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Polarity and Inner Products in Oriented Matroids

Lours J. BiLLERA* AND BETH SPELLMAN MUNSON®

We show that the usual polarity properties of the face lattices of convex polytopes do not
extend to the setting provided by oriented matroids. Thus, the classical theorems of Weyl and
Minkowski fail to hold in this setting. We extend the notion of inner product to oriented matroids
and use it to construct polars in certain cases.

I. INTRODUCTION

The notion of oriented matroid provides an abstract combinatorial setting for the study
of linear dependence in vector spaces over ordered fields, or of directed graphs. In his
early work in this area, Bland [3, 4] showed that this setting was rich enough to provide
the basic results of linear programming, including an algorithmic proof of the duality
theorem (see also [9]). Las Vergnas [11] generalized the notion of the lattice of faces of
4 convex polytope (or pointed polyhedral cone) to oriented matroids, showing this lattice
to have many properties of the usual face lattice. Taking a polar approach, Edmonds,
Fukuda and Mandel {8, 10, 14] have extended the study of this lattice and its relationship
to linear programming.

In this paper, we examine whether the usual polarity properties of convex polytopes
can be extended to oriented matroids. In Section 2, we define the lattices of Las Vergnas
and of Edmonds and Mandel, and we describe a construction of Lawrence, which he
used to show that not all oriented matroid lattices are face lattices of polytopes. In Section
*we use Lawrence’s construction and an adjointness notion due to Cheung [6] to show
that polyhedral polarity fails in general for oriented matroids. (Thus, for example, the
tamily of lattices defined by Las Vergnas differs from that defined by Edmonds and
Mandel, and as a result, the classical theorems of Weyl and Minkowski do not extend
to the oriented matroid setting.) In Section 4, we extend the notion of inner product to
oriented matroids, and in Section 5 relate it to polarity. We show that under very special
vonditions, one can use an inner product, exactly as one does in the polyhedral case, to
fvcognize an oriented matroid polar.

We note here that our results lead to the following apparent inconsistency. In the case
vl vector spaces over ordered fields, the Farkas lemma is the key result in proving both
the duality theorem of linear programming and the theorems of Weyl and Minkowski on
polarits for polytopes and polyhedral cones. For general oriented matroids, however,
Bland has proved a version of the Farkas lemma [4, Corollary 3.1.1] and of the duality
theorem of linear programming [4, Theorem 3.5], yet we will show that polarity fails in
eeneral One is led to conclude that duality and polarity are, from a combinatorial
Ferspective, essentially different phenomena.
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294 L. J. Billera and B. S. Munson

For definitions, notation, and general results about oriented matroids, see [4], [5]. If
M =(E, 0) is an oriented matroid, we will often denote the rank of M by p(M).

2. FAcCE LATTICES OF ORIENTED MATROIDS

Let M =(E, 0) be an acyclic oriented matroid (that is, an oriented matroid such that
there does not exist X € 0 with X~ = ). Then every ec E is in some positive cocircuit
of M [4, Theorem 3.1] and hence the set % "(0") of all positive elements of the signed
cocircuit span of M is not empty and contains a signed set X with X' =E. Let L(M)=
{E\Y|Y e#"(0")} be partially ordered by set inclusion. L(M) is then a lattice with
FinF,=F n F, for F,, F,e L(M), having many of the properties of polyhedral face
lattices [12]. We call L(M) the Las Vergnas lattice of M. If Fe L(M), F is said to be a
Jace of L(M). Note that the unique maximal element of L(M) is E, being the complement
of the empty set whichis in #*(€*), and the unique minimal element is &, the complement
of the signed set with X " =E.

On the other hand, let the elements of L¥(M)={Y|Y e ¥ (6")} be ordered by set
inclusion. Again L*(M) is a lattice, with Y, v Y,= Y, 0 Y, [10, 14]. (For signed sets Y,
and Y,, Yo Yrisdefined by (Y 0o Y,) = Y/ U (Y \Y), (Yo Y5) =Y, u(Y5\Y/))
We will call this lattice, whose elements are the underlying sets of elements of % (04),
the Edmonds- Mandel lattice of the matroid.

Note the relation between L(M) and L*(M) for a given M. It is easy to see that the
map ¢: L*(M)- L(M) defined by ¢(Y)= E\Y is a bijective order-inverting function,
and hence L(M) and L*(M) are anti-isomorphic. Therefore they form a polar, or dual,
pair of lattices. Clearly the class of all Las Vergnas lattices of acyclic oriented matroids
is the class of polars of all Edmonds-Mandel lattices of such matroids. For previous
results concerning these classes of lattices, we refer the reader to [7, 8, 10, 12, 14 and 15].
In particular, we note here that each of L(M) and L*(M) is a point lattice and a copoint
lattice (i.e. each element is a join of points and a meet of copoints, see [15; Prop. 2.1.3]).

It is easy to see that if M is any acyclic oriented matroid and M’ is the acyclic oriented
matroid obtained from M by deleting all but one of any set of parallel elements, then
L(M')= L(M). Furthermore, suppose e € E is such that {e} is not a point of L(M). Then
L(M\e)= L(M) [15, Proposition 2.2.2]. Therefore in what follows we may assume when
desired that M = (E, 0) is a simple acyclic oriented matroid such that every element of
E is a point of L(M).

For some time it was not known whether the lattices arising from oriented matroids
were all polytopal (i.e., isomorphic to face lattices of convex polytopes). In the fall of
1980, however, Lawrence announced that he had found a matroid construction which
could be used to produce a class of acyclic oriented matroids whose lattices were not
polytopal. This construction proved useful to us in showing that the class of Las Vergnas
lattices is not the same as the class of Edmonds-Mandel lattices. For this reason we
describe here without proof the reformulation of Lawrence’s construction which was
related to us by Edmonds and its use in producing a matroid with a non-polytopal lattice.

Let M = (E, O) be an oriented matroid, where E ={e,, ..., e,}. Lawrence’s construction
produces from M an oriented matroid A(M) on the set E U E* where E* ={e*, ... e*}.
For Ac E, define A*={e*|eec A}. A(M) is the oriented series extension of M such that
if X =(X", X )isan oriented circuit of M, then (X U (X 7)*, XU (X *)*) is an oriented
circuit of A(M).

In [15], a different description of A(M) is given, and the following lemma is proved.

