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Using Minkowski integration, we define the secondary polyhedron of a vector
configuration & and study its behavior urder the matroidal operations of duality,
deletion, and contraction. A main tool is the identification of the regular polyhedral
subdivisions of &/ with the cells in the dual chamber complex. As an application we
construct a non-regular triangulation of a cyclic polytope.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Given a spanning set o/ = {a,, .., a,} of non-zero vectors in R?, we are
interested in the (n— d)-dimensional secondary polyhedron X(A) whose
faces correspond to the regular polyhedral subdivisions of the (d— 1)-
dimensional spherical polytope P(s/):=pos(o/)~S? . The spherical
polytope is thought of as a (d— 1)-polytope in the usual affine sense when-
ever pos(.«/) is a pointed cone, and in this case X(.o¢) is bounded and is
normally equivalent to the secondary polytope defined in [5] (see also
[2,3,6,8]). On the other hand, if pos(.«)=R¢, then X (/) is unbounded
and 1ts vertices correspond to the regular triangulations of the (d—1)-
sphere with vertices on the rays of &. Our approach extends the work of
Oda and Park [10], who have constructed the normal fan of X(</) by
means of linear transforms.
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Each a,e o/ gives rise to two minors. The minor by deletion of a;, is the
configuration .«/\a,= {a,, .., a,_|,a;,,..,a,} in R% The minor by con-
traction of a, is the configuration .«//a, = {n,(a,), .., m,(a; ), T, (@i 1)s s
T,(a,)} in R where n,: RY > R?" ! is any epimorphism with kernel
span(a,). It is our objective to relate the secondary polyhedron X(.«7) of &/
to the secondary polyhedra X(s/\a;) and X(.<//a,) obtained by deletion
and contraction of any a; e .&/.

In Section2 we use an integral representation as in [3] to define
L(«/), we discuss its combinatorial interpretation in terms of polyhedral
subdivisions, and we give formulas for its vertices and the extreme rays
of its recession cone. We use this integral representation to give a
description of X(.o7 \a,) as a facet of Z(.e7). Section 3 is concerned with the
behavior of the secondary polyhedron X(./) under duality and under
minors by contraction. We show that the boundary complex of X(«/) is
antiisomorphic to the chamber complex of a linear transform % of ., and
we show that X(.//a;) either is a Minkowski summand of X(< ) or can be
obtained from one by removing a single facet. In Section 4 we answer a
question raised by Kapranov and Voevodsky [8] by presenting an
cxample of a non-regular triangulation of a cyclic polytope.

2. THE SECONDARY POLYHEDRON AND DELETIONS

Let .« = {a,,..,a,} be a set of n non-zero vectors spanning R“ The
polyhedral cone pos(.«/) is the image of the non-negative orthant
R” =pos({e,, ... e,}) in n-space under the linear map =n: e, a,. The fiber

of a point x € pos(.e/) is the polyhedron

T Nx)={(Ay,.., A)ER" dia;+ - + A,a,=x} (2.1)

consisting of all positive representations of x with respect to .o/. Note that
cach k-face of the spherical polytope P(.«7)=pos(./)n S9! is of the form
FnS‘ ', where Fis a (k+ 1)-face of pos(.«/). We define the secondary
polyhedron of </ to be the Minkowski integral

~

2(t) :=J nHx) dx (2.2)

Pl)

with respect to the rotation invariant probability measure on the unit
sphere S~ *. This means that X(.«/) is the set of all points |, 7(x) dx in
R”, where y: P(«/)— R" is a measurable function such that n-y is the
identity (see [3]).
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We will now derive a description of the recession cone and the face
lattice of X(o#). A circuit of o/ is any non-zero vector of the form

C,:= dil (—1) det(a

i=1

v o Qg s Qo oy @y ) €4, (2.3)

where v is a (d+ 1)-subset of {1,2,..,n}. We call C, a positive circuit if
C.eR".

Given any basis 1= {a,,, .., a,,} of &, we define L., to be the unique
linear functional on R with L, i(a;)=46; (Kronecker delta). For
xepos(sf) let £, denote the set of all bases 7 of &/ with x e pos(t). The
following straightforward lemma shows that all fibers have the same

recession cone.

LemMa 2.1. (a) The zero fiber n='(0) equals the positive hull of all
positive circuits C, of <.
(b) For all x e pos(s/ ) we have n ' (x)=n""(0)+conv{¥¢ | L. (x)- e,
lte,}.

