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Introduction

An important problem in the theory of loop spaces is to find explicit CW-models for
iterated loop spaces Q'X of a given CW-space X. It was shown by J.F. Adams [1]
that the Pontryagin algebra H.(QX ) can be obtained as the cohomology algebra of the
cobar-construction of the chain coalgebra C,X. H.J. Baues [2] demonstrated that Adams’
theorem can be strengthened to an explicit model for 2X. More precisely, if X is a
simplicial space [6] with one vertex and no edges, then Baues’ model QX is a space glued
from cubes. Here the cube I™-! serves as an approximation for the space of paths in
the simplex A™ joining the 0-th and the n-th vertex. Combinatorially, faces of I™-!
correspond to cellular strings between the 0-th and n-th vertex in A,, and so I*! is
embedded into the space of all such paths.

R. Milgram [8] noted that a similar approximation to the path space of the cube I" is
provided by the (n—1)-dimensional permutohedron Py, which is the convex hull of a generic
orbit of the symmetric group S, in R™. In fact, P, can be recovered combinatorially
as the complex of cellular strings in I®. This permitted Baues to iterate his geometric
cobar-construction and apply it as well to cubical spaces X with trivial 1—skeleton. He
constructed a CW-space X, glued from products of permutohedra, which is a model for
QX. In particular, if Y is a simplicial space with trivial 2—skeleton and X = QY then
X will be a model for the iterated loop space Q%Y.

One is tempted to continue this process, introducing “hyperpermutohedra” as com-
plexes of cellular strings in P, and so on. However, these complexes are no longer isomor-

phic to face complexes of convex polytopes (and even fail to be combinatorial spheres).

Nevertheless, Baues conjectured that they will be homotopy equivalent to spheres and that
one can choose a subcomplex homeomorphic to a sphere whose embedding is a homotopy

equivalence [2; Conjecture 7.4]. This would yield a model for %Y, and so on.
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In this note we prove Baues’ conjecture in the more general setting of a convex polytope
P C R™ whose vertices are ordered by means of a generic linear functional f. For the
desired subcomplex homeomorphic to a sphere one can take the boundary complex of the
monotone path polytope T;(P) introduced in [3]. The polytopal nature of this subcomplex
opens up the possibility of iterating Baues’ construction to get CW-models for iterated loop
spaces by gluing products of iterated monotone path polytopes. We are grateful to David
Stone for bringing the work of Adams and Baues to our attention and to Anders Bjorner

and Gunter Ziegler for many helpful discussions.

1. Sphericity of the cellular string complex

Let P C R™ be an n-dimensional convex polytope. A stippling on P (see [2, Definition
I11.2.3]) is a rule which assigns to each face T' of P a vertex n(I') of T' such that whenever
I'; is a face of 'y and n(Ty) € T2, then n(T'y) = 7(T2).

An important class of stipplings is provided by convex geometry. Let f : R®* - R
be a linear functional. We say that f is generic with respect to P if it is non-constant
on each edge of P. In this case on each face I' C P the function f attains its minimum

(resp. maximum) in exactly one point, which is a vertex denoted s¢(I') (resp. ts(T')).
Proposition 1.1. If f is a generic linear functional on P, then sy and ty are stipplings.

Let P be a polytope with a fixed pair of stipplings (s,t). A cellular string on P is
a sequence of proper faces (Tg,Ty,...,I'm) such that s(T'o) = s(P), t(I'sm) = t(P), and
s(T;) = t(Ti_;) for each i = 1,2,...,m. The set w = w(P,s,t) of all cellular strings
is partially ordered by the relation: (T,T1,...,Tm) < (Qo,A1,...,Ak) if there exist
0=ip <ty <ig <...<itm < impr =k such that (Ti,,Ti, 41,...T4,4,) is a cellular
string on the face A,, for each v =0,1,...,k.

The geometric realization |w| of the simplicial complex of chains in w can be viewed
as a model for the space of all paths on the boundary AP joining s(P) and t(P). So it is
a natural question whether |w| has the homotopy type of the (n — 2)-sphere S n=2 The

following affirmative answer is the main result of this paper.