LEmMMA 2.1.  Let Y be a cocircuit of M, and let A< Y. Then Y* defined by (Y*)" =
(YNAY (Y A A and (VA =(V A AY 1LV~ AVE i rrnierarit nf ALMMY If oc F
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is not a coloop of M, {e, e*} is the underlying set of a positive cocircuit Y, of A(M).
Furthermore, O (A(M))=s{ U —A U B, where A = { Ye|e € E is not a coloop of M}, —sf =
{~Y|Yesd}, and B={Y"*YeO-(M), TcAc Y}

Note that for M any oriented matroid, A(M) is acyclic and there exist two positive
cocircuits of A{M) corresponding to each hyperplane of M. Notice also that if ec E is
not a loop of M, then e and e* are both points of L(A(M)). This follows from Lemma
2.1 and [12, Proposition 1.6].

With this lemma one can easily prove Lawrence’s result.

() Cin \[‘wl

THEOREM 2.2.  A(M) has a polytopal lattice if and only if M is a representable\Zatroid.

CororLArY 2.3. There exist oriented matroids whose lattices are not polytopal face
latticev.

It is perhaps interesting to compare the lattices of M = (E, @) with the lattices of A(M).
Since p(A(MY)) :p(M)+|E , the rank of L(A(M)), or of L*(A(M)), is |E| greater than
the rank of L(M). The number of copoints of L(A(M)) increases over the number of
copoints of L(M) even more rapidly. If M has k coloops, {Y € O (A(M)): Y =} =
¢ "(M)|+]|E|— k with Y and — Y counted as two distinct elements of (M ). For example
if M s the Vamos matroid, a non-representable matroid having an acyclic orientation
(5], ptA(M))=4+8=12, and L(A(M)) has 90 copoints and 16 points. Another non-
representable oriented matroid, called the non-Pappus matroid [3], has nine elements
and is of rank 3, so applying this construction again results in a lattice of rank 12. At
this time, these are the smallest non-polytopal matroid lattices known to exist, i.e. those
of lowest rank.

If the original matroid M is representable, sois A(M) and hence its lattice is polytopal.
One question of interest in doing polytopal constructions is the effect of the construction
on the diameter of the geometric figure. The diameter of a convex polyhedron is the
maximum over all pairs of vertices of the minimum length of an edge path connecting
the two vertices, where the length is measured as the number of edges in the path. The
diameter of a polyhedron is of interest in linear programming as a measure of the worst
possible performance of a best possible edge-following algorithm applied to a linear
rrogram with that polyhedron as its feasible region. Conjectured bounds for the diameter
ol an d-dimensional polyhedron with n facets are on the order of n—d (see [16]). It is
ol interest, then, to construct polyhedra having large diameter from others of small
diameter. It seems that the construction of A(M) has just the opposite effect. For the
proof of the following, see [15].

PROPOSITION 2.4, Let M be any representable oriented matroid. The diameter of the
polvtope P whose face lattice is isomorphic to L¥*(A(M)) is less than or equal to 4.

3. PoLARS oF ORIENTED MATROIDS

We define a polar of an acyclic oriented matroid M to be an acyclic oriented matroid
M cuch that L(M) is anti-isomorphic to L{M™*) (and hence L*(M)=L(M¥)). The
‘jucmon of whether the class of Las Vergnas lattices of oriented matroids is the class of
tdmonds-Mandel lattices is then equivalent to the question of whether every acyclic
‘Mented matroid has a polar. This issue is of interest as an analog of the results of Weyl

nd Minkowski, Every convex polytope in R" can be realized both as the convex hull of
L T T P R T T T T T T
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half-spaces; this is the content of the classical theorems of Weyl and Minkowski [17,
pp. 55-57]. In looking at the Las Vergnas lattice of a matroid, where elements correspond
to points and complements of positive cocircuits to copoints, we are looking at the matroid
analog of the convex hull of the elements. In looking at the Edmonds-Mandel lattice of
a matroid, elements correspond to copoints and complements of positive cocircuits to
points, so we have the matroid analog of the intersection of a finite number of closed
half-spaces. An oriented matroid M has a polar M* if and only if both L(M)= L*(M*)
and L*(M)= L(M™*). In this case each of the lattices L(M) and L*(M) arises both as
the ‘convex hull of points’ and as the ‘intersection of half-spaces’. We shall show that
not every oriented matroid has a polar and so not every lattice of the form L(M) [or of
the form L*(M)] has this property.

In order to construct an oriented matroid which has no polar, we need the notion of
adjoint, due to Cheung [6]. Let M be any matroid (not necessarily oriented), and let
Z(M) denote its full lattice of flats [18]. An adjoint of M is a matroid M* of the same
rank such that there exists a one-to-one, order-inverting function : #(M)-> £(M*)
which maps the copoints of #(M) onto the points of L(M*). We will show that for any
oriented matroid M, if A(M) has a polar, then M has an adjoint.

Let A be an m xn {0, 1}-matrix, and consider its rows as indicating the incidence of
elements of E ={e,, ..., e,} with the sets $1,8,,..., 8., ie, a;=1if and only if g esS,
Let L(A) be the collection of subsets B of E of the form B = Ui, Sifor Ic{l,..., m},
partially ordered by set inclusion. Then L(A) is a lattice, with Bv C = Bu C. The unique
minimal element of L(A) is &, since & = U, SiforI=0. Similarly, the transpose A"
of A generates a lattice which we will denote by L(AT).

Lemma 3.1, L(A) is anti-isomorphic 10 L(A").

Proor. Let E'={e|,..., e.} be such that e/ corresponds to the ith row of A, and
define a binary relation ~ between E' and E by ei~e; if and only if a; = 0. By [2; p. 123,
Theorem 19] there is an anti-isomorphism between the lattice of all sets of the form
{ele/~eVic I} and that of all sets of the form {eilei~ e Vje J}. Now sets of the former
type are precisely the complements of elements of L(A): those of the latter type are the
complements of elements of L(A"). Thus by a composition of three anti-isomorphisms,
we get one between L(A) and L(A").

Note that if the ith column of A is the zero vector and A’ is the matrix A with column
j removed, &: L(A)~> L(A’) defined by ¢(S)=S is an isomorphism. Similarly, if the ith
and jth columns of A are the same and A’ is as above, ¢: L(A)—> L(A’) defined by
#(S)=S\{e} is an isomorphism.