Note that pos(.«/) is pointed if and only if =~ '(0)={0}. Since the
integral in (2.2) is additive with respect to the Minkowski sum in
Lemma 2.1(b), we get the following result.

CoroLLARY 2.2.  The secondary polyhedron X(A) has the recession cone
7~ N0). Thus 2(A) is a polytope if and only if pos(.#) is pointed.

A subdivision of </ is a collection IT of subsets of &/ such that the
polyhedral cones {pos(c)|cell} form a fan (ie, a complex of cones)
which covers pos(«/). Equivalently, 17 can be viewed as a subdivision of
P(«/) into spherical polytopes pos(c)~S?~'. A triangulation of o/ is a
subdivision into simplicial cones (respectively, spherical simplices). Given
polyhedral subdivisions 7, and I1,, we say II, refines II,, written
I1, <11, if every face of IT, is a subset of some face of IT,.

For a polyhedron Q = R” and a vector ¢ € R”, we say that Q is bounded
in direction  if the linear functional {y,-) attains a finite minimum over
Q. In this case ¢ defines a proper face Q¥ :={ye Q| <Y, y> <Y, 0>},
having an inward pointing normal . We call e R” feasible if X(<f) is
bounded in direction . By Corollary 2.2, the cone of feasible vectors is the
polar of " '(0). Note also that ¥ = (f,, ... ) is feasible if and only if
(0,..,0, —1) does not lie in

pOS{(al, lpl)’ (02’ l1’2)7 ey (an’ l»bn)} ERd+ 1' (24)

In this case the projection of the “bottom” faces of the polyhedron in (2.4)
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onto the first d coordinates defines a subdivision II(yr) of .«¢. This method
of obtaining subdivisions goes back to Walkup and Wets [12]. We call a
subdivision /7 regular if it arises in this way. If IT is a regular subdivision,
then the set

F D) = {yeR"I(Yy)=1T} (2.5)

is a non-empty relatively open convex polyhedral cone. These cones define
a polyhedral fan %, which we call the secondary fan. The face lattice of
the secondary fan is isomorphic via (2.5) to the poset of regular sub-
divisions, ordered by refinement. Here the maximal cells of #_, correspond
to regular triangulations of 7.

We remark that if pos(</) fails to be pointed, then already four vectors
in the plane can have non-regular subdivisions. For example, /7= {{1, 2},
{1,4},{2,3,4}} is a non-regular subdivision of .=/ = {a,,a5,a5, a4} =
{(1,1),(1,0), (1, =1), (—=1,0)} = R2.

Every triangulation 4 of &/ gives rise to a piecewise linear section
7o pos(e/) > R via y,(x):=XY_| L. ,(x)e, whenever xeted. If 4is a
regular triangulation of .7, then any vector y € #_(4) satisfies n~'(x)¥ =
{7.4(x)} for all points x in the interior of P(</). By [3, Proposition 1.2],
integration over P(.<7) yields the following result.

PROPOSITION 2.3.  For any regular triangulation A the vector ¢, :=

f,,( o valX) dx is a vertex of Z(.of), and all vertices are of this form. The
inner normal cone of X(/) at ¢4 equals F _,(A).

Proposition 2.3 states in other words that the maximal cells of the
sccondary fan are precisely the maximal cells of the normal fan A" (X(s#))
of the secondary polyhedron. Since all cells of a polyhedral cell complex
are obtained by intersecting closures of maximal cells, this implies that
NR(A))=F,.

THEOREM 2.4.  The face lattice of X(oZ) is antiisomorphic to the poset of
regular subdivisions of of, ordered by refinement.

We now prove the following direct geometric description for the
sccondary polyhedron by deletion X (.o \a;).

THEOREM 2.5. The face 2(2Z)" of the secondary polyhedron in the

direction of the ith unit vector is a facet, which is a translate of the secondary
polyhedron X(./\a;) by deletion.
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Proof. The (d—1)-polyhedron X(</\a,) is defined as | p . ,, 0, '(x) dx,
where

00 Aty s Ai— 1y Ais 1y s Ap) > Ayay + <

Fhi@i o F At T A,a, (2.6)

Each fiber 0, '(x) in R”"' of a point x e pos(.#Z\a;) is a subset of =~ '(x)
via the ith coordinate inclusion of R"~! in R™ More precisely,
6; '"(x)=n""x)* is the face of = '(x) on which the i-th coordinate
function is zero and hence minimal. This face is a facet if x lies in the
interior of pos(./\a;). This implies

) 0, '(x)dx=|

S Pl gy

() dx=<j nl(x)dx>e[. 2.7)
) Pt \a;)