Theorem 1.2. Let f be a generic linear functional on an n-dimensional convex polytope

P C R™. Then the poset w(P,ss,t5) is homotopy equivalent to S™~2.
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Proof: Let A\ < A2 < ... < An be the values of f at the vertices of P. So, the segment
Q := [M,\n] C R is the image of P under f. Choose an intermediate point p; in
each open interval ();, A\i4+1). Denote by L; (resp. M;) the poset of proper faces of the
polytope f=1();) (resp. f~1(ui)). When a value A moves from p; to A, each face of
f~1(\) contracts to some face of f~1(\;) of possibly smaller dimension. This defines a
surjective morphism of posets a; : M; — L;. Similarly, we have the degeneration in the

other direction, defining a morphism B : M; — Ly (see also Lemma 2.2).

Lemma 1.3. The poset w(P,sy,ts) is isomorphic to the inverse limit of the diagram

JYPRLLING SN VAN N LN AL R vy po s & M.
Proof of Lemma 1.3: By definition, an element of this inverse limit is a sequence

(Ty,T2,...,Tn_1) of polytopes, where T; € M; is a face of f~!(u;), such that Bi(T;) =
ai(Tiz1) for i =1,2,...,N—2. Since f is generic, we have either dimT; = dim B;(T;) =
dim a;(Ti41) = dimTi41 (which means that T; and T';4; are hyperplane sections of the
same face of P), or B;(T;) = ai(li41) is a point. In either case we get a unique cellular

string in P, and each cellular string in P is obtained in this way. <

Lemma 1.4. The inverse image under «; of any upper interval {® € L; : & > I'} in L;

is a contractible subposet of M;, and similarly for the map B;.

Proof of Lemma 1.4: We view f~1();), f~'(u:) and their normal cones as polyhedra in
the kernel of f. Let N1 be the normal cone of f~();) at I'. A face Z of f~'(u;) lies in
a;71({® € L; : ® > T}) if and only if the normal cone of f~!(x;) at = is contained in Nr.
Moreover, these cones form a polyhedral subdivision of Ar. Hence o '{®€L;:®>T})

is contractible. «

It follows from Lemma 1.4 and Quillen’s Theorem A [9] that the maps of geometric
realizations |a;| : |M;i| — |Li| and |Bi| : |Li| = |Miy1| are homotopy equivalences and
that all their fibers are contractible.

Proof of Theorem 1.2: Let X; denote the poset inverse limit of the left segment of
our diagram up to M;. Since the operations “inverse limit” and “geometric realization”
commute [6; Chapter 3, §3], the geometric realization |X;| is the inverse limit of the

corresponding diagram of topological spaces. Consider the natural projection p; : |X;| —

3



|Xi_1|. Each fiber of p; is contractible since it coincides with some fiber of |a;|. Hence p;
is a homotopy equivalence by Quillen’s Theorem A [9]. Using induction on i, we conclude
that |Xny_1| = |w] is homotopy equivalent to |X;|. However, |X;| is the boundary of the
(n — 1)-polytope f~'(;) and hence homeomorphic to S*~2. 4

We note here that Bjorner [5] has given another proof of Theorem 1.2 in the case

where P is a zonotope (i.e., a Minkowski sum of line segments).

2. Coherent strings and the monotone path polytope

In this section we will sharpen Theorem 1.2 by identifying a subcomplex weop of w =
w(P,sf,ts) which is homeomorphic to S"~2. To this end we introduce a larger space Q
homotopy equivalent to w, and we describe an explicit retraction from 2 onto weon.

Let T' denote the subdivision of the open segment int(Q) = (A;,An) into open
segments (\;, A1) and singletons {};}, 1 < j < N. We call T the chamber complex
of (P,Q). A face bundle is a map A which assigns to each ¢ € " a proper face A(o)
of f~!(0). We usually identify A with a subcomplex of the boundary complex 0P,
whence the set F(P) of all face bundles is finite and partially ordered by inclusion. Every
point ¥ = (Y5 )eer € (S* 2)T defines a face bundle Ay via Ay(g) := f~1(o)¥" (this
denotes the extreme face of f~1(o) in direction ¥,). Thus F(P) is the face poset of a
piecewise-linear subdivision of the product of spheres (S™~2)F.

