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DECOMPOSITIONS OF SIMPLICIAL COMPLEXES
RELATED TO DIAMETERS OF CONVEX POLYHEDRA*#

J. SCOTT PROVAN] anDp LOUIS J. BILLERAS

We introduce the property of k-decomposability for simplicial complexes which, if satisfied
by the dual simplicial complex of a convex polyhedron, implies that the diameter of the
polyhedron is bounded by a polynomial of degree & + 1 in the number of facets. These
properties form a hierarchy, each one implying the next. The strongest, vertex decomposabil-
ity, implies the Hirsch conjecture; the weakest is equivalent to shellability. We show that
several cases in which the Hirsch conjecture has been verified can be handled by these
methods, which also give the shellability of a number of simplicial complexes of combinatorial
interest. We conclude with a strengthened form of the property of shellability which would
imply the Hirsch conjecture for polytopes.

1. Introduction and definitions. In this paper, we use the notion of the duaj
complex to a polyhedron, a straightforward extension of the usual polar dual of a
(bounded) polytope, to study questions related to the diameter of that polyhedron. We
develop properties of these complexes which will imply good (i.e., polynomial) bounds
on the diameter. In the case of simple polytopes, the study of diameter via a related
simplicial complex (abstract polytope) was begun by Adler and Dantzig [1}].

The distance between two vertices in a polyhedron is defined to be the least number
of edges in an edge path joining them. In linear programming terms, it is the least
number of feasible pivots needed to solve a linear programming problem for which the
feasible region is the given polyhedron, assuming that the initial feasible solution is one
of these vertices and the optimal solution is the other. The diameter of a polyhedron is
the maximum distance between two vertices of that polyhedron; it represents the worst
case performance of the best possible edge-following procedure for solving linear
programming problems having that feasible region. The Hirsch conjecture ([9, p. 168],
[12}, [16]) states that if P is a d-dimensional polyhedron with n facets, then the
diameter of P is at most n — d. While it is known that the Hirsch conjecture fails for
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we define and study the notion of a k-decomposable simplicial complex, for a
nonnegalive integer k. These give a hierarchy of complexes, with k-decomposable
complexes always being (k + 1)-decomposable. We show that k-decomposable com-
plexes have simplicial diameters (defined later in this section) bounded above by a
polynomial of degree k + 1 in the number of vertices (Corollary 2.12), which implies
that if a simple polyhedron P has a k-decomposable dual complex, then the diameter

. of P is bounded by a polynomial of degree k& + I in the number of facets. A special
" case of this is that if P has a O-decomposable (called vertex decomposable) dual
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unbounded polyhedra of dimension 4 > 4, it has been proved for polytopes satisfying -

n—d <5 (see [16])and for all polyhedra of dimension 3 or less [I15]. Even in the
unbounded case, there is no known example of a polyhedron having a diameter,
exceeding, say, 2(n — d). On the other hand, proven upper bounds for the diameter of
a d-polytope with n facets are like 2% [17]. [24]. Thus any sort of bound which is a
polynomial in n and d would be an important result.

We remark here that if one changes the definition of diameter to require that all
paths be monotonic with respect to a specified linear (objective) function, then the
resulting monotonic Hirsch conjecture fails for polytopes of dimension at least 4 {22].

Our approach to diameter bounds for simple d-polyhedra (each vertex on exactly d
facets: for diameter purposes. it is enough to consider just these [16, Theorem 2.8]) 1s
through decomposition properties of the associated dual simplicial complexes. In §2.
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complex, then P satisfies the Hirsch conjecture. To relate k-decomposability to an
already studied decomposition property, we show (Theorem 2.8) that a d-dimensional
complex is d-decomposable if and only if it is shellable, a property known to hold for
(simple) polyhedra and their dual simplicial complexes. (In [5], it is shown that all
polytopes, and thus their duals, are shellable; the proof there can be easily extended to
unbounded polyhedra and to their dual simplicial complexes, which are not polyhe-
dra.)

In §3, we concentrate on vertex decomposable complexes, which must all be
shellable and satisfy a simplicial form of the Hirsch conjecture. In particular, we
discuss vertex decomposability of (i) dual complexes to simple polydedra of dimension
at most 3 (obtaining, as a consequence, Klee’s result {15] on the Hirsch conjecture to
such polyhedra); (ii) independent set and broken circuit complexes of matroids and

-complexes of chains in distributive lattices (settling questions about their shellability

posed by Stanley [21)); (iii) dual complexes of simple totally Leontief substitution
polyhedra [10] (generalizing a result of Grinold [11] that such polyhedra satisfy the
Hirsch conjecture); (iv) the boundary complex of a cyclic polytope (obtaining a result

3 of Klee [14]; for proof, see [3]); and (v) the complexes of chains of faces in strongly

shellable cell complexes, which include the face lattice complexes of convex polyhedra
and, in particular, any barycentric subdivision of an arbitrary convex polytope.

Finally, in §4 we consider an extension of k-decomposability, weak k-decom-
posability, which still implies polynomial bounds on diameter. In particular weak
vertex decomposability of the dual complex of an arbitrary polyhedron, which would
imply a diameter bound of twice the number of facets, is still an open question. We
also discuss a direct geometric formulation for the property of (weak) k-
decomposability of the dual complex of a polyhedron (face decomposability), and a
decomposition property of the dual complex which corresponds to shellability of a
polyhedron (dual shellability). Most important is a strengthening of the notion of
shellability of a polyhedron (deep shellability) which turns out to be equivalent to
vertex decomposability of the dual complex, and hence implies the Hirsch conjecture.
We note that deep shellability of simple polytopes, arid hence vertex decomposability
of their dual complexes (which are the boundary complexes of simplicial polytopes).
remain open questions.

We now define some terms. A simplicial complex is any nonempty collection 2 of
subsets of a finite set £ with the property that if ¢ is an element of =, and 7 is any
subset of o, then 7 is also an element of . Elements of X are called faces (or simplices)
and are identified. when necessary. by listing their elements, 6 = ¢, ... ¢,. The
dimension of a face o is dimg = |g| — 1: the dimension of T is the maximum of the
dimensions of the faces of =, and if all maximal faces of ¥ have the same dimension
then X is called pure dimensional. A k-dimenstonal face is called, simply. a A-face, and
O-faces, (d — 1)-faces, and d-faces of a d-dimensional complex X are referred to.
respectively, as verrices, ridges.and fucers of X The number of vertices of T is denoted
V(Z). For any set o of cardinality d + 1. the d-simplex & is defined to be the collection
of all subsets of o (so that (@} is a (= 1)-simplex).
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Let 2 be pure d-dimensional. Z is said to be shellable if the d-faces of 2 can pe
ordered o4, . .. ,0, so that, fori=2,...,5,8,N ACHH__Q\.V is a pure (d — 1)- Q_So:m_csm_
complex, in other words a union of (d — 1)-simplices. The ordering oy, . . . , 0, is calleg
a shelling of 2. The distance between two d-faces A, and A, of X is the length & of 5
shortest simplicial path A = ay,0y, . . . ,0;, = A, between A, and A,, where o, are each
d-faces and 0, N o;_, is a (d — 1)-face for i =1, ,k. The diameter of Z, diam 3, i
the maximum of the distance between any two d-faces of Z, and X is said to satisfy the
Hirsch conjecture if diamZ < V(Z) —dim2Z - L.