Suppose M =(E, C) is an acyclic oriented matroid and the rows of the matrix A are
the incidence vectors of the positive cocircuits of M. Then, by definition, L(A) is L*(M),
and hence L(AT)=L(M). Therefore, if M and M’ are acyclic oriented matroids such
that L(M)=L(M’) [and hence L*(M)=L*(M")], and A and A’ are the matrices whose
rows are the incidence vectors of the positive cocircuits of M and M’, respectively,
L(A)=L(A’) and L(A") = L((A")"). Furthermore, if M is simple and e € E is not a point
of L(M), the column A° of A corresponding to e is not minimal, but is the union of
minimal columns (i.e. those corresponding to the points in the smallest face of L(M)
containing e). Thus if A’ is the matrix A with column A¢ removed, L((A)") = L(A").

LEMMA 3.2, Let A and B be 0-1 matrices, each with the property that both its rows
and its columns are pairwise incomparable. Then if L(A) is isomorphic to L(B), B can be

T . 2 N
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PrROOF.  Since the rows of A (respectively, B) are incomparable, it follows that the
points of L(A) [respectively, L(B)] correspond to the rows. Further, the incomparability

according to these bijections, note that a; =0 if and only if point i of L(A) is on copoint

{1, ..., mP\{j} of L(A). By the isomorphism, this is equivalent to the same statement for
L(B) and so is equivalent to b;=0.

are the incidence vectors of the positive cocircuits of M.

PROOF.  Note first that Wwe may assume that M is simple and every ec E is a point
of L(M). Otherwise, we may delete all but one of each set of parallel elements, yielding
a matroid M,, and then delete any elements which are not points of L{M,), resulting in
4 matroid M’ such that LMy =L(M). Noting that any polar of M ijs also a polar of
M’ and conversely, we may then prove the lemma for M’ and A’, the {0, I}-incidence
matrix of the positive cocircuits of M. Since the columns of A’ account for all the minimal
columns of A, the lemma must hold for M and A.

MM has any polar, it has a polar M which is simple and such that every element of
M i< a point of L(M). Let B be the 0-1 matrix whose rows are the incidence vectors of
the positive cocircuits of M. By minimality of circuits, the rows of B are pairwise
incomparable, and by the properties of M above, the columns of B are incomparable as
well

B Lemma 3.1, L(A") is anti-isomorphic to L(A) = L*(M). Further L¥(M) = L(B) is
anti-isomorphic to L*(M) and so L(A") and L(B) are isomorphic. By our assumption
above on M, the rows as well as the columns of AT are pairwise incomparable, and so

by Lemma 3.2, after reordering the elements of A if necessary, we obtain the desired
conclusion,

We can now prove the main result of this paper. We first note that if M= (E, 0) is any
oriented matroid and M = (E, 0) is the matroid obtained from M by deleting all loops

and all but one element of any set of parallel elements, the lattice of flats of M is
"omorphic to the lattice of flats of M.

THioREM 3.4, Let A} be any oriented matroid, and let M — (E, O) be obtained from M
us above, et A (M) =(E U E*, 0%) be the acyclic oriented matroid resulting from applying
Lawrence: constructionto M. If A (M) has a polar, then it has a simple polar A (M)=(E’, 0")

ch that thon o D < E' for which A(M)/ D, the contraction of D in A(M), is an
adyoint of Ny,

: Proor, Clearly a matroid is an adjoint of M if and only if it is an adjoint of M.

herefore we wil prove the theorem by proving that there exists D < E’such that /I(M)/D
" 4n adjoint of M.

A WOMmeob e N
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The notation Y and Y* will be used to denote the pair of positive cocircuits of A(M)
corresponding to the same hyperplane of M. If ve E is not a coloop of M, let Y, be the
positive cocircuit of A(M) having underlying set {v, v*}; otherwise let Y, correspond to
the coloop v* of A(M) (see Lemma 2.1). Assume E ={v,,...,v,} with {Ukity vy U}
being the set of coloops of M. Let A be the matrix whose rows are the {0, 1}-incidence
vectors of the positive cocircuits of A(M), ordered so that the first 25 rows correspond
to the s pairs of positive cocircuits corresponding to the s hyperplanes of M which are
not the complements of coloops of M, the next m—k correspond to the coloops

Uk+1, - -+, U, the next k correspond to the cocircuits Y, fori=1,..., k and thelast m—k
correspond to the coloops vf,,, ..., v}k (see Figure 1).
i ) N
o oo € €y
£yt
’ eyeyx e e, e,
Y, Y] Y;Yik VAR Z, Yv| Yvk Yuk¢] ) va
Uy | | |
U, ; i i I
X, : } 0 | I j 0
|
vy | | |
—————————————— B e e m T U,
Uity ! | !
: 0 : I : 0 : 0
Uy, | | i
—————————————— T T T T T T T T T e e -
vt | | !
Xt : 0 ‘ ! 0
: \ |
of i } I
—————————————— e Ee el S
L':u | | I
: \ 0 ! 0 l 0 : I
2 o | f |
RN A"
FIGURE |

Let K(M) =(E’, ') be a polar of A(M). Since M has no loops, each element of A(M)
is a point of L(A(M)), so each row of A" is minimal. By Lemma 3.2, we may assume
that the incidence vectors of the positive cocircuits of /I(M) are the rows of AT (see
Figure 1).

Denote by X; and X* the positive cocircuits of /f(M) which correspond to v, € E and
v e E*, respectively. Note that if ie{k+1,...,m}, so that v, is a coloop of M, |X|=
|X¥=1,50 X, and X* correspond to coloops of A(M). The positive cocircuits Y and
Y* of A(M) correspond, respectively, to elements e, and €yx of /I(M). We will denote
by e, the element of /T(M) corresponding to the positive cocircuit Y, ={v, v¥} of A(M)
ifie{l,..., k} and to the coloop v¥if i=k+1,..., m.

For i={l1,..., k}, since Y, ={v, v}} is the only cocircuit of A(M) containing both v;
and v¥, X,n X* ={e,}. Thus by applying the strong elimination axiom for the~signed
cocircuit span to X; and —X¥, eliminating e,, we know there exists Y' ¢ H(O(A(M)))
suchthat Y'" = X,\{e,} and Y'~ = x* e, . Ifie{k+1,..., m},let Y' denote the coloop
{ez} of A(M), where Z, ={v,) e O (A(M)).

