proof: For a simplicial (d — 1)-polytope P, we let C be the PL cubical d-sphere
and K the triangulation of P, as given by Theorem 3.1. For n > 0, define the
iterated fissuring

Cp:= C(MK,C\ MK°)" (12)

defined by (4). Since, as in the proof of Theorem 3.1, M K is collared in MK, Cg
is a PL d-sphere.

By (1) and (5), we compute
f(CB. ) = J(C.t)+n(1+1)f(MOP,1)
f(Cty+n2 (140 f (9P, 1),

[

and
ciom o ML= 9 (1= )1+ Xop(-1)*?)
g(CE,t) = —qu_t—f(CP’l—t)+2 t 111
= ¢°(C,0) + n2't(1 ~ 1) (9P, )
= ¢°(C,t)+ n27tg*(OP,1).
Noting that C' = C9, we rewrite this as
9% (CE.t) = ¢°(CP, 1) + n27tg* (P, t) (13)

to emphasize that the first term is independent of n.
By [13], for fixed d, there are simplicial (d — 1)-polytopes P, ; such that

1 : :
E—— LY ] > 1) — tz—-l _ td+1—z
gf_l(apmﬂ_) g ( m,1 )
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5.1 Stacked Cubical Polytopes

As a first attempt, we consider stacked cubical polytopes, analogous to the stacked
simplicial polytopes considered by McMullen and Walkup in their paper introducing
the generalized lower bound conjecture for simplicial polytopes [13].

Definition 5.3 A cubical d-polytope is k-stacked if its boundary is the boundary of
a cubical complexr with no interior (d — 1 — k)-faces. Similarly, a cubical d-ball is
k-stacked if it has no interior (d — 1 — k)-faces.

Definition 5.4 A simplicial complex is called k-neighborly if every set of vertices
of cardinality k is a face.

Neighborly stacked polytopes were used in [13, Theorem 3] to produce examples
of simplicial polytopes having a simplicial g-vector with a dominant coordinate. The
following shows that the cubical g-vector behaves analogously.

Proposition 5.5 If k < % and {P,} is a sequence of k-stacked cubical d-polytopes
such that fr_1(0P,) dominates f;(OP,) for alli < k — 1, that is, for each such i,

fi(0Fy)
Je-1(0F,)

then gf(OF,) dominates g§(0P,) for all i # k.

— 0 as n — oo,

Proof: For each n, if P, is k-stacked, then 0P, = 0K, where K, is a cubical com-
plex with no interior (d — 1 — k)-faces. Thus f;(K3) = 0 for all : < d—-1—k.
Since h°(K?) is a lower-triangular linear transformation of f(K2), this means that
h{(Ky) = 0 for all ¢ < d — k. Thus by Proposition 4.1, h$(K,) = 0 for all ¢ > &
and so gf(dP,) = h§(K,) for all i < k, and gf(dP,) = 0 for k < i < |£]. Since
filtK3)=0fori<d—-1-kand fr_1(0P,) dominates f;(3P,) for all i < k— 1, the
same is true for f(K,). Thus h{(K,) dominates h{(K,) for all ¢ < k. Thus g§(8P,)
dominates ¢g$(0P,) for all ¢ # k. O

For cubical 4-polytopes, we can write

9° = (91,95) = (fo— 16,16 — 3fo + 4 f3).

It is easy to verify that the boundary of any 1-stacked 4-polytope has g§ = 0, and
hence the ray e; is in the convex hull of f-vectors of cubical 4-polytopes. The dif-
ficulty is in finding cubical 4-polytopes with ¢¢ arbitrarily close to the ray e,, i.e.,
cubical 4-polytopes with an arbitrarily high ratio of facets to vertices. Jockusch was
able to construct cubical 4-polytopes with a higher ratio of facets to vertices than
previously expected possible, but did not determine if there is any bound on this
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Figure 6: A cubical 2-ball containing K 3.

since (', has the L%J-skeleton of the r-cube. Thus also f(C) < f(C,), since the
coefficients f; are nonnegative linear combinations of the coefficients of A*c. O

For each d > 1, it is easy to find an example of a cubical d-sphere whose 1-
skeleton does not lie in the 1-skeleton of any cube. Note first that the complete
bipartite graph K3 is not a subcomplex of any cube. This is clear because any
two vertices in a cube that are joined by a path of length 2 must differ in exactly
two coordinates, and so there must be precisely two such paths. Next consider the
cubical 2-ball C' in Figure 6. Note that K3 is a subgraph of (C);, as indicated.
For d > 2, take §¢ = §(C x I%~1) D C. For d = 1 simply choose the boundary of a
triangle.

