PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 122, Number 2, October 1994

CELLULAR STRINGS ON POLYTOPES

L. J. BILLERA, M. M. KAPRANOV, AND B. STURMFELS

(Communicated by Jeffry N. Kahn)

ABSTRACT. The complex of cellular strings with respect to a generic linear
functional on a d-dimensional convex polytope has the homotopy type of the
(d — 2)-sphere. This result was conjectured in a special case by H.-J. Baues.

INTRODUCTION

While from a topological point of view all convex polytopes have the same
boundary, the rich combinatorial structure of these objects has been studied
since the earliest days of mathematics. This paper deals with a new combina-
torial invariant, the poset of cellular strings on a polytope. We determine the
homotopy type of this poset, and as a corollary we prove a conjecture of Baues
in the theory of loop spaces.

Baues’s conjecture arose from the problem of finding explicit CW-models for
iterated loop spaces Q'X of a given CW-space X . Using cellular strings on
cubes, Baues [2] demonstrated that the algebraic cobar construction of Adams
[1] can be strengthened to a geometric model for QX . More precisely, if X
is a simplicial space [6] with one vertex and no edges, then Baues’s model QX
is a space glued from cubes, where each cube I"~! approximates the space of
paths in the simplex A, joining the Oth and the nth vertex. Here faces of
I"=1 correspond to cellular strings on A, .

Milgram [8] noted that the (n — 1)-dimensional permutohedron P, (the con-
vex hull of a generic orbit of the symmetric group S, in R") similarly approx-
imates the path space of the cube I". More precisely, the face poset of P,
1s isomorphic to the poset of cellular strings in I”. This permitted Baues to
iterate his geometric cobar-construction and apply it to cubical spaces X with
trivial 1-skeleton. He constructed a CW-space QX , glued from products of
permutohedra, which is a model for QX . In particular, if Y is a simplicial
space with trivial 2-skeleton and X = QY , then QX is a model for the iterated
loop space Q?Y.

One is tempted to continue this process, introducing “hyperpermutohedra”
as complexes of cellular strings in P, and so on. However, these complexes are
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no longer isomorphic to face complexes of convex polytopes (and even fail to
be spheres). Nevertheless, Baues conjectured that they are homotopy equivalent
to spheres and that one can choose a subcomplex homeomorphic to a sphere
whose embedding is 2 homotopy equivalence [2, Conjecture 7.4).

In §1 we prove Baues’s conjecture for an arbitrary convex polytope P c R”
whose vertices are ordered by means of a generic linear functional f. In §2 we
show that the desired subcomplex homeomorphic to a sphere can be taken to
be the boundary complex of the monotone path polytope X 7(P). These results
open up the possibility of iterating Baues’s construction to get CW-models for
iterated loop spaces by gluing products of iterated monotone path polytopes.
In §3 we discuss a natural generalization of Baues’s conjecture arising from the
theory of fiber polytopes [3].

We are grateful to David Stone for bringing the work of Adams and Baues to
our attention and to Anders Bjérner and Giinter Ziegler for helpful discussions.

1. SPHERICITY OF THE CELLULAR STRING COMPLEX

Let P C R” be an n-dimensional convex polytope. A stipplingon P (see [2,
Definition II1.2.3]) is a rule which assigns to each face I" of P a vertex n() of
I" such that whenever T, is a face of T'; and #(T";) € I';, then nIy) =nT).

An important class of stipplings is provided by convex geometry. Let f :
R” = R be a linear functional. We say that f is generic with respect to P
if it is nonconstant on each edge of P. In this case on each face I c P the
function f attains its minimum (resp. maximum) in exactly one point, which
is a vertex denoted s,(I') (resp. tr(I))

Proposition 1.1. If f is a generic linear functional on P, then sy and t; are
stipplings.

Let P be a polytope with a fixed pair of stipplings (s, 1). A cellular string
on P is a sequence of proper faces (Ip,IY,..., I'm) such that s(Tg) =
s(P), tT'm) = t(P), and s(I';) = ¢(I';—,) for each i = 1, 2,...,m. The
set @ = w(P, s, ) of all cellular strings is partially ordered by the relation
(To, Thy oot ,Tm) < (A0, Ay, ..., Ay) if there exist 0= ip < [} <ih<--- <
Ik < lkyy = m such that (I, , T4y, ... , T, is a cellular string on the face
A, ,foreach v=0,1,... , k

The geometric realization |w| of the simplicial complex of chains in @ can
be viewed as a model for the space of all monotone paths on the boundary
OP joining s(P) and #(P). So it is a natural question whether lw| has the
homotopy type of the (n — 2)-sphere S"~2. The following affirmative answer
is the main result of this paper.