We define the monotone path complez M = M ¢(P) to be the subcomplex of F(P)

consisting of all cells which are contained in
Q = {ype(S™ | f(r)¥ = f71(r)¥ whenever T C 7 }. (1)

Proposition 2.1. The monotone path complex M equals the cellular string complex w.

Proposition 2.1 is a consequence of Lemma 1.3 and the following Lemma 2.2 whose

elementary proof we omit.
Lemma 2.2. Forany 1 € §"2, we have Bi_1 (= (pi-1)¥) = ()Y = ai (f 1 (1i)¥).

Using Proposition 2.1 and a covering argument, it can be shown that the cellular

string complex w is homotopy equivalent to the space 2. We now consider its diagonal
Qoo = {Y€(S"™ | g =t forall cells 7,0 in T } 2)
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which is clearly homeomorphic to the (n — 2)-sphere. The following result yields an alter-

native proof of Theorem 1.2.
Theorem 2.3. The inclusion of topological spaces Qcon C §) is a homotopy equivalence.

Proof: Let 0, < 02 < ... < gan—1 be the natural ordering of all cells of the chamber
complex I' (thus o251 is a 1-cell and 075 is a 0-cell). We abbreviate t; := vy, € Sn—2

and consider the intermediate spaces
Q, = {1/)€Q|1/)i='¢‘i+l=---=¢2N—1} for 1=1,2,...,2N-1. (3)

Since Qeon = 21 € N2 C ... C Qon_1 = Q, it suffices to show that the inclusion
Qi C Q41 is a homotopy equivalence. We will prove this for the case 1 =25 —1 (so o; 1s
a 1-cell); the case ¢ = 2j is analogous.

Let ¢ € Qiy1. The local coherence condition (1) states that both ;41 and ¥ are
support vectors for the same face of the fiber over the point oy41. This implies ¥; # —Yit1,

and thus the convex combinations

A + (1= X)) it
A + (1= A) piga ||

Bi(h) = for A € [0,1] (4)

are well-defined vectors on the unit sphere S"~2. Now check that the point

¢‘(/\) = (¢1’¢2,'-'a¢ia d)t(A)a’d)!()‘)) € (Sn—2)r (5)

lies in § for all A € [0,1]. This is clearly the case for A = 0, since ¥(0) = ¥ € Qi41. On
the other hand, the local coherence condition (1) is preserved at each vertex o2 as the
parameter A increases from 0 to 1. Therefore the map 3 + (1) provides the desired

explicit retraction from ;4; onto ;. <«

We define weop to be the subposet of w consisting of all face bundles (or cellular strings)
Ay with 1 € Qgon. Such face bundles (or cellular strings) Ay are called coherent. It
was shown in [3] that the poset wc,p of coherent face bundles is isomorphic to the face
poset of the (n — 1)-dimensional monotone path polytope X s(P), which is defined as the
Minkowski sum £4(P) = ¥ ,cr f71(0). Thus weon is a natural subcomplex of w which

is homeomorphic to the (n — 2)-sphere.



3. Examples and the generalized Baues problem

We first discuss the three classes of examples mentioned in the introduction.

Example 3.1. The standard double stippling on the simplex A" is defined as follows.
Faces of A™ are identified with ordered subsets 0 = {00 < ... < o%} C {0,1,2,...,n},
and we set s(o) = o, t(0) = ok. It was noticed in [1],[2] that the cellular string complex
w(A™,s,t) is isomorphic to the boundary complex of the cube I™~!. This double stippling
is realized geometrically by the linear functional f : A™ — R which takes the value ¢ at
the i-th vertex. The monotone path polytope ¥ ;(A™) is combinatorially (but not affinely)
isomorphic to I"~!. In fact, £y( A™) is the Newton polytope of the discriminant of a

univariate polynomial of degree n [7]. Here all cellular strings are coherent [3].

Example 3.2. The vertices of the n-cube I" = {(z1,...,22) € R*|0 < z; < 1}
correspond to subsets of {1,2,...,n}, and hence are partially ordered by inclusion. The
standard combinatorial double stippling (s,t) associates to each face its unique mini-
mal (resp. maximal) vertex with respect to this order. The complex of cellular strings
w(I™,s,t) is isomorphic to the face lattice of the (n — 1)-dimensional permutohedron P,
(see [3],[10] and below). This double stippling is realized geometrically by the linear func-
tional f(z1,...,Zn) = T1 +...+ Zn. It was shown in [3] that all the cellular strings are

coherent and the monotone path polytope T ¢(I™) is linearly isomorphic to Pn.