5 A Cubical Lower Bound Conjecture

Adin raised the following “generalized lower bound conjecture” as a question [1,
Question 2].

Conjecture 5.1 If K is a cubical d-polytope, then g§(0K) > 0, for all 1 < |2].
Here we conjecture that these are the best possible linear inequalities.

Conjecture 5.2 The closed convez hull of the f-vectors of all cubical d-polytopes is
the translated cone given by the inequalities g¢ > 0, for all i < [%J, and g§ = 24-1.

Let e; denote the positive ray in the i** coordinate direction. One approach
to proving Conjecture 5.2 is to show that, for any 1 < i < %, there exist cubical
d-polytopes with g¢ arbitrarily close in direction to the ray e;. If both conjectures
are correct, then the “Adin g-cone” so defined (i.e., the set of f-vectors whose
corresponding g°-vectors are nonnegative) is exactly the closure of the convex hull
of all f-vectors of cubical polytopes. The first conjecture is only known to be true
in the case i = 1 [1, 5]. We address the second conjecture here.

12



Adin has shown that the cubical h-vector has many properties analogous to
those of the simplicial h-vector. For example, if K is Eulerian then h°(K) is sym-
metric, and for any K, h¢(K) is a lower-triangular linear transformation of f(K).
In particular, for any cubical (d — 1)-complex K, and for all ¢ < d, we have

1 t1—J .
R{(K) = (=1) 247y (K)+ > (1) 7207 fi 0 (K) Y (d . J), (11)
71=1 k=0
where f_;(K) =1 [1, Lemma 1]. The relation (11) can be inversed to give the f;
as nonnegative linear combinations of the hS.

We state without proof a few more such properties of h°. In what follows, we
assume that K is a cubical complex homeomorphic to a (d — 1)-ball. For K° =
K\ 0K, we have

f(K®,t) = f(K,t) - f(OK,1),
and we define h*¢ for K° as in (8), with the same rank as K, namely, d — 1, and A®
as in (11), but with f_;(K°) = 0.

Proposition 4.1 If K is a cubical (d — 1)-ball, then
1. h§(K) = h§_;(K°®) for all i, and
2. g{(OK) = hi(K) — h§_,(K) for all i > 1.

We now consider Kalai’s upper bound conjecture for cubical spheres. Let C,. be
a [d‘Tl_]—neighborly cubical d-sphere with 2" vertices. By definition, f;(C,) is the
number of i-faces in an r-cube, for 7 < [%1_] By the cubical Dehn-Sommerville
equations, the remaining f;(C,) are determined and thus are independent of the
particular €. chosen.

Conjecture 4.2 (Kalai): If C is a cubical d-sphere with 27 vertices, then fi(C) <
f:(C), for all i.

Using the Adin h-vector it is easy to prove the conjecture in the case of odd d
for any cubical d-sphere whose 1-skeleton lies in the r-cube.

Theorem 4.3 Ifd is odd and C is any cubical d-sphere for which every verter has
degree at most r, then f;(C) < fi(C,) for all i.

Proof: 1f C' is any such cubical d-sphere C' , then lkcv is a simplicial (d—1)-sphere
with at most r vertices, for each v. Thus by the upper bound theorem for simplicial
spheres, h*(lkcv) < h3(S), where S is any |Z|-neighborly simplicial (d — 1)-sphere
with r vertices. Since d is odd, |4] = [45%]. Thus

h*e(C) = 3 h*(Tkev) < Y- h°(8) = h*°(C),

11



4 Adin’s h-vector and Kalai’s Upper Bound Conjec-
ture

Recently, Adin defined a “cubical h-vector” for studying the face numbers of cubical
complexes [1]. This invariant appears to be a good analog of the usual A-vector for
simplicial complexes.