Theorem 1.2. Let f be a generic linear functional on an n-dimensional convex
polytope P C R™. Then the poset w(P, Sy, ty) is homotopy equivalent to S"2 .

Proof. Let Ay < A; < .-+ < Ay be the values of S at the vertices of P, so
the segment Q := [4;, Ax] C R is the image of P under f. Choose an inter-
mediate point y; in each open interval (4;, Ai+1). Denote by L; (resp. M)
the poset of proper faces of the polytope f~'(4;) (resp. f~'(u;)). When a
value A moves from u; to A;, each face of f~!(1) contracts to some face of
/7' (4;) of possibly smaller dimension. This defines a surjective morphism of
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posets a; : M; — L,. Similarly, we have the degeneration in the other direction,
defining a morphism ;: M; — L;,; (see also Lemma 2.2).

Lemma 1.3. The poset w(P, sy, ty) is isomorphic to the inverse limit of the
diagram

Mx—-*Lz Mz =5 Ly & My = b, . -ﬂN—_'zLN 1 My

Proof of Lemma 1.3. By definition, an element of this inverse limit is a sequence
(I, T2, ..., Tn_y) of polytopes, where T; € M; is a face of f~!(u;), such
that Bi(I';) = ajz1(Tiyy) for i=1,2,..., N-2. Since f is generic, we have
either dimTI; = dim 8;(I";) = dima;,1(T4) = dimT,,; (which means that T;
and I';,; are hyperplane sections of the same face of P) or £i(lN) = aim1(Tis1)
is a point. In either case we get a unique cellular string in P, and each cellular
string in P is obtained in this way. O

Lemma 1.4. The inverse image under a; of any upper interval {® e L;: d > I}
in L; is a contractible subposet of M;, and similarly for the map B; .

Proof of Lemma 1.4. We view f~Y(1,), f~'(u;), and their normal cones as
polyhedra in the kernel of f. Let 1 be the normal cone of f~!(1;) at T". A
face E of f~!(yu;) liesin ai"({(b € L; : ® >T7}) if and only if the normal cone
of f~!(u;) at E is contained in /. Moreover, these cones form a polyhedral
subdivision of 7. Hence o '({® € L;: ®>T)) is contractible. O

It follows from Lemma 1.4 and Quillen’s Theorem A [9] that the maps of
geometric realizations |a;| : |M;| — |L;| and |B;| : |M;| — |L;s;| are homotopy
equivalences and that all their fibers are contractible.

Proof of Theorem 1.2. Let X; denote the poset inverse limit of the left segment
of our diagram up to M;. Since the operations “inverse limit” and “ geometnc
realization” commute [6, Chapter 3, §3], the geometric realization |.X;| is the
inverse limit of the corresponding diagram of topological spaces. Consider the

natural projection p; : |{X;| — |X;—;]. Each fiber of p; is contractible since
1t coincides with some fiber of |a;|. Hence p; is a homotopy equivalence by
Qulllen s Theorem A [9]. Using induction on i, we conclude that |Xy_,| = ||

is homotopy equlvalent to |Xi|. However, |X;| is the boundary of the (n—1)-
polytope f~'(x;) and hence hemeomorphic to S"-2. O

We note that Bjorner [5] has given another proof of Theorem 1.2 in the case
where P is a zonotope (i.e., a Minkowski sum of line segments).

2. COHERENT STRINGS AND THE MONOTONE PATH POLYTOPE

We now sharpen Theorem 1.2 by identifying a subcomplex wep of @ =
w(P, sy, ty) which is homeomorphic to $"~2. To this end we introduce a
larger space Q homotopy equivalent to w, and we describe an explicit retrac-
tion from Q onto Wy .

Let I' denote the subdivision of the open segment int(Q) = (4;, Ax) into
open segments (4;, 4;+1) and singletons {4;}, 1 < j < N. We call T the
chamber complex of (P, Q). A face bundle is a map A which assigns to each
o € I' aproperface A(g) of f~!(g). We usually identify A with a subcomplex
of the boundary complex AP, whence the set % (P) of all face bundles is finite
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and partially ordered by inclusion. Every point y = (Ws)oer € (S7=2)T defines
a face bundle A, via Ay(g) = f ~1(g)¥ (this denotes the extreme face of
f~1(0) in direction ¥, ). Thus & (P) is the face poset of a piecewise-linear
subdivision of the product of spheres (S"~2)T.