Let M =A(M)/{e,]ic{l,..., m}}. For i= L...,m Y'cE=E\{eiell,..., m}},
so Y'e X(0“(M)). Let F be any flat of /f(M) generated by a subset of the set {Y'|ie
{I,...,m}}, e, let F=(\._,(E\Y') for some I<{l,...,m}. Then Fo2
{elie{l,... ,m}}, s0o G= F\{e,lie{1,..., m}}is a flat of M. From here on we will think
of the Y's as elements of the cocircuit span of M, and of the flats generated by the Y's
as flats of M.
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Let H be any hyperplane of M, and let Y and Y* be the two positive cocircuits of
A(M) corresponding to the cocircuits of M with underlying set E\H. Then (H u H*) n
(YO Y*I =@ If|Y]|#1, let ey = {ey, ey~} be the pair of elements of A(M) (and of M)
which correspond to the coc1rcu1ts Y and Y™ of A(M); otherwise, let ej; = ey, where ey
is the element of A(M) and of M corresponding to the cocircuit Y of M with lY|=1.
Note that for each i€ {l,..., m}, either e, = Y oreyn Y = &.

If v,eE, His a hyperplane of M, and Y and Y™ are the cocircuits of A(M)
corresponding to H, then e, < Y' if and only if YU Y*2{v, v*}, which holds if and
only if v, 2 H. So then v;€ H if and only if e; n Y ' = .

We show now that there exists an anti-isomorphism ¢ between the flats of M and the
flats of M generated by subsets of {Y', Y2,..., Y™}. To see this, let (M) denote the
set of hyperplanes of M and define a bmary relation ~ between #(M)and {Y',..., Y™}
by H ~ Y"if and only if v, € H. By the discussion above, H ~ Y'ifand onlyifey; N Y'= &.

As in the proof of Lemma 3.1, we get, by [2; p. 123], an anti-isomorphism between sets
of the form

{HIH~Y'Vie I}={H|v,e HVie I}

and thosz of the form

{YIH~Y'VHelJ}={Y'|e;, c E\Y'VH e J}.

The anti-isomorphism ¢ is now defined for a flat F of M as follows. Write F=
(V{H|H € J}, where J={H|H 2 F}={H|v,€e HVv, € F}. Then

&(F)y=M{E\Y'le, < E\Y'VH e J}
=({E\Y'|v,;e HYH e J}

=(M{E\Y'|v e F}.
We show that for H e #(M),

SCH)=({E\Y'|e; < E\NY'} = ey,

1o see this, suppose that for some H' ey np(H)# . Then ey < ¢(H), which implies
¢i 7 Y' = for all i such that v;€ H. But ey~ Y = if and only if v;e H', so we get
H H' Thus H=H’. A similar argument shows that ¢ is onto the desired set of flats
of A

Since for every ie{l,..., m}, e, is not a loop of 1(M)/{ell,..., it p(M)—
dUM edie{l, . mib) = p(A(M)—m = p(AM)~m=p(M)+m—m=p(M).
Thus if H [ 7{’(M) qS(H) = ey, is a flat of rank 1 in M. If there exists any point P of the
lltice of flats of M which is not of the form ey for some H e # (M), P must contain
ome element, ey, say, but not ey, where Y is a cocircuit of A(M) with |Y|>1. Then
P e, “y«} is a flat of M which is properly contained in {ey, ey+}, contradicting the

“uut that the rank of {e,, ey~} is one. Thus ¢ maps the hyperplanes of M onto the flats
* M or rank I, and hence M is an adjoint of M.

" OROILARY 3.5.  There exists an acyclic oriented matroid of rank 12 which has no polar.

PrOOY

Let V be the Vadmos matroid [5] and apply Lawrence’s construction to V.
HUDpose 4 (

k V) has a polar. Then by the theorem, there exists an oriented matroid M
h is an adjoint of V. But by a theorem of Cheung [4], the Vamos matroid has no

e o e g e e
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We remark here that Bachem and Kern [1] have announced a converse to Theorem
3.4 of the form: A(M) has a polar whenever M has an ‘oriented adjoint’.

4. INNER PrODUCTS: DEFINITION AND PROPERTIES

In this section we introduce the notion of an inner product on an oriented matroid as
a generalization of the notion of inner product on a real vector space. One way of viewing
this additional structure is as follows. Given a collection of points in a real vector space,
the linear matroid they generate merely summarizes their interdependencies. Adding the
structure of the natural orientation to this matroid captures the convexity properties of
the set of points, e.g. which of them give extreme rays of the convex cone that they
generate. Giving the structure of a sign-valued inner product for this oriented matroid
will further specify the spatial arrangement of the set of points, e.g. which pairs of points
are orthogonal, or make an acute or obtuse angle. In this sense, the notion of inner
product we define here can be considered as a combinatorial abstraction of the geometric
notion of angle.

If X is a signed subset of E and x € E we define

+, ifxe X",
sgxx=4{ —, ifxe X7,
0, if x¢& X.
If E={e...,e,}, we will sometimes think of X as the {+, —, O}-vector with ith entry
sgx €. Multiplication of signs is defined as if we were working with +1s, —1s and Os, i.e.,
trt=—r—-=4++ —=—+:0=--0=0-0=0.1f A, {0, +, -} forevery i=1,..., Kk

we define Zil A e{0, +}if A, €{0, +} for every i, Zf:l A €{0, =} if A, €{0, —} for every i,
and, if A, €{0, +} for every i (or A;€{0, -} for every i), Zf:l A;=0 if and only if A;=0
for every i If there exist j and j' in {1,..., k} such that A;=+ and A; = -, X:(:, A; is
undefined. We define the sum over the empty set, Y A, to be zero. We will denote
A;€{0,+} and A;€{0, —} by A, =@ and A, =, respectively.

DEerFINITION 4.1. Let M =(E, 0) be an oriented matroid. A function (
E X E {0, +, =} is an inner product on M if it satisfies
(I1) (x, x)=@, and (x, x) =0 if and only if x is a loop of M
(I12) {x, ¥)=(y, x) for every x, ye E; and
(I3) if X €0, ye X, and z€ E are such that sgx x(x, z) =P for every xe X\y, then
S V0 20 = =Y x, 58x X0, 2).