The relation between simplicial complexes and convex polyhedra is established ag
follows. Let P be a pointed d-dimensional polyhedron (i.e., P has at least one vertex;
we restrict consideration to these). P is said to be simple if each vertex of P s
contained in exactly d facets ((d — 1)-faces). In this case, the dual simplicial complex 1o
P is defined on the set E = {v,|f; is a facet of P} to be

M*vauﬁc\_...c\,_\:D s N f, #0).

Z*(P) is thus a pure (d — 1)-dimensional simplicial complex. In the case that P is a
simple polytope, 2*(P) is the boundary complex of the simplicial polytope which is its
polar dual [12, §3.4], and so is a shellable combinatorial (d — 1)-sphere (see [7]). If P is
unbounded, then £*(P) is a combinatorial (d — 1)-ball, which can be seen as follows.
Intersect P with a closed half-space containing all the vertices of P which is deter-
mined by a hyperplane H parallel to a supporting hyperplane to one of the vertices of
P. This yields a polytope P having a facet \ determined by H. It can be seen that
S*(P) can be obtained from the combinatorial sphere Z*(P) by deleting (see the
definition below) the vertex & corresponding to f, and so must be a combinatorial ball.
This same idea can be used to show P is shellable (a shelling of P is obtained from a
shelling of P in which f appears last) and Z*(P) is shellable (a shelling of Z*(P) is
obtained from a shelling of £*(P) in which all the facets containing & appear last), see
[5], [7}), and [19, §2.9].

A crucial observation to make at this point is that the diameter of the polyhedron P
is equal to diam Z*(P) and P satisfies the conditions of the Hirsch conjecture if and
only if Z*(P) satisfies the simplicial form of the Hirsch conjecture defined above.

The following operations on simplicial complexes will be of importance in this
paper. Many correspond, via the above duality, to standard operations on polyhedra.
For a simplicial complex = and face o of Z, the deletion of o from Z is

2No=(T1E€Z|og )
and the link of 6 in X is
lkso={1€Z|leN1=0,0U7rEZX}.
For complexes =, and Z, defined on disjoint sets, the join of Z, and X, is

2

2 .E,={cUr|loEX TEZ,].

The boundary complex of a complex X is

02 = cl{ 0|0 is a ridge of ¥ contained in at most one facet of X}

where, for A C
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For vertex u of complex X, the simplicial wedge of 2 on u is the complex

wi(Z _VHA;§YAM/:VCMN&\,,M:
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and for face X of = and arbitrary symbol a, the stellar subdivision of X in X is
st(a, X)[2] = (E\X) U 20X .lky X

(In the above two definitions, a,b & Z are “new” vertices.)

In terms of the duality between simple polyhedra and complexes, links correspond
1o faces, joins correspond to products of polyhedra, wedges correspond to the polyhe-
dral operation of taking a wedge with a facet as foot, and deletions correspond to
removal of a face (see [16, §1] for the definitions). The operation of stellar subdivision
corresponds to “cutting off” a face by making a small parallel shift of a supporting
hyperplane and intersecting the polyhedron with the closed half-space not containing
the face. We note here that all these operations on polyhedra—except removal of a
face—preserve the property of being a polyhedron. While any face can be removed
from a polytope, yielding (combinatorially) the face structure of an unbounded
polyhedron [16, Corollary 1.2], the result of removal of a face from a polyhedron
cannot generally be realized by another polyhedron. For this reason, we have chosen
to work, instead, with the dual complexes.

To end the section we state a lemma—tacitly used throughout the remainder of the
paper—concerning manipulation of links, deletions, joins, and unions. The proof (see
[18]) is straightforward and omitted here. As a technicality we extend the definition of
deletion and link to arbitrary subseis, so that S\o =Z, lkyo=0 for 6 € 2 and
I\@=0.

LemMma 1.1.  Let 3,5,,=, be simplicial complexes. If 1 € 2, U X, then
() (Z,U )\ = E\1)U (Z,\1), and
(i) tkg ys, 7=l TV ks
If 1= 1.1, €E 2.3, with 7, € Z,, then
(i) (Z.Z\7 = (E\1).2, U Z.(2,\7y), and
(iv) tks s 7= (lkg7){lks,Ty)-
If 0,7 € Z then
) G\o)\t = (E\1)\o,
i) (tlkso)\7 = lkg,0,ifo NT=0,
(vii) tky ,(t\a) = lks(r U 0), and
(viii) thoounT = lhg\oT

2. k-decomposable complexes. We now introduce the main concept of this paper
—that of k-decomposability—and discuss several of its properties.

DEFINITION 2.1. A d-dimensional complex = is k-decomposable if it is pure dimen-
sional and either 2 is a d-simplex, or there exists a mmom 7 of 2, dimr < & (called a
shedding \ammv so that

(1) =\7 is d-dimensional and k-decomposable, and

(2) ks is (d — |7])-dimensional and k-decomposable.

Note. This definition, as it stands, has some redundancies. It turns out that we can
drop either (i) the pure dimensionality requirement on =, or (i) the dimensionality
requirements on S\o and /kgo, and still obtain an equivalent definition. (In the second
case we ask that either £ = {@) or there exists a shedding face. See [18]) These
alternative defintions become useful in §3 and in Theorem 4.1.11.

k-decomposability, then, forms a hierarchy. with k-decomposability implying (A +
1)-decomposability for 0 < & < dim X, and k-decomposability equivalent to (A + D-
decomposability for k > dim 2. The most restrictive case. k& = 0. is of special impor-
tance, and s called verren dece .:\:::F\:.,.

Simplices, then, are tri vertex decomposable, and. as the next proposition
shows, so are their boundaries.

ProvOSITION 2.2, The boundary of the d-simplex is veriex decomposable.
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PrOOF. Let & =0, "7, be a d-simplex, so that 36 =6, " 0,\vy * - - v;. Cer.
tainly dg is pure d-dimensional. If d =0, then 33 = §)\v, = (@} which is a (-1
simplex. Otherwise proceed by induction on d, and choose any vertex v; in 35. W
have

d5\p, = Ui 1Oig1 "7 " Uy
which is a (d — 1)-simplex, and

lkysv, =71 -

TG0y Og\Dg Uiy T Yy

which is the boundary of a (d — I)-simplex, and so is vertex decomposable by
induction. Hence o, satisfies the properties of a shedding vertex and 96 is therefore
vertex decomposable.

k-decomposability also tends to behave nicely with respect to the operations defined
in §1.

PrROPOSITION 2.3.
k-decomposable.

The link of every face of a k-decomposable complex is itself

ProoF. Let = be a k-decomposable complex, o a face of . We have /kyo pure
dimensional, since £ is. If £ is a simplex, then /kyo is also a simplex, hence
k-decomposable. Therefore, assume that 2 is not a simplex so that = has shedding face
7 with Z\7 k-decomposable of dimension d = dim X, and kst is k-decomposable of
dimension d — |7|. We proceed by induction on |¥| = the number of faces of X.

Case 1 (1 U o & 2). We have lkso = lks,,0 which is k-decomposable by induction
on |Z\7| < |3

Case 2 (1 C 6). We have

lkso = lky . (o\T)

which is k-decomposable by induction on |lks7| < |Z].
Case 3 (o Ut €EZ, 7¢o0) We prove that 7\¢ is a shedding face for lkso. By
Lemma 1.1, (vi), (vii) and (viii),

(tkgo)\(T\0) = lk<\,0

which is (d — _Q_v-&:wmawo:m_ and k-decomposable as in Case I, and

ko (1N0) = lks(m U 0) = lky . (0\T),

which is (d — |6} — |7\ a|)-dimensional and k-decomposable as in Case 2. Since this
exhausts all possible choices of 7, the theorem is proved.