Pt \a;

If a; is contained in pos(.<Z\a;), then the right-hand integral equals X(.2/)
and we are done. Let us now assume that a; ¢ pos(/ \a;). Pick a sufficiently
generic point x € pos(«? ) \pos(.+/ \a;). Then there exists a unique simplicial
(d—1)-cone pos(a,, .., a;,_,) which spans a facet of pos(«/\a,) and such
that xepos(a,, a;, .., a;, ), say, x=p,a,+p;a,+ --- +u; ,a, ,, where
peR” and u, =0 for k¢ {i, j,, .., ju_}. The point p gives the unique
minimum of the ith coordinate function e; over =~ !(x), i.e, =~ '(x)“= {u}.
We have shown that the face = '(x)% is a vertex of =~ !(x) for almost
all xe P(«/)\P(o/\a;). Thus fPW).\P(‘C/W) n Yx)“dx is a point, which
completes the proof of Theorem 2.5. ||

3. DuALITY AND CONTRACTIONS
Let .o/ = {a, .., a,} = R* as before. The circuit space of o is the (n— d)-

dimensional subspace ¥(=/) of R” spanned by all circuits C, as in (2.3).
Equivalently,

C(d)= {ﬂ =(...B,)eR"

i Bia,:O}. (3.1)

i=1

The cocircuit space of of is the d-dimensional subspace Z(«/) of R”
spanned by the vectors

D,:=Y det(a,, .. a,, ,a)e, (3.2)

i=1
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called cocircuits of .o/, where y ranges over all (d — 1)-subsets of {1, ..., n}.
Equivalently,

9 )= {(¢(a,), .., #(a,)) eR"|: R“ > R any linear functional}. (3.3)

Note that the vector spaces ¢(.«/) and 2(./) are orthogonal complements
in R".

A spanning subset # = {b, .., b,} of R"~“is called a linear transform of
</ provided 4(.«/)=Z(4). This is equivalent to %(s#)=%(#) and thus to
«/ being a linear transform of #. In this case the oriented matroids
associated with .o/ and # are dual. If we define I, = {i| —a,epos(s/)},
then it is a consequence of oriented matroid duality that the sets /_, and
1, partition {1, .., n}. Thus, for example, pos(.s/) is pointed (i.e., I, = &)
if and only if pos(#)=R" (I ,={1,..,n}). See [4,9, 11].

The chamber complex I'(.o/) of .o/ is defined to be the coarsest polyhedral
complex that covers pos(.«/) and that refines all triangulations of .«7. Given
X, € pos(.eZ), the unique (relatively open) cell of I'(.«7) containing x, is

I(, xo) =) {relint pos o/’ |.o/' = o/, xyerelint pos '}, (3.4)

For a combinatorial study of chamber complexes we refer to [1]. We now
rclate the secondary polyhedra and the chamber complexes of .« and 4.
For the special case pos(.«/)=R", Theorem 3.1 leads to an association
between polytopes with normal vectors in .7 and cells in 4. This statement
can also be inferred from [9, Theorem 5A27.

THEOREM 3.1, Let o/ = R? and B<R"~“ be linear transforms of each
other. Then the boundary complex of the secondary polvhedron Z(sf) is
antiisomorphic to the chamber complex I'(#), and the boundary complex of
2(#) is antiisomorphic to I'(oA).

For the proof of Theorem 3.1 we will need the following lemma.

LEMMA 3.2, Given any subset a < {1, ..,n}, then a € II(Y) if and only if
27 y.berelintpos{b,lk¢al.

Proof. The cone pos{(a,, y,)|ie g} is a bottom face of pos{(a,, ¥ ,), ...
(c4,,,)} =R?Tif and only if there is a linear functional ¢: R — R such
that ¢(a,)+,=0 for ieo and ¢(a;) + ;>0 for i¢ ¢. This is equivalent to
the existence of a vector ve Z()=%(#) with v,+¢,=0 for ieo and
v+, >0 for i¢o. In this case, >/ ¥b,;=3 . (v, +¥,)b,, which
completes the proof. |

Proof of Theorem 3.1. Consider the lincar map B:R"—R" ¢
= >"_ b, Fix a feasible vector y eR” It lies in & (IT) for some

i=1
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regular subdivision I7=II(y) of .«/. Applying Lemma 3.2 to any oell, we
see that B(y) lies in pos(#) and thus lies in a unique cell I'(%, B(y)) of the
chamber complex I'(#). Lemma 3.2 and (3.4) imply the relations