, ), where

The first two requirements for the inner product are obvious analogs of the definiteness
and symmetry of inner products in real vector spaces. The third property parallels the
linearity property; ice., if a=Y", Aa, then (a, by=Y7"  A{a, b).

An immediate consequence of the definition is that (x, z) =0 for every z ¢ E if and only
if x 1s a loop of M.

As an example, consider the all-positive inner product defined for acyclic matroids. If
M = (E, 0) is any acyclic oriented matroid this inner product is given by (x, y) =+ for
every pair x, y of elements of E. Clearly ( , ) satisfies (I1) and (12). Suppose X € G,
y€ X and z € E are such that sgx x(x, z) =@ for every x € X\ y. Since M is acyclic, | X|> 1
so X\y# <. Then sgyx =+ for every xe X\y, so M acyclic implies sgyx y =—. Thus
sgx vy, z)y=—= _erx\y sgx x(x, z), and (I3) is satisfied.

Another example was suggested to us by Bland. Let B be any base for M = (E, 0), say
B={e,e,...,¢,} It is well known [4] that for each i=1,..., p, there exists a unique
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cocircuit Y; of M such that e;€ Y and Y, ~ B={e,}. Let A be the p X|E| matrix formed

by taking Y; as the ith row of A, where we consider Y; as the |E|-vector with entries in

{+, .0} A={(ay;) is called the standard representative matrix of M for the base B. Note

that if e;e E\B, the signed set X defined by X" ={e e BIaij:+} and X ={g}u

{e; e Blai, =—} is the unique circuit of M such that e X and X Bu{e}. (See [4].)
Now for every e, ¢, € E, define (e, e;) by

iy where k is the index of the first row
(e, )= of A such that aya,,; #0,
0, if no such k exists.

Note that for different choices of the base B and different orderings of the elements of
B we get different functions ( , ) on M. That ( , ) is an inner product will follow
from more general considerations later.

It is easy to see that axiom (I3) for matroid inner products is equivalent to

(I3') Forany X € 0 and z € E, if sgy x(x, )= forx e E, sgx x(x, z) =0 forevery x € E.
This restatement of the axiom leads to

LEvMA 4.2, Let( | ) bean inner product on M = (E, 0). For z ¢ E, define the signed
subset Y. of E by sgy x =(x, z). Then Y. e H(0O").

PrRoor. If z is a loop of M, then (x,z)=0 for every xe E. Hence Y,=(J, and
Y.« H(C*). So assume z is not a loop. We need to show Y, is orthogonal to every circuit
of M.

Let X € 0, and suppose Y. is not orthogonal to X. Then without loss of generality we
may assume (X N Y)U(X nY)#D, but (X "nY.)u(X A Y')=. Then for
every x € E, we have sgx x sgy. x =P, so for every x, sgx x{(x, z) =¢P. Thus by axiom (13'),
SEy XX, 2) =sgy x sgy x =0 for each x, contradicting (X" N Y7)U(X N Y.)# &. Thus
X and Y. are orthogonal.

THeoREM 4.3, Let M = (E, 0) be an oriented matroid with no loops, E ={e,, e,,...,e,}.
Let (| ) be a function from E x E into {0, +, =}, and let {Y,|e € E} be the set of signed
subsers of E given by sgv,f=(e,f). Then { , ) is an inner product on M if and only if
8y e=+ and Y, e H(0"), for every ec E, and the n x n matrix A whose ith row is the
vigned vector associated with Y., is symmetric.

ProoF. Suppose {( , )is an inner product on M. By axiom (I1), {e, e) =+ for every
¢ E sosgy e=+. By (12), (e, fY={f, e)so sgv,f=sgy, e, and hence A is symmetric. By
Lemma 42 v, e H(O*) for every ec E.

Now suppose sg y,e=+and Y, e #(0") forevery ec E and the matrix A is symmetric.
Then S8y, e =+ implies (e, e) =+, so axiom (I1) is satisfied. The symmetry of A implies

1) =(f, e) for every e, f € E, so (12) holds. To verify axiom (I3'), suppose sgx x{x,z) =P
for every xe E and some X € 0, ze E. Then sgx x sgy, x =P for every xe E, so (X* N
VX A YD) =@, Sinee Y,eH(04), (X'n Y))Uu(X nY;)=, and hence
A XSgy x=sgyx(x, z) =0 for every x¢ E.

This characterization of inner products enables us to make the following observation.
bat M =(E, 0) be an oriented matroid and define E'= E\{ee€ Ele is a loop of M}. Let
Y.L Y be any list of elements of #(€") such that Ui, Y, =E'" Define ( , )by

“ V7 =sgy x sgy y where i is the least index such that {x, y}<= Y; and (x, y) =0 if no such
XIS Tt is clear from the defimitinm f / N\ that avicarmce (T1) amd 79 mcn ce® £ .1
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For each x € E define I, ={j|xe Yi}={i,..., i} and order the elements of I, so that
| <i<:--<i. For each iel, let Y7 be Y, such that xe(Y)*. Let Y*=
YioYio o Y... Then Y e %(0*), and sgy*y =(x, y) for every ye E. Furthermore,
Sgy*x =+ and sgy: y =sg» x by (12) for every x, y € E. Thus the conditions of Theorem
4.3 are satisfied, so ( , ) is an inner product on M. The different possible lists of
elements of %(0") then define a whole class of inner products on M.

Both the all-positive inner product and Bland’s inner product are members of this class.
The all-positive inner product for an acyclic oriented matroid is defined by any list of
elements J(0*) for which Y, is such that Y{ = E. Bland’s inner product results when Y;
is the unique cocircuit of M such that ecY! and Y,nB= {e:}. It is easy to construct
inner products which cannot be obtained in this way, for example, using the affine oriented
matroid on the vertices of a hexagon in the plane.

As an easy corollary of Theorem 4.3, we have the following.

COROLLARY 4.4. Let H be a hyperplane of M =(E, 0), and let { , ) be an inner
product on M. Suppose there exists z ¢ E such that z is not a loop of M and (z, hy=0 for
every he H. Then for all x, YEE, (x,zXy, 2) =sgy x Sy Y, where Y is one of the signed
cocircuits of M such that Y = E\H.