PrROPOSITION 2.4. Let X,,3, be simplicial complexes with disjoint sets of vertices.
Then =,.5, is k-decomposable if =, and =, are. Further, = .=, is vertex decomposable if
and only if Z, and Z, are.

PROOF. X, are,

and that

We first note that X,.%, is pure dimensional if and only if £, and X
2.5, is a simplex if and only if =, and Z, are . Now we observe that for any

face 7 of X|.Z,. letting 7; be the set of vertices of 7in X, i = 1.2,
(202007 = (SV7).2, U S (250T))
and
Mo = (Jhyr ) (e me)

T A

It follows from Lemma 1.1, (i1) and (1v). thatif 7, 1s a shedding face for 2, then 7,13
DR ENTDE and ke o7 7

also a shedding face for X, since then (Z.3)\vr, =
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lks 7, are k-decomposable complexes; similarly for 7. k-decomposability of Z,.2, now
follows by induction. Conversely if 2,.Z, is vertex decomposable with shedding vertex
v, then v is a vertex of exactly one 2, say X,. Hence

(2. 2)\v = (Z\0).5,
and
ks s0=lks v,

and both are vertex decomposable complexes with dim((Z,.2,)\.v) =dimZ,.Z,=d
and dim/ky y v =d — 1. Again by induction, =, and Z\v are vertex decomposable
with dim(Z,\v) = dim 2, and so =, is vertex amooavamEm This completes the proof
of Proposition 2.4.

A similar equivalence holds for wedging of vertex aoooavommc_o complexes.

PROPOSITION 2.5. Let = be a simplicial complex, u a vertex in Z. Then w(Z,u) is
vertex decomposable if and only if 2 is.

Proor. Recall the definition

w(Z,u)={a,b,0}.(\u) U ab Jksu.

Clearly w(Z, ) is pure dimensional if and only if 2 is, and w(Z, «) is a simplex if and
only if = is. Further, by elementary applications of Lemma 1.1 we have the following.
(i) For any vertex v in =\u

w(E,u)\v = {a,b,0).[(S\u)\v] U ab .[(lksu)\v]
= {a,b,@).[(S\o)\u] U ab Iy, .u = w(Z\o,u)
and
Uyes. o = {a,b0,0) Jkg\,0 U ab ke 0
= {a,b,0).[(lkyo)\u] U ab .Jky_u= w(lkzv,u).
(ii)
w(Z, u)\a = ({a,b,0}\a).(Z\u) U (ab\a).lkgu
= b (S\u) U b.lkgu = b.(3\u)
and s
i@ = (o 5.010) (ENU) U (tkgpa).lhsu
= (S\u) U b.lkgu == (replacing u with b).

From the above facts we get

(1) for v = u, v is a shedding vertex for = i
w(Z, u):

2) ; u is a shedding vertex for =
Proposition 2.3 we get

(3) if w(Z.u) is vertex decomposable, then = = [k

These cases establish the equivalence.

Propositions 2.4 and 2.5 give Kiee—Walkup type results (see [ 1o, Propositon 2.9y for
vertex decomposability with respect to dual complexes to convex polytopes. Let T(d. n)
denote the class of complexes of dimension d — 1 with n vertices which arce dual

—

and only if ¢ is a shedding vertex for

. then a is a shedding vertex for w(X.u): and from

a is vertex decomposable.

WXy
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simple polytopes (equivalently, dual complexes to simple polytopes of dimension ¢4
with n facets). Then for any element of I'(d, n), its wedge is in I'(d + 1,7 + 1), and 5
product with the (vertex decomposable) complex {v,,v,,9} is in I'(d + I,n + 2). Then
by applying Propositions 2.5 and 2.4, respectively, we have

THEOREM 2.6. Forn>d > 1
(i) if T(d + 1, n + 1) is a vertex decomposable class, then so is T(d, n);
(i) if T(d + 1,n + 2) is a vertex decomposable class then so is T(d, n).

In particular, to prove vertex decomposability for all complexes dual to simple
polytopes, it is sufficient to consider the classes I'(d,n), n < 2d, for if n > 2d, then
n — 2d applications of Theorem 2.6(i) shows that it is sufficient to consider the class
T'(n—d,2(n — d)).

THEOREM 2.7.  k-decomposability is preserved under stellar subdivisions.

Proor. Let = be k-decomposable, X =@ a simplex in Z, and a the additional
vertex. We have |Z| > 2, and for 2 = & a simplex,

si(a,X)[Z] = a.3X.(o\X)

which is k-decomposable since each component is. Now proceed by induction on
|Z] > 2, = not a simplex, and let 7 be a shedding simplex for %, dim7 < £, so that Z\r
is k-decomposable and lksr is k-decomposable.
The following facts can be derived from Lemma 1.1. (The proofs are tedious and
will be omitted. See [18] for details.)
A. IfTU X &Z, then
(D) Iy xyz™ = tksT, and
(2) st(a, X)[Z]\1 = st(a, X)[Z\T1].
B. If r € lksX, then
(1) Ty, xyzy™ = sW(a, X ) lkgr], and
(2) st(a, X)[Z\1 = st(a, X }[Z\1].
C. IfruXeZ X¢Zr, X N7#0, then
(1) Ty xyzym = sta, X\7)lkz7],
(2) tkga xysp(@(T\X)) = (X\1).lkx(X U 7), and
3) st(a, X)[EN7\(a.(7\ X)) = st(a, X }{E\1] (where we define st(a, X)[Z'7]
=3\r for X & Z\7).
D. If X C 1, then
(1) kg xyzf@(r\X)) = 30X Ik, and
() st(a, X)[ENa.(1\ X)) = st(a, X)[Z\1].
The right-hand sides are all k-decomposable by induction on the number of simplices
and applications of Propositions 2.3 and 2.4 (noting in C and D that dim(a.(7\ X))
< k), and since A, B, C, D. cover all cases for 7, the theorem follows.
Some of the most striking results on k-decomposability deal with shellability and
diameters.

THEOREM 2.8. A d-dimensional complex T is d-decomposable if and only if T is

.§m\\mw\m.

Proor. (If): Let S be a d-dimensional complex. o,,....q, an ordering of the
d-faces of = which shells . so that £ = cl(J"_,a,). If m = I then T is a d-simplex. and
50 T is d-decomposable. For m > 1 we proceed by induction on [X]. We have by
definition that 5, N (U7, &) is a pure (d — 1)-dimensional complex generated by the
(d — V)-faces 7, ....7. Let 7= Cwnlos/q\v. Then 7 C o, (hence 7 €Z2), but 7€ q,

i < m, since it cannot be that 7 =710, C g, No, C1, for some j, while @ = o, \7;
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C 7. Therefore o, is the only d-face containing 7. So
m—1
S\t=| U &)U (E,\r)
i=1
m-1

k
U (s, N\r)={ U a|Ydio, U (a,\7)
j=1

i=1 i=1

]
-k
Qi

m—1 k m—1

Uagjud Cd.“Cm.. Q)

i=1 j=1 i=1

Ql

which is a shellable complex, with shelling order o, . . . ,0,,_,, hence d-decomposable

by induction on |2\7| < |Z|, and
lkst = lk; v =(0,\) 2

which is a simplex, hence d-decomposable. Therefore 7 is a shedding face for 2, and 2
is d-decomposable.