For a ranked poset P, with rank(P) = d, we denote by f; = f;(P) the number
of elements of rank ¢ and define the polynomial

d
F(Pt) = D it (6)

=0

From this, we define polynomials h*(P,t), h*¢(P,t) and h°(P,t) by

W(P,t) = (l—t)df<P,i—i—t), (7)
h*(P,t) = (1—t)df(P,1—2_%) (8)
and
h(Pt) = t(;?df(P,ft)+2dl—”1”—;9dj 9)
= (o 2 ), (10)

where xp := f(P,—1) — 1 is the reduced Euler characteristic of P (c.f. [1, (1-3)]).

In general, the coefficient of ¢* in a polynomial ¢(t) will be denoted by ¢;. The
coeflicients of h*, h*¢ and h¢ will be referred to, respectively, as the simplicial, short
cubical and cubical h-vectors of the ranked poset P. (Note that in h®, one uses
the simplicial rank in the f-polynomial, whereas in h%¢ and h¢ one uses the cubical
rank.) As observed by Hetyei,

h(K, 1) = > h(lkg v,1).
veV

It is also useful to observe that hf® = h¢ + h¢,, for all 0 < i < d [1].

Each h-polynomial has an associated g-polynomial, defined by multiplying it by
1—1. The associated “g-vector” is usually taken to be the first half of the coefficients
of the g-polynomial (excluding the middle term, when the degree is even, as well
as the constant term). Thus, if P is the boundary complex of a cubical d-polytope,
the degrees of h*¢, h¢ and ¢¢ are d — 1, d and d + 1, respectively, so the relevant

coefficients of g¢ are gf, .. .,g‘[dJ.
b
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links in K;. Thus OM K is collared in M K; [14, Corollary 2.26], and hence by (3),
it follows that Ci41 2pp C;.
Now take C' :=C, and K := K,,. O

Figure 5 illustrates the construction of the 3-sphere C' corresponding to a pen-
tagon. Cg is the 3-sphere consisting of two 3-cubes joined along their boundaries,
and M Kg is the “inside” cube. C; is then the boundary of the 4-cube. Since
Ky =T xv3, where T is the complex of two edges, MKy = MT x I, where MT is
as given in Figure 1. The final complex MK (not pictured) is the product of I with
the cubical complex shown in Figure 2.

A first consequence of Theorem 3.1 and its proof is the existence of “neighborly”
cubical spheres.

Definition 3.2 A cubical complez is said to be n-neighborly if its n-skeleton is that
of a cube.

Corollary 3.3 There exist L%lj-neighborly cubical d-spheres with 2F vertices for
every k > d.

Proof: Choose P = C(k,d—1), the cyclic (d-1)-polytope with k vertices, ordered
arbitrarily. Note that each ball K; in the proof of Theorem 3.1 has as boundary
the cyclic polytope C(d + i,d — 1). Hence, each K; has as its [452|-skeleton the

| 222 |-skeleton of a (d + i — 1)-simplex. Thus the | 451 |-skeleton of MOK; is that of
a (d + 7)-cube.

We will show, by induction, that (Ci)l-ﬂJ = (Ma.[(i)tﬂ‘l. First, recall that
2 2

Co has the (d — 1)-skeleton of a d-cube, and (Cp)g—1 = (MOKp)4—1. Assuming the
assertion for 7, it follows from of the fissure construction that

(Coviliggay = (GO G\ (MEi))
_ d+141
= 7)) am)

= (M(’)IQH)

145

1452

L454)
The second equality follow from the fact that the fissuring is taking place along

MOJK,, which has the same L-d;—lj—skeleton as C; by the induction hypothesis.

Thus. ('p_4-1 is the desired [iglj-neighborly cubical d-sphere with 2% vertices.
O

We remark that the spheres constructed in Corollary 3.3 are always PL. It is an
open question whether there exist neighborly polytopal spheres.



MK; C M((’)K,-_l * {vd+i})
= MOK;,_{x1I
= 8MK1-_1 x I
C Ciaa(MK;_,Cioi\ (MK;_4)°)
= (.

Note that beginning with Cy, all the C; are cubical complezes and that both the

inclusions above are inclusions of complexes (preserve rank). This shows M K; to
be a subcomplex of C;.