We define the monotone path complex # = .#;(P) to be the subcomplex of
F (P) consisting of all cells which are contained in

(1) Q= {y € (S" )| f~!(r)¥ = f~'(1)¥ whenever T CT}.

Proposition 2.1. The monotone path complex # equals the cellular string com-
plex w.

Proposition 2.1 is a consequence of Lemma 1.3 and the following Lemma
2.2 whose elementary proof we omit.

Lemma 2.2. For any y € S"2, we have Bi_i(f~'(mim1)¥) = fTHA)Y =
o (7 (ui)¥) -
Using Proposition 2.1 and a covering argument, it can be shown that the

cellular string complex w is homotopy equivalent to the space Q. We now
consider its diagonal

(2) Qeon = {w € (8" )y, = y; forallcells 7,0 in '}

which is clearly homeomorphic to the (n—2)-sphere. The following result yields
an alternative proof of Theorem 1.2.

Theorem 2.3. The inclusion of topological spaces Qon C Q is a homotopy equiv-
alence.

Proof. Let 0, < 03 < -+ < gy—; be the natural ordering of all cells of the

chamber complex I' (thus 0y, isa 1-celland oy; isa O-cell). We abbreviate
Wi = W, € S"2 and consider the intermediate spaces

(3) Qi={veQyi=vu ==y} for i=1,2,...,2N-1

Since Qegp = Q) CQy C--- € Mn—1 = Q, it suffices to show that the inclusion
Q; C Q.. is a homotopy equivalence. We will prove this for the case i = 2j—1
(so g; is a 1-cell); the case i = 2j is analogous.

Let v € Q;,;. The local coherence condition in (1) states that both iy
and y; are support vectors for the same face of the fiber over the point g, .
This implies w; # —is1 , and thus the convex combinations

Ayi+ (1 = Ayin
4 (A =
@ B = Py v (= Dl
are well-defined vectors on the unit sphere S”~2. Now check that the point
(5) W(A) = (WI s W2, 5 Wiy WI(A) yeee ‘l’l(l)) € (Sn—Z)r

liesin Q forall A € [0, 1]. This is clearly the case for A =0, since y(0) =y €
Qi.+1. On the other hand, the local coherence condition in (1) is preserved at
each vertex oy as the parameter A increases from 0 to 1. Therefore, the map
w — w(1) provides the desired explicit retraction from Q;;p onto Q;. O

for A€ [0, 1]

We define wep 1o be the subposet of w consisting of all face bundles (or
cellular strings) A, with ¥ € Q. Such face bundles (or cellular strings) Ay
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are called coherent. It was shown in [3] that the poset w., of coherent face
bundles is isomorphic to the face poset of the (n—1)-dimensional monotone path
polytope Z(P), which is defined as the Minkowski sum 2(P)=Yer S Ho).
Thus wcop is a natural subcomplex of w which is homeomorphic to the (n-2)-
sphere.

3. EXAMPLES AND THE GENERALIZED BAUES PROBLEM

We first discuss the three classes of examples mentioned in the introduction.

Example 3.1. The standard double stippling on the simplex A" is defined as
follows. Faces of A" are identified with ordered subsets ¢ = {oo<--- <o} C
{0,1,2,..., n},and we set s(o) = gy, (o) = oy . It was noticed in [1, 2] that
the cellular string complex w(A", s, t) is isomorphic to the boundary complex
of the cube 7"~!. This double stippling is realized geometrically by the linear
functional f: A" — R which takes the value i at the ith vertex. The monotone
path polytope Z,(A") is combinatorially (but not affinely) isomorphic to I7~!,
In fact, Z,(A") is the Newton polytope of the discriminant of a univariate
polynomial of degree n [7]. Here all cellular strings are coherent [3].

Example 3.2. The vertices of the n-cube I” = {x1,...,xp) eR0 < x; <
1} correspond to subsets of {1,2,..., n}, which are partially ordered by
inclusion. The standard combinatorial double stippling (s, t) associates to each
face its unique minimal (resp. maximal) vertex with respect to this order. The
complex of cellular strings w(I”, s, t) is isomorphic to the face lattice of the
(n — 1)-dimensional permutohedron P, (see [3, 10], and below). This double
stippling is realized geometrically by the linear functional Sxt, .o, xp) =
Xy + -+ Xp . It was shown in [3] that all the cellular strings are coherent and
the monotone path polytope Z/(I") is linearly isomorphic to P, .