(Only if): Let = be d-dimensional and d-decomposable. If = is a d-simplex, then =
is shellable. Otherwise there must exist a face 7 € = such that (1) Z\7 is d-dimensional
and d-decomposable, and (2) ks is (4 — |7|)-dimensional and d-decomposable, imply-
ing ks is (d — |7)-decomposable. We proceed by induction on [Z]. (1) implies 2\ 7 is
shellable, by induction on |E\7| < |Z|, with shelling order 9, . . ., 0, of the d-faces of
S not containing 7. (2)‘implies lky7 is shellable, by induction on |kg7| < |Z], with
shelling order 7, ... ,7. Leto,,,=7UT,i=1... ,1. We claim that gy, .. .,0,,,is
a shelling for =. For 2 < k < p, & N(UU5Z{3,) is a pure (d — 1)-dimensional complex
by (1). For k > p, we have

k-1 k=1

V4
s nlUs|=|an{Us|vian| U 3§
i=1 i=1 i=p+1

k-p

T;;DAM(: U A,mq.TL ni U ?.i

]

k=p
=[g\r|ulr|n_,nl U™
i=1
Now §,\7 = |J, e, 0\0, which is pure of dimension d — 1. and Tep N (U¥kZf ) is pure
of dimension d — || — 1, since 7, . . . ,7; is a shelling order. Hence 5, N (UJiZla)isa
pure (d — 1)-dimensional complex for k=2, ..., p + /. and therefore = =1{ J2*/3, is
shellable.

We observe the important special case that the simplicial duals of simple convex
polyhedra and polytopes fall at least into the boitom of the hierarchy of k-
decomposable complexes, that is, they are shellable (see §1). It remains to be seen how
far up in the hierarchy they lie.

As an immediate corollary of Theorem 2.8 and Propositions 2.3, 2.4 and 2.7 we have
the following.

COROLLARY 2.9.  The following are shellable complexes:
(1) any k-decompaosable complex. k >0,

(2) the link of anv simplex in a shellable complex.

(3) any stellar subdivision of a shellable complex. and
(4) the join of any two shellable complexes.
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THEOREM 2.10.  If 2 is a d-dimensional k-decomposable complex, 0 < k < d, then #

diam = < EMVIAMH :

where [ (2) is the number of k-faces of =.

ProoF. If 2 is a d-simplex, then f,(Z) = (¢*}), and so diam= = 0 < fi By~ @,
Otherwise we proceed by induction on |Z|. Let Ay, A, be two d-faces of = m:a,w_m
shedding simplex for 2.

Case 1 (1€ Ay N A)). Then at least one of Ay, A, is in \7. say A,. Further, if 7 ca4,,
then the pure a_Bosm_osm:Q of Z\7 insures that :68 is a d-face A} € Z\7 adjacent .o
4. Since Z\7 is d-dimensional and k-decomposable, then by Sacncg Wwe can join A,
m:a 4 by a simplicial path of length at most £, (S\7) — ({3)) < £(2) = 1 = (¢*!) and
$0 4 can be joined to A, by a path of length at most f,(Z) — (¢1)).

Case 2 (1 C Ay N A)). We have kst (d — |7|)-dimensional and k-decomposable, angd
so by Proposition 2.4 7./ks7 is d-dimensional and k-decomposable. Further, since \+
is d-dimensional, then |7./ky7| < [Z|. Hence again by induction Ay and A,, both d-faces
of 7.lkg7, can be joined by a simplicial path in 7./kyt CZ of length at most &
fi(dkst) = (@21 < £(2) — (@*)). This establishes the theorem.

Two immediate corollaries are:

g o7

COROLLARY 2.11.  Vertex decomposable complexes satisfy the Hirsch conjecture.
COROLLARY 2.12.  k-decomposable complexes have diameters bounded above by a
polynomial of degree k + 1 in the number of vertices.

3. Classes of vertex decomposable complexes.

3.1 Complexes of dimension < 3. The first result of this section is clear.

PropPosITION 3.1.1. A/l O-dimensional complexes are vertex decomposable.

For 1-dimensional camplexes, we have the following.

THEOREM 3.1.2. Let X be a 1-dimensional complex, i.e., a loopless graph with at least
one edge and no multiple edges. Then the following are equivalent.

(1) Z is connected.

(2) Z is vertex decomposable.

(3) X is I-decomposable.

Proor. Clearly (2) implies (3). We prove (3) implies (1) and (1) implies (2).

(3= 1): Proceed by induction on |Z| > 4. If |Z| = 4 then T is a single edge. which is
oo::woaa. Otherwise let |Z| > 4, so that = has a shedding simplex 7. Suppose that 2
contains two nonempty components X, and I,.

Case | (r ¢ 2, UZ,). Here \r m:: has components X, and Z,, and |E\7] < |2
But Z\7 is I-decomposable. and so by induction is g::mima. This contradicts the
existence of 2, and Z,.

Case 2 (1 € Z)). X pure |-dimensional implies that 7 must be contained in an edge
e of 2, and so e must contain a vertex ¢ which is not r. But then r € £ \r. and hence
Zhr sull has nonempty components X\7,2,. But again 2\r is l-decomposable.
contradicting the existence of £, and Z,.

The case v € Z, is handled ﬁ_::_mlv
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(1=2): We have automatically that X connected implies = pure dimensional, since
there can be no isolated points in £. We proceed again by induction on |Z| > 4. If
|Z| =4 then = is a single edge, and so is vertex decomposable. Otherwise, suppose
|=] > 4. Let T be a spanning tree for Z, and choose vy any terminal vertex of 7. Then
S\p, contains T\v, which is a spanning tree for Z\v,, hence X\ v, is 1-dimensional
and connected with |Z\vg| < |Z|. Therefore Z\ v, is vertex decomposable, and /k, Z is
vertex decomposable by Theorem 3.1.1. Hence v, is a shedding simplex of Z, and
therefore = is vertex decomposable.

THEOREM 3.1.3. 2-spheres and 2-balls (simplicial complexes whose realizations are
homeomorphic to S* or B?) are vertex decomposable. Hence the dual complex of a simple
3-polyhedron is vertex decomposable.

ProoF. We refer the reader to [18] for clarification of terms and also for the proofs
of several facts which, by their topological nature, have been omitted. They are:

(1) Simplicial 2-spheres and 2-balls are pure dimensional.

(2) If T if a 2-sphere or 2-ball, and v is any vertex of Z, then /kyv is either a
1-sphere or a 1-ball, which corresponds to a graph which is a single open or closed
non-intersecting path.

(3) If = is a 2-sphere, and v is any vertex in =, then Z\v is a 2-ball.

(4) If T is a 2-ball or 2-sphere and v is any vertex in Z, then Z\v is a 2-ball iff
lkso N AZ = dlksv.

We prove the theorem by showing that every 2-sphere and every 2-ball with more
than one 2-simplex contains a vertex v for which 2\v is a 2-ball. Further, from (2) we
have lksv is connected and hence vertex decomposable by Theorem 3.1.2. Hence we
have, by an induction argument, that v is a shedding vertex for Z, and so 2 is vertex
decomposable.