ProoF. By 4.3, Y, e #(0") where $8y. ¥ =(z, y) for every y € E. Since z is not a loop,
Y.# D, 50 {z, h)=0 for every he H implies Y, ¢ 0* with Y.=E\H. Then (x, z)Xy, z) =
S8v. X S8y . V=sg_y xsg_y y for every x, ye E.

Corollary 4.4 is a matroid abstraction of the result thatif ze R" is normal to a hyperplane
H of R" which passes through the origin, the inner product of z with any x € R" indicates
the side of H on which the vector x lies. Another combinatorial property of inner products
in R" which can be seen to hold for matroid inner products is the analog of the fact that
any non-zero element of R” can be orthogonal to at most a hyperplane of R".

COROLLARY 4.5. Let M = (E, O) be an oriented matroid with inner product {
Suppose x e E is not a loop, and (x, s)=0 for every s€ SC E. Then p(S)<p(M)-1.

> )

ProOOF. By 4.3 there exists Y. e H(0") such that s8y, z=(x, z) for every z ¢ E. Since
X is not a loop, Y, # &J. Since {ze E|(x, z)=0} = E\'Y,, the corollary follows from the
facts that the minimal elements of H(O*) are cocircuits of M and p(ENZ)=p(M)—1
for every Z e 0+,

PROPOSITION 4.6.  Suppose M = (E, 0) is an oriented matroid, and let S < E be indepen-
dent in M. Suppose there exists x not a loop of M such that (x, s)=0 Sor every s S. Then
S {x} is independent.

ProoF. If xe S, there is nothing to prove since by hypothesis S is independent. So
assume x € E\S. If {x} U Sis not independent, there exists X € @ such thatxe X < Su {x}.
For every y € X\x, sgx y(x, ») =0, 50 by (I3), sgy x(x,x)=0.But xe X implies sgy x # 0,
and x not a loop implies (x, x)#0. Thus S'U{x} must be independent.

COROLLARY 4.7. Let M = (E, 0) and suppose S < E contains no loops and is such that
(s, t)=0 for every s, t e S, s#t. Then S is independent.

PrOOF. Let S={s,s,,..., si}. Let S, ={s,}, and apply Proposition 4.6 with s, as x.
Then S,=58,0{s}={s,, 5.} s independent. Continuing, S=S8,=8,._,u{s} is
independent.

TPTRE T NREC VN NV
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Some of the preceding results have been concerned with rank properties in relation to
inner products on matroids. Unfortunately, not all of the connections found in the setting
of real vector spaces hold in this matroid situation. For example, in general we do not have

(4.81 if S E and T < E are such that (s, 1)=0 for every se S, teT, then
p(8)+p(T)=<p(M).

As an example of the failure of this property, consider the oriented matroid M defined
by the affine dependencies of the four vertices of a convex quadrilateral. Then the only
circuit in M is (e, &,, e,, &,). Suppose we define an inner product on M by (e, e) =+ for
every ec E, (e, e)=(e, e;) for every e, g € E, and (e, e,) =(e,, e;) = (e,, €,) = (e, e,)=0,
(€1, va) =(ey, e3)=+. Then if §=1{e,, e;} and T={e, e}, (s, )=0 for every se§, te T,
but p(S)+p(T)=2+2%3 = p(M). Further, this example shows that an inner product
on a representable matroid need not arise from a vector space inner product.

However, some inner products can be shown to satisfy 4.8, and it seems that this
property may be necessary in order to prove other desired properties. We will call 4.8
the rank property. The all-positive inner product can trivially be seen to have the rank
property since there do not exist s and ¢ in E such that (s, 1)=0.

Bland’s inner product can also be seen to have the rank property. For suppose
M=(E 0)and ( , )is Bland’s inner product for some ordered base B = (e1,...,€,).
Suppose (s, 1) =0 for every s€ S, r¢ T. Then in any row of the standard representative
matrix for B where there exists a non-zero entry in the column corresponding to some
s€ S, every ¢ must have a zero entry. Similarly, for any i such that a, # 0 for some t € T,

a; =0 for every se S. Thus permuting the rows and columns of the matrix would give it
the form

Since the last g rows of the columns corresponding to the elements of T have only zero
entries, tecl B, for every te T, where B,={b,,...,b,}< B. Thus T<cl B, and p(T)s=
ntBy = r. Similarly, S<cl(B\B,), so p(S)<p(B\B,)=p(M)—r. Thus p(S)+p(T)<
piM .,

In an inner product space there are also close connections between inner products and
linear transformations. Not only can any linear functional on R" be defined by the inner
product of the elements of R” with a fixed vector, but, conversely, positive linear
functionals (or, equivalently, positive definite bilinear forms) can be used to define inner
products, i.e., if ¢,>0 for every i and x=(x,,...,x,) and y=(y,,...,y,) are in R",

) defined by (x, v)=YI_, cxy is an inner product. In the following, we define
positive linear functionals of signed vectors and use them to try to define inner products.
As we will see, the approach fails to produce anything new.

- Derinimion 49, A positive linear functional of order p is a function T: {0,+, -} >
0.+ —} satisfying
) fS=(D,®,... D), T(S)=++, and T(S)=0 if and only if S =0:
o T(S)=-T(-5);
I RAS= g, T(R) =@ and T(S)=@, then T(S+R)=T(S)+ T(R); similarly,
FT(S)=0 and T(R)=O, T(S+R)=T(S)+ T(R).

L i
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In (c) R and S denote the sets of non-zero components of R and S, respectively.
As an example, define lex: {0, +, =} > {0, +, -} by

S where i is the least index such that 5;#0
lex(S) = . _
, if no such i exists,
where S =(s,,..., s,). It is trivial to see that lex is a positive linear functional.

Suppose M = (E, 0) is an oriented matroid, and let A be the standard representative
matrix of M for some ordered base B. For every x € E, let ¢(x) denote the column of A
which is associated with x, and let ¢;(x) be the ith component of ¢(x). Let T be a positive
linear functional of order p(M), and define (1 by (x,¥)r=T(S) where S=
(cr(x)e (p), a(x)ey(y), ..., ¢,(x)c,(y)). We are interested in knowing when ( | ), is
an inner product on M. In the case where T =lex, it is clear from the definition that
( , )risBland’sinner product. In the representable case, this inner product corresponds
to choosing an orthogonal basis in which the first element is much longer than the second,
which is much longer than the third, and so on.