(%, By))= () relintpos{b,|k¢oc). (3.5)

oelly)

We now define a map from the boundary complex of the secondary
polyhedron X(.7) to the chamber complex ['(#) by

Z( ) T(B, B(Y)). (3.6)

This map is well-defined and order-reversing because if X(.o/)¥ < Z(.o/ )"’
then 71(y) refines I1(y'), by Theorem 2.4, and in this case I'(%, Bly')) =
[{#, B(y)) by (3.5). By Lemma 3.2, the assignment (%, x)— X(), for
any v such that B(/) = x, defines the inverse to (3.6). |

The secondary polyhedron X(./) as defined in (2.2) has codimension d
in R". For the following discussion we will consider 2(/) and all fibers
7 '(x) to be embedded in R"“ via the map B, which is an isomorphism
when restricted to translates of the kernel of 7. In fact, the bijection (3.6)
shows that under this embedding the normal fan of 2(o) equals I'(#). In
order to describe minors by contraction we will now construct a
polyhedron in R"~“ which is normally equivalent to (ie., has the same
normal fan as) X(.</). The support function of any such polyhedron is a
strictly convex, piecewise linear function over the chamber complex I'(#).

First note that I(#) is the coarsest polyhedral complex that refines all
regulur triangulations of 4, since every basis of % appears in some regular
triangulation. A triangulation 4 of # is regular if and only if there exists
a vector i € R” that induces a convex piccewise linear function 84= 8y 4
over the fan defining 4 (see [2] for the affine case). The function g, is the
support function of a polyhedron Q, with normal fan 4. Recalling that
Minkowski addition of convex polyhedra corresponds both to addition of
support functions and to intersection of normal fans (see [7, p.309] or

2, Proposition 1.2.2]), we get the following.

PROPOSITION 3.3, The function S, g,, the sum taken over all regular
triangulations of A, is the support function of a polyhedron Q normally
equivalent to the secondary polyhedron X(sf). In fact, Q is the Minkowski
sum Y, Q.

The summands of X(./) in Proposition 3.3 may be taken to be
Q,=f,m "(x)dx, where ¢ is the maximal cell of I'(&)nS?'
corresponding to the regular triangulation 4 of 4. In fact, the regular
~ polyhedral subdivisions of # are precisely the normal fans of the fibers
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n " Y(x), x e pos(/) (under the embedding B). Thus each face of Z(%) gives
rise to a Minkowski summand of (/).

Again, let o/ ={a,,.,a,} be a spanning subset of R? and let
#=1{by,..b,} =R""? be a linear transform of /. We assume that a, is
neither a loop nor a coloop of &, which means that none of the a, and
none of the b, are zero. The following lemma is a straightforward analogue
to the matroidal duality of deletion and contraction.

LemMa 3.4. Deletion and contraction are dual in the sense that

(1) f/a; is a linear transform of B\b; and
(it) &/ \a; is a linear transform of #/b;.

We have identified the normal fan of 2(/) with the chamber complex
(#). Using Lemma 3.4, we can therefore identify the normal fan of
Y(s//a;) with the chamber complex I'(#\b;), and similarly the normal fan
of X(s/\a;) with I'(#/b;). Thus our problem is reduced to describing the
behavior of the chamber complex under deletion and contraction. Using
this point of view we now describe the relationship of the secondary
polyhedron by contraction X2 (.<//a;) to X(/).

We say a point a; is extreme in of if a,¢ pos(/\a;). We note that a; is
extreme in .o if and only if b, is not extreme in 4. Every convex
polyhedron Q can be written uniquely as a minimal intersection of
halfspaces in its affine hull, each of which then defines a facet. If Q is a
convex polyhedron and F is a facet of Q, then we say Q' results from Q
hy removing F if Q' is the intersection of all halfspaces in the minimal
representation of Q except the one corresponding to F.

THEOREM 3.5. Let o/ and & be as above. If a; is extreme in s/, then
(sl /a;) is a Minkowski summand of (/). If a; is not extreme in s, then
X(of/a,) is unbounded and is obtained from a Minkowski summand of (/)
hy removing the facet with inner normal e,.

Proof. We consider the chamber complex I'(#\b,). If a, is extreme in
</, then since b, is not extreme in 4, regular triangulations of #\b; are just
those regular triangulations of # that do not involve b, as a vertex. Thus
by Proposition 3.3

X(A)=2(AL]a)+). 0y, (3.7)

the summation over those regular triangulations of # that do contain b,.