If T is a sphere, then from (3) any vertex in X can be removed to form a 2-ball.
Assume then, that = is a 2-ball, so that £ can be placed on to the plane as a graph with
an unbounded region and triangular interior regions. Choose v, on the boundary of X
and proceed as follows (assuming vertex v; has been defined):

(1) If no edge of  containing v; cuts entirely throught the center of Z, then stop.

)0z

(2) Otherwise, let {v,.u;) be the cutting edge. and continue clockwise around the
boundary of T to adjacent vertex ¢,,,. Go to 1.

(1)
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First we show this procedure stops. Let 4, be that part of Z to the “right” of {4
Then 4, must contain at least one triangle (since {v;, ;} cuts through the interior mm ,%.
and A, is strictly contained in A4, (since | is to the “right” of u;, and v, | is minw_v,
to the right of v,). So A4, must eventually be a single triangle ‘m:a c..+_m~ e
procedure. , 1 SI0PS the

What we get from the procedure is some v for which the only vertices u adjacent to

v which are on the boundary of X are those for which {v,u)} is also on the bounda
Hence >

lezo N 3E = d(lkyv)

msa.wo 2\v is a 2-ball. This completes the proof of Theorem 3.1.3.
Finally we comment that by exhaustive search through the complexes in [13], it can
be shown that the boundary complexes of all simplicial 4-polytopes with at most 8

w%.n:nom are vertex decomposable. We will not enumerate the decompositions here
us, .

O.oxo->w< 3.1.4.  Dual complexes to simple polyhedra of dimension 1,2, and 3, and
to simple polytopes of dimension 4 with at most 8 facets are vertex decomposable.

3.2 Matroid complexes and broken circuit complexes. A matroid is any nonempty
collection M of subsets, called independent sets, of a finite set E satisfying (1) every
m:dm.ﬁ of an independent set is also independent, and (2) for any subset 4 of E, each
maximal wsaavn:ani subset of 4 has the same cardinality r(A), called the Eia, of 4.
cf.u have immediately that M forms a pure (#( £} — 1)-dimensional simplicial complex.
It is also true (see [25, Chapter 4], for instance) that for any vertex v of M, the two
ooBE.mxom M\v and lk,,v are both matroids on E (called the deletion and contraction
matroids of M with respect to v).

We call the circuits of M that collection of minimal subsets of E which are not
members of M. Given a particular ordering e, ..., e, of the elements of E, the
u.xe\mwx circuits of M (with respect to this ordering) are those sets obtained ?o:,, the
circuits of M by deleting from each circuit that element of highest index. Finally, we
define the broken circuit complex of M to be .

B(M) = {6 C E|o contains no broken circuit}.

Brylawski [6] has studied these complexes to some length. He found that B(M) is a
pure (r(£E) — 1)-dimensional complex, and that for the vertex v of highest index in £.
B(M)©\v and /kg ,,  are also broken circuit complexes.

We can derive immediately from the above discussion. Corollary 2.9, and Theorem
2.10 the following results. ‘

THEOREM 3.2.1. Matroid complexes and broken circuit complexes are vertex decom-
posable.
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COROLLARY 3.2.2.  Matroid complexes and broken circuit complexes are shellable and
satisfy the Hirsch conjecture.

That matroid complexes satisfy the Hirsch conjecture is a well-known property of
matroids. The shellability results in Corollary 3.2.2 provide affirmative answers to
questions raised by Stanley [21].

For matroids we can provide a partial converse to Theorem 3.2.1. Referring to the
equivalent form (ii) to Definition 2.1, we say that a shedding order for a vertex
decomposable complex £ is an ordering vy, ... ,0, of the vertices of = so that,
defining 2y == and =, = Z,_,\v, we have v,,, 2 shedding vertex for Z,.

ProPOSITION 3.2.3. A pure dimensional complex Z is a matroid complex if and only if
any ordering of the vertices of 2 is a shedding order for 3.

Proor. Recall that if = is a matroid, then for any vertex v of =, Z\v and lksv are
matroids. Hence at any stage any vertex can be chosen as the shedding vertex, and so
every ordering of the vertices is a shedding order. Conversely, let every ordering of the
vertices of T be a shedding order. Then for any set 4 of vertices of = and any ordering
0y, -+ - » 0 of the remaining vertices of =, S\o,\ - - - \u; is vertex decomposable, and
hence pure dimensional. Therefore since any two faces of = which are maximal with
respect to being contained in A are in fact maximal faces of Z\v,\ - - - \v,, they must
have the same cardinality. Thus 2 is a matroid.

3.3 The face lattice of a cell complex. We define a cell complex to be a finite
collection @ of convex polyhedra, called cells of €, with the properties that every face
of a cell is a cell and the nonempty intersection of two cells is a face of each. Each
element K of C then has its own associated cell complex C(K) whose cells consist of all
proper (not K or ©) faces of K. Maximal faces are called facets, and we will call € a
d-dimensional complex if all of its facets have the same dimension d. Two particular
cell complexes which will be of interest to us are (1) the complex C(P) of a single
polyhedron P, called a polyhedral boundary complex, and (2) complexes whose cells are
geometric simplices, called a simplicial cell complex. Finally, the face lattice complex of
@, L(®), is the simplicial complex whose vertices correspond to the cells of €, and
whose faces correspond to chains (totally ordered sets under inclusion) of cells of €. If
@ is d-dimensional then L(C) is a pure d-dimensional simplicial complex. ‘

There is an interesting property of cell complexes which insures vertex decompos-
ability of the associated face lattice complex. We will call a d-dimensional cell complex
@ shellable if d = 0 or, inductively, the facets of C can be ordered F, . .., F, so that,
fori=2,...,n, the complex

-
’

i1
s=eryn| Jan)
Jj=t
is (d — 1)-dimensional and shellable. (This is a slightly more general definition than
that in [5].) F,, . . ., F, is then called a shelling for €. © will be called * -shellable if, in
addition. the shelling above has the property that there is, inductively, a #-shelling of
Q(F)) which, for i = 2, ..., n. begins with the facets of S,. Our main result is

TurorEM 3.3.1.  Let € be a d-dimensional cell complex. If ¢ is x -shellable, then
L(C) is vertex decomposable.