PrROPOSITION 4.10. Let T be a positive linear functional of order p. If (', Yrisan
inner product for every oriented matroid of rank p and every choice of ordered base, T must
be a permutation of lex.

PROOF. Suppose T satisfies the hypotheses. For i#j, let (i, —j) denote the signed
p-vector which has + as its ith entry, — as its jth and 0 for all other entries. We first
show that T(i, —j) 0 for any pair i, j. Suppose otherwise, Le., there exist i and j such
that T(i, ~j) = 0. Consider a rank p oriented matroid generated by the linear dependencies
of a set of vectors in R” which includes all the unit vectors e, as well as g =e —eg,
b=e—-2e, and c=(L,1,...,1). Consider the standard representative matrix for
the ordered base {e,, ..., e} Clearly X =(e,a,b) is a positive circuit. Since
T(—i,j)=-T(i, —j), (a, ¢)r=(b, ¢} =0. Then sgx a(a, ¢)r = sgxb(b, c); =0, so (I3)
implies sgy e(e, ¢)=0. But Sgxe; =+ and (e, c)r=T(0,...,0, +, 0,...,0)=+. Thus
T(i, —j)=0.

For every pair i, j of distinct elements of {1,..., p}, we will say i>jif T(i,~j)=+.
Construct a directed graph G with vertices 1,2, . .. , p and with arc set {(i, Hli>j}. Since
T(i,—j)# 0 and T(j,—i)=~T(, —j) for every i and J» each pair of vertices is connected
by precisely one arc.

Cramm 1. G has no directed cycles.

PROOF OF CLAIM 1. Since each pair of vertices is connected by precisely one arc,
there exist no directed two-cycles in G. An argument similar to that above shows there
exist no directed 3-cycles.

Now assume there exists no directed k-cycle for k<, s> 3, and suppose i, > i,> i, >
T >0 > is a directed s-cycle. Since there are no directed 3-cycles and i, and iy are
connected by an arc, i, > i,. Then L>03>-->i > is a directed (s —1)-cycle which is
a contradiction. Thus Claim | is established.

G is then an acyclic orientation of the complete graph on {l,..., p}, and so specifies
a unique order i,>i,> - > i,

Cramm 2. T is lex with the order Iy, &, ..., 1, of the base B.

Proor oF CLaiMm 2. Reorder the elements so that i is i Sunpnace © — (o o N~

o
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{ie-1,...,p}si=+}={i),..., iy}, and let J={ie{l,...,plls;i=— and i#i}=
{ji» --sJju} Lete, i=1,..., p, be the ith unit p-vector. For each k=1, ...,|I|, let a, be
the p-vector (iy, —i). Define the p-vector b by b,-*=-—|I|, b.=1 for keI, b =-1 for
ke, and b, =0 otherwise. Note that the signed vector corresponding to b is the vector
S. Let ¢ be the p-vector with every coordinate equal to 1. Now consider the oriented
matroid  defined by the real linear dependencies on the elements
{e, 02, € ar, ..., ay, b, ch.Clearly X =(e;, ..., ¢,,a,...,ay, b)isapositive circuit
in this matroid. Since i, > i, for every i, € I, {c, a;) = +. We also have (¢, e;) = + for every
i=1,...,p. Hence for every xe X\b, sgx x{c, x)=+. Thus since ( , ) is an inner
product, sgx b(b, ¢) = —, and therefore (b, ¢)= T(S)=—. Thus T is lex.

5. INNER PrODUCTS AND POLAR MATROIDS

A potential application of the inner product on an oriented matroid M is to aid in the
construction of the polar of M. Suppose C is an n-dimensional cone in R". Then the
polar cone, C*, of C can be given by C* ={x e R"(x, y) <0 for every y € C}. Furthermore,
suppose Fy, ..., F, are the facets of C, and for i=1,...,m let x,€R" be a non-zero
vector such that (x, y)=0 for every ye F, and (x, y)=<0 for every ye C. Then C*=
cone{x;[i=1,..., m}. We wish to study the extent to which an oriented matroid polar,
when it exists, can be constructed in an analogous fashion by means of a matroid inner
product. Theorem 5.2 represents a first step in this direction.

Limma 5.1.  Let L and L' be point lattices for which every element is the meet of copoints.
Suppose there exists a bijective function from the set of points and copoints of L to the set
of points and copoints of L' which maps the points of L onto the copoints of L' and the
copoints of L onto the points of L' in such a way that if v is a point and F a copoint of L,
v= Fifand only if ¢(F)< ¢(v). Then ¢ can be extended to an anti-isomorphism between
[ and L' (cf. [10; p.41]).

Proor. Let{v,..., v}, {F\, ..., F,} bethe sets of points and c»points of L, respec-
uvely,and {vf, ..., vl,.},{F}, ..., Fi} the same for L', where ¢(v;) = F}, ¢(F;) = v]. Define
a binary relation between the points of L and L' by v, ~ v} if and only if v; < F;. By the
hypothesis on &, v; ~ v} if and only if v]=< F, and so the definition of ~ is symmetric in
Land L'. Again, as in the proof of Lemma 3.1, we get, by [2; p. 123], an anti-isomorphism
between sets of the form {v,|v; ~ vjV¥je J} and those of the form {v}lv;~v)Vie I}. But

{vjo,~ v}, VjeJ}={v|oi< FV¥je J}

:'{Ui}vis A F;}

jel
and

{vj’-lvi~vj’-,Vie I}={v_;-|v,’-SF§,Vie I}

={vj’-\vj’.s A F;},

iel

“nd 5o this defines an anti-isomorphism ¢ between L and L', since each element in L or

[715 the meet of copoints and the join of its points.
lo see that ¢ extends the original function, note that for Fe L,
¢(F)=V {vj|v}~ v, Vv, < F}
=V {vjlvj< F,,Vist v, <F}
= A Fi
{‘v"wlx iV — T o1 v e ,'iL"tT:; RN, [P R
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If M is an oriented matroid on E with inner product { , ), and N is an extension
of M to E'> E, then an inner product{ , ), on N is said to be an extension of { , u
if( , yv=( , Jmon EXE,

THEOREM 5.2, LetM = (E, O) be an acyclic oriented matroid with innerproduct{ , ).
Let F', F?, ... F" be the copoints of the lattice L(M). Suppose there exists an extension
NofMonE {w,w,, ..., w,) with p(N) = p(M), and an extension ( s Inof (D
such that w; corresponds to F' in the sense that (wi, V) =0 for every ve F' and (W, V) =—
for ve E\F' Let M = N\E and suppose, further, that Sor each copoint G of the lattice
L(M), A {Flw,e G}# &. Then M is a polar of M.