Example 3.3. The permutohedron P, is realized as the convex hull in R™ of the points
(0(1),0(2),. .. ,o(n)) for all permutations o € S,.. The face lattice of P, is well-known
(cf. [2],[10]); in particular, two permutations o,7 € S are connected by an edge of P, if
and only if they differ by an adjacent transposition (i.e. o = 70 (i, +1)). The standard
combinatorial double stippling of P, associates to each face I' C Py its unique minimal
vertex s(T') (resp. maximal vertex #(T')) with respect to the weak Bruhat order. Recall
that the weak Bruhat order on the symmetric group Sn is defined as the transitive closure
of the relation <, where 0 <1 if ¢ = 7,0r ¢ = 70 (i,i+1) for some and the number
of inversions in T is larger than the number of inversions of o.

The double stippling (s,t) may be realized geometrically by the linear functional
f(z1,.. yTn) = Y i, tizi, where t; < ... <1, isany increasing sequence of real numbers.
It follows from the results in [2, Section II1.7] that many of the cellular chainsin w( Py, s, t)

are non-coherent.



We now discuss a natural generalization of Baues’ conjecture. Consider a convex
polytope P := conv(Ap) where Ap = {p1,p2,..- ,Pm} C R", and let 7: R" — R? be
an affine map with 7(p1) = q1,--.,7(Pm) = gm. We consider Aq = {q1,92,---,9m} C
R¢ as an m-element multiset, and we define Q := conv(Ag).

A polyhedral complez is a collection of convex polytopes having the property that
the intersection of any two is a face of each and is itself in the collection. A polyhedral
subdivision of Q is a collection II of subsets of Ag whose convex hulls form a polyhedral
complex whose union equals Q. A polyhedral subdivision I of Q is induced by ® from
P if each cell o € II is of the form n(F,) for some face F, of P. Since both cells of II
and faces of P are regarded as labeled, o = m(F,) uniquely specifies the face Fo, and
7Y (F,)Nn~Y(Fy) = 7"(F, N F,). Note also dimo < dim F,. An induced subdivision
Il is called tight if dimo = dimF, foreach 0 € II. H Pisa simplex, then the tight
induced subdivisions of Q are precisely the triangulations of @ with vertices in Ag.

The set S(P,Q) of proper (i.e. II # {Ag}) polyhedral subdivisions of P is partially
ordered by refinement. Thus we view S(P, Q) as a subposet of the partition lattice on Aq.
In the case where dim Q = 1, the poset S(P, Q) is the complex w of cellular strings. In

view of Baues’ conjecture, it is natural to ask the following question.

Generalized Baues Problem. Is the poset S(P,Q) homotopy equivalent to a sphere
of dimension dim P — dim Q@ — 17

As in Section 2, there is a natural candidate for a spherical subcomplex of S(P, Q).
This is the boundary complex of the fiber polytope X(P, Q) which was introduced in [3].
When dim Q = 1, then this is the monotone path polytope L 7(P) where f denotes
the linear map from P onto Q. As was shown in (3], the faces of (P, Q) correspond to
P-coherent polyhedral subdivisions of Q. These can be defined analogously to Section 2.
Thus the set of coherent polyhedral subdivisions forms a spherical subposet in S(P, Q).

In general, we do not even know whether the complex S (P,Q) is connected. A partial
positive answer to the Generalized Baues Problem, establishing just the connectedness of
S(P,Q), would have the following interesting implications:

(a) Any two triangulations of a simplicial polytope Q can be joined by a sequence of
bistellar moves [4] involving its vertices (consider the case when P is a simplex).

(b) Any two one-element extensions of a given realizable oriented matroid can be joined
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by a sequence of mutations (i.e., "inverting” of simplicial regions). This corresponds
to the case when P = I™ is a cube and Q is a zonotope. See [11] for a detailed

discussion of the generalized Baues problem from the oriented matroid perspective.
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