Proor. We prove the following stronger resuit.
Claim. Let ¢ be strongly shellable, with F,. ... F, the + -shelling for ¢. Set
¢, = J(F) (if dim F, =0, then set @, = {@)). Then L({) is vertex decomposable, and
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the shedding order can be chosen to correspond to faces in the sets

n—1 i—1

G, — \E_@, AF ) 6= \,C_@. AF Y CL R
as ordered. (See the discussion prior to Proposition 3.2.3 for the definition of sheddin
order.) §

.<<o prove the claim by induction on || = the number of faces of €. The cage
dim€ =0 is trivial and begins the induction. Let F|, ..., F, be the *-shelling, and
consider next the case where n=1. Then L(C)= vy L(C,), where v, is the <..onox
corresponding to the cell £, and since |C;| < |€], then L(€,) is vertex decomposable
But by the proof of Proposition 2.4, v,.L(C,) is then vertex decomposable s::.
shedding order ending with vy, and this establishes the case n = 1. Finally, consider the
case n > 1. We have «-shelling £, ..., F,_, of U226 U {F}], and so, by induc-
tion on Uiz G U{F) <@, == L(UJZ)[C, U {F;}]) is vertex decomposable with
shedding order as required by the claim. Further, by definition @, has a *-shellin
which begins with the facets of S, = ¢, N (|J?Z| &,). Hence again by induction om
_@__.A [C], L(C,) is vertex decomposable with shedding order which begins with the
vertices Oy e s O corresponding to the faces in G, — (IJ7Z{ @,). Let v, be the vertex
n.o_.qommona_sm to F,. Now, L(C,)\v|\ - - - \v; is pure (d — I)-dimensional for j < k
since it contains as a (d — l)-dimensional subcomplex L(S,), and = is pure &“

dimensional, since it contains as a d-dimensional subcomplex L(C, U { F,}). Hence the
complex

LONo\ -+ - \oy =2 U vp. (L(C)\p, - - - \1)

is pure d-dimensional for j = 1, . . ., k. Further, since no v is in =, then
kpgeye, - - o Y T ey Lo nopn - o )Y
= Co.\\atc.;/c_/:.:T_c\.
which _m vertex mnoo:ﬁommc—w for j=1,...,k by the choice of v,...,t, and
Proposition 2.4. Similarly we have
Ik, 2

PAGV,/G./.I/D,UOH N\AQ:v/C_/ Tt /C» = \Lﬁrm‘: v4

ei:o.: is vertex decomposable by induction, §, being = -shellable. Therefore, by
starting with the vertices vy, ..., v, v, and continuing with the indicated shedding

o_d.ow for £=L(E)\v)\ -+ -\ \vy, we obtain a shedding order for L(C€) which
satisfies the claim, and hence the theorem.

COROLLARY 3.3.2.

. If C is a shellable simplicial (cell) complex, then L(C) is vertex
decomposable.

ProOF. . For a simplicial (cell) complex, shellings are always =+ -shellings. since the
facets of simplex can be shelled in any order. The corollary then follows.

CoORrROLLARY 3.3.3.

If € is a polyhedral boundary complex. then L(C) is veriex
decomposable.

PrOOF.  One can make use of the technique of Brugesser and Mani {5]. used ©
prove the shellability of boundary complexes of polytopes. 10 prove that any polyhe-
dral 7.:::%:.% complex is in fact *-shellable (whether or not the underlving polvhe-
dron i1s bounded). o

CororrARY 3.3.4. The face lattice complexes of shellable simplicial (cell) complexes
and of polyhedral boundary complexes are shellable and satisfy the Hirsch conjeciure.
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In particular, the first barycentric subdivision of any convex polytope satisfies the
Hirsch conjecture as a simplicial complex. .

Bjorner [4] has independently considered the notion of *-shellability (the name is
his), using it to conclude the shellability of the face lattice complex of a polytope.
Recent unpublished resuits by Edmonds and Mandel (see Norices Amer. Math. Soc. 25
(1978) A-510) have extended the shellability of polytopes to the more general class of
oriented matroids, and their shelling can e shown to be a * -shelling. Thus the results
in Corollaries 3.3.3 and 3.34 can be extended to the face lattice complex of an
oriented matroid.

3.4  Further examples and counterexamples. We first discuss three further examples
of vertex decomposable complexes. In each case, the proof of vertex decomposability
can be found elsewhere.

3.4.1 Dual complexes of totally Leontief substitution systems. If P is a (bounded)
simple polytope of the form {x > 0| Ax = b} where b > 0 and A has at most one
positive element in each column (see [10] and [23]), then £*(P) can be shown to be a
matroid complex, hence vertex decomposable (see [18]). Since facets in Z*(P) are
complements of feasible bases of Ax = b, x > 0, it follows also that the feasible bases
form the bases of a matroid.

3.4.2 Distributive lattice complexes. These are lattices L for which the meet and
join operation satisfy the distributive law a Vv (b Ac)y=(aV b)yA(aV c). The com-
plex Z,, whose simplices consist of chains (totally ordered subsets) of L, can be shown
to be derived from a simplex by a series of steflar subdivisions [18], and thus, by
Theorem 2.7, must be vertex decomposable (and hence shellable, settling another
question raised by Stanley [21]. This latter result has been since generalized by Bjorner
[4] to finite admissible lattices, although it is not known whether these more general
complexes must be vertex decomposable.).

3.4.3 Boundary complexes of cyclic polytopes. These simplicial polytopes (see [12,
§4.7]) can be seen to be vertex decomposable [3], and thus satisfy the dual form of the
Hirsch conjecture, yielding a result of Klee {14, Theorem 4.3].

We now discuss three examples of non k-decomposable complexes—a combinato-
rial 3-ball which is not k-decomposable for any k, a triangulation of the 27-sphere
which is not vertex decomposable, and a dual complex to an unbounded 4-polyhedron
which is not vertex decomposable.

3.44 The Rudin unshellable ball. This is a triangulation of the geometric 3-simplex
constructed in [20] with 14 vertices and 41 3-faces which is not shellable, and therefore
not k-decomposable for any k.

3.4.5 The Walkup counterexample. Walkup [24] has constructed a 27-sphere with
56 vertices, and more than 8,000 27-simplices, which fails to satisfy the Hirsch
conjecture. It thus fails to be vertex decomposable, although it can be shown to be
shellable.

3.4.6 The Kiee-Walkup counterexample. This is a simple unbounded 4-polyhedron
which fails (o satisfy the Hirsch conjecture, and therefore its dual simplicial complex 1s
not vertex decomposable. This complex is, however, 1-decomposable (see [18] for the
shedding order).

One reason for interest in matroid. broken circuit and distributive lattice complexes
is that these complexes can easily be shown to be constructible complexes. A
d-dimensional complex £ is constructible if X is a d-simplex, or, inductively, T can be
written = 2, U %, where £, and T, arc d-dimensional constructible complexes and
¥ 1S, is a (d - b-dimeasional constructible complex. Stanley [21, p. 37} has asked
whether all constructible complexes are shellable. (Clearly the converse is truc.) We
note here that examples by Rudin [20] and Grunbaum (unpublished) of unsheliable
complexes can be shown Lo be constructible (we will not show the construction here).
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Thus, although the constructible classes presented by Stanley are shellable, shellabilj
is not a general property of constructible complexes. v

The examples in §3, then, indicate to some extent the application and limits of
w-aoo.oavomm_um:@ for certain classes of simplicial complexes. There are several ow%:
questions concerning k-decomposability which are stated to end the section:

(1) Are the dual complexes of convex polytopes vertex decomposable?

(2) Are the dual complexes of convex polyhedra 1-decomposable?

(3) Are combinatorial spheres k-decomposable for some k? If so, what is the
smallest such k? (The last question is that of shellability of combinatorial spheres
which has been an outstanding open question for some time.) '

.a. Some variations of shellability and k-decomposability. We examine briefly vari-
ations of these properties obtained by asking more of a shelling, less of a k-
aoooabomao:, or simply reinterpreting these notions in the dual setting. The most
important of the new properties obtained is deep shellability, which for a simple
polyhedron directly implies the diameter bounds of the Hirsch conjecture.

4.1 Dual shellability and deep shellability. We look first at the dual complex of a
vo_wvo&,o: in relation to the concept of shellability of the polyhedron itself and derive
ﬁ<o interesting dual interpretations. One concerns the dual notion of shellability in the
simplicial complex, the other the dual notion of vertex decomposability as a strong
form of shelling in the original complex.