VT

0 K K =K

MK
MKO 1

// /,I
’ // \
—— - b- )
Y ey &
~
| N\ |
! 3 Hip '
! | : hip 1
e I‘ i " 11l L
) ', 7 - -5
‘| ’/1‘ ==~k ' 7
Z, N :,
o V' N/ |\ f-----D -B
| C=C

Figure 5: A cubical 3-sphere C from a pentagon P.

To verify that C; \ (M K;)° is an order ideal in C;, we note, by induction, that
MK, is a full-dimensional (pure) subcomplex in the the sphere C;, and so the
complement of its interior is a complex. Finally, to check that C;4, is a PL (d + 1)-
sphere, note that M K; is a PL (d 4+ 1)-manifold with boundary, since its links are
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Figure 4: (a) The subdivision of the simplex o < z; < z3. (b) The barycentric
cover of a complex with three maximal cells.

3 Neighborly Cubical Spheres

Now we use the mirroring and fissuring operations to produce a “neighborly” cubical
sphere for each n > d + 1, i.e., a cubical d-sphere with the [d‘TlJ—skeleton of the
n-cube. The existence of such spheres was suggested by Kalai (personal communi-
cation). We begin by constructing, for a given simplicial d-polytope P, a cubical
(d + 1)-sphere having the mirror complex of 9P as a subcomplex.

Theorem 3.1 If P is a simplicial d-polytope, then there is a triangulation K of P
and a PL-cubical (d+1)-sphere C' such that the mirror complezx M K is a subcomplex
of C having MOP as its boundary.

Proof: Given the polytope P, along with an arbitrary ordering on its vertices

V0, V1, .-, Vntqd (Which we assume are in general position), we form a sequence of
simplicial d-balls Ko,..., K, such that K; C 0K;_1 *x {v4y;}, where Kp is the d-
simplex spanned by wp,...,vs and K; is the join of vgy; with that part of the

boundary of K;_, that it does not see. By construction, the K; are all PL d-balls
and 0K, = 0P,s0o MK, = MOP.

Let Cy be the cubical poset made up of two (d 4+ 1)-cubes sharing a common
boundary. We consider the (d + 1)-cube M K| to be one of these cubes, and hence
Co \ (M K¢)° is the other. Finally, |{Co| is a PL (d + 1)-sphere.

Define

Ci+1 = Ci(MI(,', oF \ (MI(,‘)O).
We assert that, for 1 < ¢ < n, Ci4q is well-defined and is a cubical PL (d+1)-sphere.
To verify that C;; is well-defined, we must check that both M K; and C;\ (M K;)°
are subcomplexes (i.e., order ideals) in C;. Assuming this to be true for C;_; and
M K,_y, we observe that for 1 > 1



C(C,C)
Figure 3: Fissuring along Cy N C,.

2.3 Barycentric Covers

Finally, we define a cubical complex midway between a complex of simple polytopes
and its barycentric subdivision. We call it the barycentric cover. In the case of a
simplicial complex, this is the same as the cubical barycentric subdivision used by
Hetyei [10]. The remainder of this section is not used in what follows.

Let K'P be the poset with elements the order relations of an arbitrary poset P,
partially ordered by inclusion (i.e., (u <v)<(z < y)ifandonlyifz <u<ov < Y)-
As shown below, K P is cubical whenever P is a poset having all intervals Boolean
algebras. This includes simplicial and cubical posets (more generally, face posets of
polyhedral complexes with simple, nonempty cells) as well as their duals. In fact
K P = K(P). It is straightforward to check that K distributes over product, i.e.,
K(P x Q)= K(P)x K(Q).

Proposition 2.2 If P has Boolean intervals then K P is a cubical poset. Further,
if P s a lattice, then so is KP.

Theorem 2.3 |K P| gives a polyhedral subdivision of |P| by the map taking the
point (¢ < z) to itself and the point (z < y) in |[KP| to the midpoint of the edge
T <y in|P|, and extending linearly over every closed simplex in |K P|.

In the case in which P is itself the face poset of a polyhedral complex, we obtain
the following corollary, which justifies calling K P the barycentric cover of P.