Example 3.3. The permutohedron P, is defined as the convex hull in R” of the
points (¢(1), 6(2), ..., a(n)) for all permutations ¢ € S,. The face lattice
of P, is well known (cf. [2, 10]); in particular, two permutations ¢ , TES, are
connected by an edge of P, if and only if they differ by an adjacent transposition
(l.e.,, ¢ = to(i,i+1)). The standard combinatorial double stippling of P,
associates to each face I C P, its unique minimal vertex s(I') (resp. maximal
vertex (I) ) with respect to the weak Bruhat order. Recall that the weak Bruhat
order on the symmetric group S, is defined as the transitive closure of the
relation X, where 0 <t if o=t or o =10 (i,i+ 1) for some i and the
number of inversions in t is larger than the number of inversions of o .

The double stippling (s, ) may be realized geometrically by the linear func-
tional f(xi,...,X,) = XL, tix;, where #; < --- < t, is any increasing se-
quence of real numbers. It follows from examples in [2, §II1.7] that many of
the cellular chains in w(P,, s, t) are noncoherent. The sphericity of the cellular
string complex for P, was the original Baues’s conjecture. Note that Baues’s
description in [2] is purely combinatorial, while our proof of the conjecture
makes use of convex geometry.

We now discuss a natural generalization of the posets w(P, f) for the case
where the linear functional f is replaced by a linear operator into R*. In the
topological setting discussed in the introduction this corresponds to the k-fold
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loop space Q*(X) regarded as the space of pointed maps of the k-sphere to X
rather than iteratively as Q(QK-1(X)).

Consider a convex polytope P := conv(&p), where &% = {p,, P2, ... , Dm}
CR",andlet 7 :R" — R? be an affine map with 7(p;) =gy, ... , 7(Dm) = gm .
We consider & = {¢1, 42, ... , gm} C R? as an m-element multiset, and we
define Q := conv(&)).

A polyhedral complex is a collection of convex polytopes having the property
that the intersection of any two is a face of each and is itself in the collec-
tion. A polyhedral subdivision of Q is a collection IT of subsets of & whose
convex hulls form a polyhedral complex whose union equals Q. A polyhedral
subdivision IT of Q-is said to be induced by n from P if

(1) each cell o €11 is of the form =n(F,), where F, is the intersection of
&p with a supporting hyperplane of P, and
(2) foreach o,0' €Il, Fyngr = F, N Fy .

Note that ¢ = 7(F,) uniquely specifies the set F,. Also note that dimg <
dim F;; , where by the dimension of a set we mean the dimension of its affine
span. An induced subdivision IT is called tight if dimo = dim F, for each
o € I1. Such subdivisions are just polyhedral sections of the projections 7 :
P — Q, ie., they are subcomplexes in P which project onto Q bijectively.
If P is a simplex, then the tight induced subdivisions of Q are precisely the
triangulations of Q with vertices in 2.

A polyhedral subdivision I1 of Q is said to be proper if IT # {<4}. Let
S (P, Q) denote the set of all proper induced polyhedral subdivisions of Q.
This set is partially ordered by inclusion, so we view #(P, Q) as a subposet
of the partition lattice on Ay .

It can be viewed as a combinatorial model of the space of all continuous
sections of the projection n: P — Q lying in the boundary of Q. In the case
where dim Q = 1, the poset %(P, Q) is the poset @ of cellular strings. In
view of Theorem 1.2, it is natural to ask the following question.

Generalized Baues Problem. Is the poset #(P, Q) homotopy equivalent to a
sphere of dimension dim P —dim Q- 1?

Asin §2, there is a natural candidate for a spherical subcomplex of % (P, Q).
This is the boundary complex of the fiber polytope %(P, Q) which was intro-
duced in [3] as the Minkowski integral of all fibers of the projection #. When
dim @ = 1, this is the monotone path polytope Z/(P), where f denotes
the linear map from P onto Q. As was shown in [3], the faces of I(P, Q)
correspond to P-coherent polyhedral subdivisions of Q. These can be defined
analogously to §2. Thus the set of coherent polyhedral subdivisions forms a
spherical subposet in .#(P, Q).

Thus the essence of the problem is to compare two ways of averaging the
fibers: one combinatorial, by means of the inverse limit (cf. Lemma 1.3) and
the other geometric, by means of Minkowski summation of polytopes.

In general, it is already unknown whether the complex #(P, Q) is con-
nected. A partial positive answer to the Generalized Baues Problem, this con-
nectedness, would imply that any two triangulations of a simplicial polytope Q
can be joined by a sequence of bistellar moves [4] involving its vertices (consider
the case where P is a simplex). Positive results have been obtained in [11] for
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the case where P is a regular n-cube for specific choices of @, including those
where @ has dimension at most 2 or at least n — 3. We can also obtain a
positive answer in the case where P is a simplex and dimQ = 2.
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