We say a collection A of facets of a polyhedron P is shellable if the complex
A UIU{C(NH|fEU}] is shellable (see §3.3).

If P is a simple polyhedron, this is equivalent to saying that the facets of P can be
arranged f;, . . ., f, so that, for i =2, ..., n, the collection

w = {fiNfilj<ifin f;#0}

is a nonempty shellable collection of facets of f; (since here f, N f, 7 @ if and only if
£ N J is a facet of f). ’

Ho make Em connection between this definition and the dual complex, we need to
define the notion of the dual complex to a collection of facets of a simple polyhedron.

DEFINITION 4.1.1. Let.Q be an arbitrary collection of facets of a d-polyhedron P.
Then the dual complex to A, Z*(Q) is the collection of subsets of the set £ = {v;|f;
€L} defined by o

EH W ={og=v, - |F=f N - - N f isa(nonempty) face of P }.

If P is simple, then £*(qL) is simplicial, and the k-faces of Z*(9L) then correspond to
the (d — ».l 1)-faces of P which are contained in the interior of UQL. Further. if @ is
the oozmoﬁ._o: of all facets of a simple polyhedron P, then Z*(%) = Z*(P).

We begin by noting the connection between the constructions used in shellings and

those used in simplicial complexes. The proof is straightforward and is omitted.

LEmMA 4.1.2.  With QL and E*(AU) as above (for P simple), let f; € U and v, the
corresponding vertex in Z*(U). Then ‘

(D) ZXUNe = ZXUN )

(2) lhkgeianyo, = Z*(U;)
:,\.Rv\m W, ={fnflIfEN. j7i fi0f=01 taken as a collection of facets of the
{(simplc) polyhedron f,. , )

We can now obtain an equivalent definition of the shellability of 2 in terms of
Q). ,
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DEFINITION 4.1.3. A simplicial complex X is dual shellable if either Z comprises a
single vertex, or, inductively, there is a vertex v in 2 so that S\v and lksv are both
dual shellable.

Note the similarity between this definition and that of vertex decomposable com-
plexes. This is a weaker definition, in that the dimensionality requirements are omitted.

Oddly enough, dual shellability is only a property of proper collections of facets of a
polytope.

. Lemma 4.14. IfPisa simple polytope, then S*(P) is not dual shellable.

ProOF. If dim P = 1, then Z*(P) comprises two vertices, and since each vertex has
link {@), neither can be a dual shelling vertex. Otherwise proceed by induction on
dim P, and note that for any vertex v; in S*(P) corresponding to facet f; of P,
Ik pyv; = Z*(f), which by induction on dim f; < dim P is not dual shellable. Hence
3*(P) cannot be dual shellable, and this proves the lemma.

For a proper collection A of faces, however, dual shellability of Z*() is a
characterization of shellability of L. Before we prove this we state a result shown by
Danaraj and Klee [7, Proposition 1.2 and its proof}].

Lemma 4.15. Iffi,....f,isa shelling of a proper collection of facets of a simple
polytope P, then fori=2,...,n, U/ comprises a proper collection of facets of f.

Our main result is

PROPOSITION 4.1.6. Let 9 be a proper subset of facets of a simple polytope P, and
S*(Q) its dual simplicial complex. Then % is a shellable collection if and only if Z*(U)
is dual shellable.

Proor. || =1 if and only if =*() comprises a single vertex, so we assume
|| > 1 and proceed by induction on |=*(Q)|. We have from the definition that U is
shellable if and only if there is a facet f, of @ (the last facet in the shelling) so that
AU\{ f,) is a shellable collection and QU =, is a nonempty shellable collection of
facets of f,. Since U is a proper set of facets of P, then certainly AU\{ f,} is, and so
by induction U\{f,} is shellable if and only if Z*@UN{f,})} = X @AU)N\v, is dual
shellable. For @1, we have the following three cases:

Case 1 (AU, =@). Then f, cannot be the final shelling facet, and since Z*(U,)
= @, it is likewise not dual shellable.

Case 2 (U, comprises all facets of f,). Since @ is a proper collection of facets of
P, then by Lemma 4.1.5, f, cannot be the final shelling facet. Likewise, by Lemma
4.12, S*(,) = *(f,) is not dual shellable.

Case 3 (9, is a nonempty proper collection of facets of f,). By induction on
[=*(,)] < |Z()], U, is shellable if and only if £*(AL,) i1s dual shellable.

Thus f, is the final facet of a shelling of L if and only if ¢, is a dual shelling vertex.
and this completes the proof of the proposition.

COROLLARY 4.1.7. If P is an unbounded simple polyhedron. then EX(P) is dual
shellable.

Proor. Consider the polytope P obtained from P by intersection with a closed
half-space. as described in §1. Choose a shelling of the collection 9 of facets of P s0
:Efw. the “new” facet, is the final facet in the shelling. Then =*(1\! \.,: = 3* P). and
therefore by Proposition 4.1.6, Z¥(P) is dua! shellable.

CoroLLARY 4.18. If Pisa simple polytope, then for all v € X(P), ZX(P)\v is dual
shellable.
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ProoF. Let v = v, By [5], we can choose a shelling f;, . . ., f, of P with f, =f

Now fi, ..., f, = fis a shelling of P if and only if f, ..., f,_, is a shelling for the
set U = {fi,...,f,—} (since the set U, is the union of all of the facets of f, which s
always a shellable collection). But by Proposition 4.1.6, this is true if and only if
S*({fi - - -+ fu_1)) = ZH(P)\vy is dual shellable. _

The final corollary may be of interest in testing whether a simplicial ball or sphere is
the dual complex to a polyhedron.

CoroLLARY 4.1.9. If 2 is a simplicial ball or sphere, then two necessary conditions
for 2 to be the dual complex to a polyhedron are:

(1) Z is shellable;

(2a) if 2 is a ball, then X is dual shellable;

(2b) if 2 is a sphere, then for each vertex v of 2, E\v is dual shellable.

We now give the dual concept to vertex decomposability in terms of shellings.

DEFINITION 4.1.10. A collection A of facets of a simple d-polyhedron P is called a
deeply shellable collection if either d = 0, or, inductively, || > d and the facets of Q
can be arranged f,, ..., f, so that f, ..., f, contain a common vertex and for
i=d+1,...,n 8 =fN( v:u__ J) is a union of facets of f; which themselves form a
deeply shellable collection.

THEOREM 4.1.11. A collection U of facets of a simple d-polyhedron P is deeply
shellable if and only if Z*(U) is vertex decomposable.