Corollary 2.4 If P is the face poset of a polyhedral complex, then K P is the face
poset of a polyhedral subdivision of P, lying between P and |P| in the refinement
order,

When the underlying complex of P has simple facets and P does not include the
empty set (so P has Boolean intervals), K P will be a cubical complex by Proposition
2.2. See Figure 4(b). Further, the triangulation of each d-cube in K P induced
by |P| is the standard triangulation into d! simplices given by all the coordinate
permutations.
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Figure 2: The mirror complex of three edges.
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Proof: To see that M T is a cubical complex, note that it can be realized as a sub-
complex of the n-cube I"™ by associating the point a = (a1, az,...,a,) with the face
of the cube having a as its centroid. The interval lying above any minimal element
of MT is, up to signs, the poset T. The statement about skeletons follows directly. O

It follows immediately that if T is a d-simplex, then MT is a (d + 1)-cube.
Further, 0(MT) = M(0T).

We say MT results from a mirroring of T, since if T is the boundary complex of
a simplicial polytope P then by taking the dual P°? of P, mirroring P°P across all
its facets, and then taking the dual of the resulting cell complex, we get back MT.
This also works for more general T', as is illustrated in Figure 2, where T is a line
segment divided into three edges.

We note here that since the operation M commutes with poset product, we get
M(Ty + Ty) = M(Ty) x M(Ts), where Ty * T, is the join of complexes Ty and T,.
Further note that if T' is a subcomplex of 6™~1, the f-polynomials of T and MT are
related by

f(MT’t):an(T’%)' (1)

2.2 Cubical fissures

We define next an operation on a cubical poset C' that depends on a pair of order
ideals C'y and Cy in C. Let C(Cy,C3) C C x I be the poset defined by

C(C'[,CQ) = (Cl X {1}) U (C] N CQ X {0}) U (C2 X {—1}). (2)

We call this the fissure of C' between Cy and C,.
That ¢'(Cy,C3) is cubical follows from the fact that it is an order ideal in the
cubical poset C' x I. Topologically, we have the relation

C(Cr, o)l = [C1] Ugyneaxqay (IC10 Cal X [-1,1]) Ugyncaony [Cal (3)

When C' is the poset of a cubical complex (also denoted by C), C(Cy,C3) is the
poset of the complex obtained by lifting C; by height one, dropping C; by one, and
filling in the resulting fissure by (Cy N C32) x [—1,1]. See Figure 3.

We can iterate the fissuring of C between a pair of complexes as follows. Let

C(Cy.Cy) = C, C(Cr,C) := C(C1,C4) and, for r > 1
C(C1 Ca) = (C(C1,C2) 1) (Co(Cr, 1N o)7L, Cy). (4)

Note that successive fissurings separate C'; and C3 by more and more copies of
(CiNCq) x [-1,1]. It follows directly from (2) and (4) that

f(C(Cl,CQ)T,t) = f(C] uCyt)+ 7‘(1 + t)f(Cl N Cg,t), (5)

for » > 1.



poset) where each face is a 0-1 vector with a 0 in the ** place if and only if the
vertex i belongs to the face. Thus T is partially ordered by 0 > 1 extended compo-
nentwise. Then we construct a partially ordered set MT as follows:

MT = {(al,ag,. ..,an) : (Iall,lagl,. ces |an|) € T} - In,

partially ordered by 0 > 1 and 0 > —1 extended componentwise. Note that MT
depends on the ambient simplex o™~ as well as the complex T.

This operation has a long history. For the case of the m-gon, it was used by
Coxeter [6] to produce regular maps {4,m|4[%"‘]‘1} on surfaces. It has been used
by Davis in the study of reflection groups and toric varieties (see [7, p.108], for
the Coxeter system (Z[;],[n]), and [8]). It has also been studied by Schulte [15,
§5], where it is denoted 27, and in [12], where the topology of 2T is studied for
neighborly T. A dual version, as illustrated in Figure 2, can be found in [4, §3.2];
indeed, using the notation there, MT = (Bt )P, where the subspace arrangement
is a poset with ordering by inclusion.

A simple example is given in Figure 1. Here T is the simplicial complex consisting
of two adjacent edges, and MT is the boundary of the 3-cube minus two opposite
(open) facets.

100

011 g9y 00-1

-100

111 -11-1

Figure 1: The mirror complex of two edges.