On the other hand, if ¢, is not extreme in &7, then since b; is extreme in
#, all regular triangulations of % must contain b,. In this case, let
R=3,0,, where the sum here is over all regular triangulations 4 of %
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such that the complex 4\b, triangulates #\b,. (By 4\b, is meant the com-
plex consisting of all simplices that do not contain b,.) By Proposition 3.3
again. R is a Minkowski summand of 3(./).

Each polytope Q, in the definition of R has a facet with inner normal
h,. Removing this facet corresponds to restricting the support function g,
of Q. to pos(#\b,), or equivalently, to replacing g, by the new support
function g, , gotten by setting i, = + co. The sum over these new support
functions is the support function of the polyhedron R’ which results from
R by removing the facet with inner normal b,. Thus the support function
of R"1s strictly convex and piecewise linear over I'(#\b,), and therefore R’
is normally equivalent to X(.«//a,). Now Theorem 3.5 follows because the
facet of X(.«/) (or of its summand R) with inner normal b; becomes the
facct with inner normal e, when these polyhedra are considered in the
original embedding in R”. |

4. A NON-REGULAR TRIANGULATION OF A CYCLIC POLYTOPE

[n this section we apply our duality results to triangulations of the cyclic
8-polvtope C(8, 12) with 12 vertices. In particular, we show that C(8,12)
admits a non-regular triangulation; this proves a conjecture of Kapranov
and Voevodsky [8, Remark 3.5].

Let o/ :={a,,a,,...a;,} <R® where a,:= (1,4, % .., i%) fori=1,2,.,12.
The cyclic polytope C(8, 12) is defined as conv(.«#). It will here be iden-
tified with the spherical 8-polytope P(.«/) or with its positive hull pos(./).
A linear transform of .o/ is given by B = {b,, b,, ..., by,; = R? where

(hy. i by, b))

10 0 —165 990 —2772 4620 —4950 3465 — 1540 396 —45
=10 —1 0 45 —240 630 —1008 1050 —720 315 —80 9
0 0 I -9 36 —84 126 —126 84 36 9 —1

If we replace the vectors by, by, bg, bg, by, and b, by their negatives,
then we obtain a pointed cone in 3-space, which can be represented by the
2-dimensional affine configuration depicted in Fig. 1. This diagram is an
daffine Gale diagram [117] of C(8, 12). (See also [2, Fig. 2]).

By Theorem 3.1, the maximal cells of chamber complex I'(#) are in one-
to-one correspondence with the regular triangulations of C(8, 12). We now
consider the specific maximal cell I'(#, x,) which contains the vector
xXo= (770, — 159, 20). As is illustrated in Fig. 1, this cell is the intersection
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FiGuUre 1

of the simplicial cones pos({b,, b,, b, }), where i j k ranges over the triples
in the following list:

123 125 137 139 145 157 159 1511 178
1710 1712 1910 1912 11112 2311 345 347 349
3511 367 369 3711 389 3911 31112 567 569
5611 589 5811 51011 789 7811 71011 91011

(4.1)

The regular triangulation A4, of C(8,12) corresponding to the region
I'(#, x,) has as its maximal simplices the complements of all triples in
(4.1), that is, the 35 maximal simplices of A4, are 456789101112,
346789101112, 245689101112, etc. We now replace the five
underlined triples in (4.1) by

2511 4511 5711 5911 51112, (4.2)

This corresponds to bending the line 5 11 until it curves under the point x,
in Fig. 1.

The new collection of complementary sets defines a simplicial 8-ball 4,
which is obtained from 4, by a bistellar operation (see [2]) on {5, 11} =
{1,2,3,4,6,7,8,9,10,12}. This bistellar operation can be carried out
geometrically for the triangulation 4, of C(8, 12) because ({1, 3, 6, 8, 10},
{2,4,7,9,12}) is a Radon partition of C(8, 12). For, we can see in Fig. 1
that (—, +, —, +,0, —, +, —, +, —, 0, +) is a signed cocircuit of # and
hence is a signed circuit of .&7.

ProPOSITION 4.1.  The triangulation A, of C(8, 12) is not regular.

Proof. 1f the triangulation 4, were regular, then there would exist a
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vector x, in the interior of all simplicial cones pos({b,, b, b, }), where ijk
ranges over all triples in (4.2) and all non-underlined triples in (4.1).
However, as can be seen in Fig. 1, the intersection of these simplicial cones
(or spherical triangles) is empty. This shows that 4, is a non-regular
triangulation of the cyclic polytope C(8, 12). |1
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