PrROOF. We use the equivalent definition of vertex decomposability (remark (i) at
the end of Definition 2.1), that is, for 2 a (d — 1)-dimensional complex, £ is vertex
decomposable if either X is a (d — 1)-simplex or there exists a vertex v in = so that 0
S\v is a (d — 1)-dimensional vertex decomposable complex, and (2) tkyv is a (d — 2)-
dimensional vertex decomposable complex. If d =0 then Z*(Q) = {@}, which is a
(— 1)-simplex. Otherwise, we proceed by induction on |E*()|. First note that the
statement f;, ..., f; contain a common vertex is equivalent to saying that Z*() is
(d — 1)-dimensional, since it establishes at least one (4 — 1)-face of Z*(2). Now, if
|| = d then @ is deeply shellable if and only if all the facets of AU contain the same
vertex, or equivalently, 2*(U) is a (d — 1)-simplex. Otherwise, let f; be a facet of %
and v, the corresponding vertex of 2*(). Then f; is the last facet of a deep shelling of
QL if and only if S; is the union of facets of f; which is a deeply shellable collection and
@/Cu is a deeply shellable collection. By the same argument as Proposition 4.1.6, this
is equivalent to the statement that @, and A\ { f;} are deeply shellable complexes, and
by induction on [Z*(L,)] and [E*(UN{f})|, is equivalent to saying that Z*(;)
= lkge(qyv; and ZXAUN{ f;}) are (d — 2)- and (d — 1)-dimensional vertex decomposable
woBEnxam, respectively. Therefore f; is the last facet of a deep shelling of Q1 if and only
if v, is a shedding vertex of Z*(9L), and so Q is deeply shellable if and only if Z¥*() is
vertex decomposable.

CoroLLarY 4.1.12. If P is a polvhedron whose facets form a deeply shellable
collection, then P satisfies the Hirsch conjecture. ,

We remark again that there are no known examples of simple polytopes which are
not deeply shellable, although the Klee-Walkup unbounded polyhedron in Example
3.4.6 is not deeply shellable. Further. Danaraj and Klee [7. Theorem 3.1] have
mmSZ.ww:na that there always exists a shelling of a polytope for which the first  facets
contain a common vertex, although the sets S, may not themselves be deeply shellable
It seems reasonable. then.if one wishes to prove the Hirsch conjecture for some class
of polytopes, to attempt to find deep shellings for elements of the class.
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42 Weak k-decomposability. We can define a broader class of complexes than
k-decomposable complexes by deleting the condition of k-decomposability for links.
while still retaining several nice properties, most notably good bounds on diameters of
elements in the class.

DEFINITION 4.2.1. A d-dimensional complex = is weakly k-decomposable if it is pure
dimensional and either T is a d-simplex, or there exists a face 7 of £, dimr < &, so that
S\t is a d-dimensional and weakly k-decomposable complex.

- Weak k-decomposability is a strictly weaker property than k-decomposability, in
that there exist weakly vertex decomposable complexes which are not even shellable.
An example is T75;5; UT,0;0; UT50,05 UT,050; which has shedding order vy, v. Of
course all the examples of vertex decomposable complexes are weakly vertex decom-
posable, and further, Example 3.4.6, the dual complex to a polyhedron which is not
vertex decomposable, is weakly vertex decomposable. Hence there is no known
example of a polyhedron whose dual complex is not weakly vertex decomposable,
although the property does not carry to combinatorial balls (see [18, Example 4.5.3)
which is derived from a construction of Barnett [2]).

We list now a few of the properties of weakly k-decomposable complexes. By
essentially the same proofs as in Propositions 2.4, 2.5, and 2.7 we have

PROPOSITION 4.2.2. Weak k-decomposability is preserved under joins and stellar
subdivisions, and weak vertex decomposability is preserved under wedging.

With regard to diameter, by a proof similar to that of Theorem 2.10, we have

TueoreM 4.2.3.  If = is a d-dimensional weakly k-decomposable complex, 0 < k < d.

then
diam = < 2f,(2)

where f,(Z) is the number of k-faces of .

So again, the diameter of a weakly k-decomposable complex is bounded above by a
polynomial of degree k + 1 in the dimension and the number of vertices.

4.3 Face decomposability. 1f one attempts to translate the property of k-
decomposability of the dual complex of a polyhedron into a property of the polyhe-
dron itself, one encounters the problem, mentioned in §1, that the deletion operation in
the complex corresponds to removal of a face in the polyhedron, which does not
necessarily lead to consideration of another polyhedron. However if one broadens the
class of convex sets considered to be those defined by systems of both strong and weak
linear inequalities, then the translation is possible, resulting in a property called face
decomposability. This involves the removal of a face (and all its subfaces) in such a way
that the removed face (corresponding to the link) and the remaining faces (correspond-
ing to the deletion) both contain a vertex and are themselves face decomposable.
(“Containing a vertex” corresponds to “being of the right dimension.”) Here the
removal of a face is obtained by changing one of the weak inequalities to a strong one.
By requiring that the removed face is always of dimension at least k. one has the
notion of k-face decomposability, which implies the diameter of a d-polyhedron to be
bounded by a polynomial in n (the number of facets) of degree d — k. There is also a
weakening of this notion, corresponding to that in §4.2. which vields the same bounds.
See {18, Appendix 3] for details.
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A 3-SPHERE COUNTEREXAMPLE TO THE W -PATH
CONJECTURE*

PETER MANI} anp DAVID W. WALKUPY

A triangulation D of the 3-sphere with 16 vertices and 90 3-simplices is exhibited. The cell
complex D* dual to D has the property that each edge-path between two specified vertices
visits some one of the 16 3-cells of D* at least twice. Thus D* is a counterexample to the
W,-path conjecture for S? and consequently implies a counterexample to the Hirsch conjec-
ture for §'!. Previously known examples are of much larger size or dimension.

An unresolved case of the W, -path conjecture proposed by Klee and Wolfe [4]
asserts the following: Any pair of vertices of a simple polytope can be joined by an
edge-path which does not revisit any facet. (A d-polytope P is a closed bounded
convex polyhedron of dimension 4, a facet of P is a face of dimensiond — 1, and P is
simple if every vertex is on exactly 4 facets.) The W, -path conjecture is known to be
equivalent (for simple polytopes) to the following conjecture of W. M. Hirsch: The
diameter of the edge-graph of a simple d-polytope with n facets is at most n — 4. In
particular, a simple non-Hirsch d-polytope is itself necessarily a simple non- W -path
polytope, and a simple non- W,-path d-polytope with n facets can be used to construct
a simple non-Hirsch (n — d)-polytope with 2n — 24 facets by the method given in {5].
By a well-known duality, both conjectures have obvious equivalent formulations in
terms of simplicial polytopes (polytopes with all proper faces simplicies), dual paths
(sequences of (d — 1)-faces with adjacent members having a (d — 2)-face in common),
revisiting of vertices by dual paths, and dual diameter.

Although the W, -path and Hirsch conjectures remain unresolved for simple and
simplicial polytopes, several generalizations are known to be false. For example, the
generalization to unbounded polyhedra is disproved in [5]. The simplicial forms of the
W,-path and Hirsch conjectures generalize immediately to triangulations of spheres,
but Walkup [8] recently constructed a dual-non-Hirsch triangulation of $%7 with 54
vertices. In an earlier, unpublished paper [7], Mani described a counterexample to the
W,-path conjecture for simple cell decompositions of a d-sphere. His example has low
dimension, d = 3, but a large number of cells.

The purpose of this note is to give a simplicial, explicit, and much reduced version
of Mani’s counterexample. Specifically, let C be the simplicial complex on 20 vertices
a,b,...,s,t consisting of 106 3-simplices listed in Table 1, together with their faces.
Further, let D be the closed complex obtained from C by identifying the pairs
(e, k), (f,1),(g i), (h, j) and deleting the degenerate 3-siniplices marked with + in
Table 1.

THEOREM 1. C is a shellable, dual-non- W -path triangulation of S°.

THEOREM 2.
3-simplices.

D is a dual-non-W _-path triangulation of S> with 16 vertices and 90
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