PrRoOF. We may assume M is simple and every element of E is a point of L(M). We
will denote both ( | ),, and( , Yy by( . )

By the lemma, it is sufficient to show that there exists an injective function ¢ from the
points of L(M) onto the copoints of L(M) and from the copoints of L{(M) onto the
points of L(]\7l) such that for v a point and F a copoint of L(M), v=< F if and only if
S(F)<¢(v). .

By the construction of M, we know that to each copoint of L(M) corresponds an
element of M. Define d(FY=w, for F' a copoint of L(M), and for v a point of L(M)
define ¢(v)={w,e E(M)[ve F'}. We need to show that ¢(v) is a copoint of L(M) for
every ve E| that w, is a point of L(M) forevery i=1,..., n, that ¢ is one-to-one, and
onto the points and copoints of L(M), respectively, and, finally, that ve F' if and only
if ¢(F')e ¢p(v).

By the hypothesis on ( , J~ and the definition of @, wi € ¢(v) implies (w, v)=0.
Then by Corollary 4.5, pPn(d(0)) =< p(N)—1, so ¢(v) spans at most a hyperplane of N.
We can choose copoints F'', F= ... Flusi1 of L(M) such that o=V Fii and
F'" (m;:: Fiyg ﬂ;:ll F'forevery k=2,..., p(N)~1. Let {wis ..o, Wi, ., ,} be the set
of corresponding elements of N. Then {w,} is independent since w;, is not a loop of N,
and if {w;, ..., w,}is independent, then so is {w,, ..., w,, }. For suppose Wi, wy )
is dependent. Tkll?n there exists X € O(N) such that Wi, eXei{w,..., w;, .} Let v, €

(M FONOY! FY). Then (o ., W) =0forj=1,..., k 50 sgx W (v, w;) = 0 for every

W, € X\w, . By axiom (I3), sgy w,_ (ve,., Wi 0= 0. But v g F51, 50 (0, w, ) #0,
and we have a contradiction. Thus {w,,..., Wi ...} is independent, and since
{wiy.o o, Wi o S e(v), en(#(v))=p(N)-1. Thus ¢(v) spans a hyperplane of N.

Suppose y € (cly ¢(v))\d(v). Then there exists X € O(N)suchthat ye X < ¢p(v)u {y}.
For every xe X\y, xe &(v), so (v, x)=0. Thus for every xe€ X\y, sgxx{x, v)=0, so
sgx ¥y, v)=0. Since ye X, we must have (y,1)=0. Then yg ¢(v) implies ye
E(N)\E(M). Therefore (clnd(v)) N w,, ..., w,}= o (v).

Since no point is contained in every copoint of L(M), ¢(v)s{w,,..., w,} for every
ve E. Choose any ve E, and suppose, say, w, € E(M)\d)(u). Let Y, be the cocircuit of
N such that Y,=E(N)N\clye(v) and wie Y, Since (v, w)=0 for every w; e ¢(v),
(v, x)=0 for every x € clyg(v), and hence by Corollary 4.4, Sgv, Wi sgy W = (v, w,Xv, w)).
If wigé(v), ve F') so (w, v)=~. Thus for every w,-eE(I\7I)\(¢(v)U{wl}), Sgy, W, =
SEy, Wisgy, Wi =(v, W) (1, w)=— - =+ Thus Y. E(M)g Y.

Now p(M) =pn{w, ..., w,}) since {w,,... s WabnE(M)y= 5, s0 p(N)=p(M),
pruid(v)=p(N)—1, and E(M)\clyd(0)# & together imply p(M)=p(N). Then
p,c4(<i>(v))=p(1\7l)-l, so Y \E(M) is a positive cocircuit of M for every ve M. Thus
#(v) is a copoint of L(M) for every ve M.

To show that w; is a point of L(Nl) for every i=1,..., n we show that {w;}=
(), 7 &(v). Nowve F implies w, € d(v) by the definition of B (1) cm fw e (™ afa)
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Suppose w; # w, is in E(M). Then F'#F', so there exists v'e F'\ F’. Since ¢'g F,
w € &(v'). But v'e F', so wi€( ). &(v). Thus (Necr d(v)={w,)}.

By the hypotheses on N, ¢ is clearly one-to-one from the copoints of L{M) onto the
points of L{M). Since v # v’ implies there exists a copoint F' of L(M) such that pe F',
vU'EF ¢ is obviously one-to-one from the points of L(M) into the copoints of L(M).
Also, by definition, ve F' if and only if w,=¢(F')e ¢(v).

To show, finally, that ¢ is onto the copoints of L(M), let G be any one of these. Then
G=\V{w|weGl=V {o(F)lw,e G). Let H = A\ {F.lw, € G}. By hypothesis, H » ; we
show that H is a point of L(M). Suppose v, v’ are points of L(M) such that v, v'< H.
Then ve F, for every i such that w; € G implies that w, e o (v) for every i such that w, € G,
and so G < ¢(v). Similarly, G=< ¢(v'). If v# v’ then d(v)# ¢(v') and so G=< é(v) A
) < (), contradicting the assumption that G is a copoint of L(M). Thus v = ¢’ and
we conclude that H=1y, a point of L(M), and &é(v) is thus a copoint of L(A71). But

G= ¢ (v) irpplies G = ¢(v) as desired. Thus by Lemma 5.1, L(M) is anti-isomorphic to
L{M). so M is a polar of M.

Therefore, if the required extension N with inner product { , )u exists, then M has
apolar matroid, M = N\(E(M)). As we have seen, not every M has a polar. An interesting
question is whether, when M has a polar, one can always be constructed in this manner.
While this works in the representable case, it is not clear what happens in the general
case for we encounter problems due to the lack of general constructions of non-principal
extensions.,

We note that it is not clear to us whether the extra assumption on the copoints of L(M)
Is 4 consequence of the other assumptions. It is surely a consequence of the conclusion.

We thunk Achim Bachem for pointing out an error in an earlier version of this work in
which we implicitly made this assumption.
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