Proposition 2.1 MT is the face lattice of a cubical complex in which the link of
any vertez is isomorphic to the original simplicial complex T. If T has the k-skeleton
of the (n - 1)-simplex, then MT has the (k 4 1)-skeleton of the n-cube.



Some preliminaries on posets are in order here. For a poset P, we denote by
[z,y] or [z,y]p the interval {z € P : 2 < z < y}, by A(z) or Ap(z) the principal
(lower) order ideal {z € P : z < z}, and by \/(z) or \/p(z) the principal filter
{z € P: 22> z}. We will also refer to \/p(z) as the link in P of z or lkpz. By P
we mean £ with a 0 and 1 adjoined, and by P°” we mean the underlying set of P
with the order reversed. We denote by |P| the (simplicial) complex of chains in P.

By a simplicial poset we mean one in which every order ideal A(z) is a Boolean
algebra (i.e., a product of copies of By, the Boolean algebra on one element). By a
cubical poset we mean one in which each order ideal A(z) is a product of copies of I,
the face poset of an interval, excluding the empty set. We consider I to be the poset
{0.1, -1} with ordering 1 < 0 and —1 < 0 (and so the Hasse diagram of I is ).
Thus the face poset of any simplicial complex (including the empty set) is simplicial,
while the face poset of any cubical complex (excluding the empty set) is cubical. For
this reason, throughout this paper when we consider the face poset of any simplicial
complex, it will always include the empty set, while that of a cubical complex will
always exclude the empty set. Two other concepts we will use are the boundary and
nterior of a poset. If P is a finite poset, denote by 0P = {y : y < z,|\p(z)| = 2}
the boundary of P, and call P° = P\@P the interior of P. To keep notation to a
minimum, we will usually denote a complex and its face poset by the same symbol.

Both simplicial and cubical posets are ranked, the rank of an element being
one less than the cardinality of a maximal chain ending at this element. Thus in
a simplicial complex, the rank of a face is one more than its dimension, while in
a cubical complex, rank is the same as dimension. We will restrict our attention
here to simplicial posets with unique minimal element that are meet semilattices
(i.e., simplicial complexes) and to cubical posets P such that P is a lattice (called
cubical complexes). A map will be called a complex map if it preserves rank. Thus
being a subcomplex of a cubical complex is a stronger property than merely being a
subposet. We note that poset product corresponds to complex join in the simplicial
case and product in the cubical case, and thus order ideals in cubical posets are
posets of cubes. Finally, for a complex X, we denote by (X ) its k-skeleton (the set
of all r-faces of X, r < k).

2 Mirrors, Fissures and Barycentric Covers

We define and study three constructions leading to cubical complexes. Two of these,
mirroring and fissuring, are used in the constructions in later sections.

2.1 Mirroring

We begin with an operation which converts a simplicial complex to a cubical com-
plex. Let T be a subcomplex of the (n — 1)-simplex o™®~1. We can think of T
(including the empty set) as a partially ordered set (the corresponding simplicial
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Abstract

Using mirrors and cyclic polytopes, we construct cubical d-spheres which are
the analogs of cyclic polytopes in the sense that they have the Lg—glj-skeleta
of cubes. The existence of these neighborly cubical spheres leads to a special
case of an upper bound conjecture for cubical spheres, suggested by Kalai.
We extend the same construction to show that the closed convex hull of f-
vectors of cubical spheres contains a cone described by Adin, as an analog to
the generalized lower bound theorem for simplicial polytopes.

1 Introduction

In the past few years, there has been much activity regarding the enumeration of
faces of cubical polytopes. In this paper we continue efforts to put this subject on
more of a parallel track with that of simplicial polytopes.

In §2, we discuss some basic constructions of cubical complexes, mirrors, fissures
and barycentric covers. In §3 we use the mirror and fissure operations to produce
what we call ”"neighborly” cubical spheres. In §4, we define Adin’s “cubical h-
vector”, an enumerative invariant for cubical complexes [1], and use it to prove a
special case of an upper bound conjecture due to Kalai.

In §5 we consider a cubical analog of the generalized lower bound theorem for
simplicial polytopes, formulated in terms of Adin’s cubical h-vector. We show that
if this conjecture holds for all cubical spheres, it gives the tightest set of linear
inequalities possible for their face numbers. We conclude with questions in §6.
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