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Introduction

Let A be a triangulated region in RY. We define C'(A) to be the set of piecewise
polynomial functions on A, i.e., functions given by a polynomial on each d-simplex,
which are continuously differentiable of order r. These functions are called splines,
piecewise polynomials, or finite elements. For each k in N, we define C;(A) to be the

set of F in C'(A) such that for each o in A, FlcJ has degree less than or equal to k.

For each k, C:(A) is a8 finite dimensional vector space over R.

Such functions have many practical applications, including the finite element
method for solving partial differential equations. More recently, these functions
have been studied in computational geometry and used for surface modeling and
computer graphics. For these and other applications, it is useful to know the
dimension of C{(A) as an R-vector space, and to find bases for these spaces. For
a further discussion of these problems, see [1], [4], or [S].

Our approach to this problem is to study the set Cr(A) where A is a general
polyhedral d-complex in R9. C"(A) is not a finite dimensional vector space over R,

but it has a great deal more algebraic structure than the Cx(A)'s. C'(A) is a ring

(and thus an R-algebra) with pointwise multiplication, @~Wer R
= Rlxy....xq] by viewing R C C'(A) as the set of global polynomial functions on A,

l.e.. functions given by the same polynomial on each simplex. Our primary interest
in this paper is to study the structure of C'(A) as an R-module. The advantage of

studying this moduis is to make explicit the connections between the spaces Ch(A)
for various k. Except for [4], [S], [6] and [7], these connections seem to have been
noted only in [30] and [31]. where the focus is essentially on the 2-dimensional local
case. In [S], the algebra CO%(A) of continuous piecewise polynomials is studied.

In this section, we derive some basic properties of the module C'(A). We see
that the differentiability condition on C'(A) is really an algebraic one. From this we
can define a local notion of differentiablity, leading to a somewhat more general
class of modules, denoted C*(A). We also allow A to be embedded in K9, where K is

any ordered field.
This work is mostly a study of the freeness of Cr(A) as an R-module. Freeness
means that C'(A) has a basis over R, finite in this case, which implicitly describes

all elements of the module. In Section 2 we give a local criterion for freeness



when A is a (finite) simplicial complex. This reduces our study to complexes that
are stars of vertices. In Section 3 we show that we may restrict our study to
hereditary complexes, which are generalizations of connected manifolds. This
enables us to make use of the characterization of C"(A) from Proposition 1.5 as
the kernel of a map between free modules.

In general, we look for conditions on A, r and d so that the freeness of Cr(A)
will be combinatorially determined, i.e. independent of the embedding of A in K9,
Such conditions have proved extremely useful, for example, in the study of
combinatorial properties of posets and simplicial complexes (see, e.g., [3], [19],
[26]-[28]). In Section 4, we show for d=2, C"(A) is free if and only if A is a

RS

which CO(A) is free; these are the complexes with Cohen-Macaulay links of
vertices. What is perhaps more interesting is that this result comes from relating
CO(A) to the face ring of A, Ax. If A is the homogenization of A, we show that
CO(A) = Aa. In Section 6, we obtain an alternate proof of this result by viewing
both rings as inverse limits over the poset A.

The rest of the paper deals mostly with the structure of bases when C"(A) is free,
and Hilbert series when C"(A) is a graded module. In Section 7, we deseribe-several
tests to determine freeness, g_[xgn a generating set for C'(A) as an R-module. In

Section 8 we generalize the concept of a homogeneous basis to the non-graded case.
We call such bases reduced. In particular, if a free basis is a Grobner basis under an
ordering of monomials which respects total degree, it will be reduced.

A combinatorial characterization of C"(A) is impossible in general for d > 2 and r >

0. and in Section @ we give an example of a 3-complex where freeness varies with the
embedding. '

We introduce now some preliminary notions. Let A be a polyhedral complex in RY,

that is, a finite set of convex polytopes in RY such that every face of a polytope in A is
a face of the complex, and the intersection of any two elements of the complex is a
face of each. (See [13] for details about polytopes and polyhedral complexes.) If A is
any complex, the dimension of A is the maximum dimension of an element of A. We say
A C RYis pure if all maximal faces are of the same dimension. A special case of a

polyhedral complex is a finite simplicial complex, where each face of A is a simplex.



By d-complex we will mean a pure d-dimensional polyhedral complex embedded in RY.
In this case we may think of A as a partition of a region in RY into finitely many d-
polytopes. For a d-complex A and isd, we denote the set of i-dimensional faces of A
by A, and the set of i-dimensional interior faces of A by A?. Similarly, f,(A) denotes
the number of i-dimensional faces of A, and ff(A) the number of i-dimensional interior
faces of A,

If A'is simplicial, we can identify o € A with its set of vertices. Then T Uo will
correspond to the union of the vertex sets of T and . If A is simplicial, recall the
link of cin A, lkyoe{TeA:TUoeA TNo =2}, and the star of o in A,

staAC = {TUT :Telksyo, ' C o). For arbitrary polyhedral complexes we define the
star of o in A by

staA0e{T€A:31T€AsuchthatTC 1T ando C T}

In other words, st,o is the smallest subcomplex of A containing all faces which
contain o. If the complex A is understood, we will write sto or ko.

For a d-complex A, we consider the graph G(A) with vertices corresponding to the
elements of A4 and edges defined as follows: if v, v' are vertices of G(A) corresponding
to 0, o' € Aq, then {v, v'} is an edge of G(A) if and only if oNo' € Aq.q. A is said to
be strongly connected if the graph G(A) is connected. A connected complex A is said to
be hereditary if for all o € A-{#&}, sto is strongly connected. (If A is simplicial, this is
equivalent to the property that for all o € A-{&}, ko is strongly connected.) From this
condition it follows that A itself is strongly connected.

Let A be a d-complex and let R = RIxy,....x4] . the polynomial ring over R in d
variables. We now define C'(A) more explicitly and give an algebraic condition for
smoothness.

Definition: If re N and A is a d-complex, then C'(A) is the set of functions
F: A — R such that

i. For all o € A4, Flo is given by a polynomial in R = R[xy,...,x4].

li. F is continuously differentiable of order r.



Given a point p in A, and F: A — R, let F, denote the set {Fjg O € Aq, pec}l. Then
F will be differentiable of order r at a point p in A if the partial derivatives up to order
r of elements of Fp agree at p. Note that since o is d-dimensional, the polynomial Fio is
uniquely determined. We write Fg for Fig.

For o € A, let aff o denote the affine span of points in o, and for f;.....f, in R, let
(fy.....T5) denote the ideal that they generate. If T C R is any set of polynomials, recall
the zero set of T, Z(T) e {pe RY: f(p) = O for all f € T}, and if X C RY is any set,
the ideal of X, (X) = {f € R : f(p) = O for all p € X}. In addition to the fact that | and
Z are inclusion reversing (X C Y implies I(Y) C I(X), and T C S implies Z(S) C z(T)), we
will need the following easily verified properties.

Proposition 1.1:

(a) Let A be an affine subspace of RY of codimension c and let
A = Hy N " N H,, where H; are hyperplanes in RY, and &, are
affine forms such that K, = 2(2,). Then I(A) = (&4.....8¢).
(b) If o is a convex polytope in RY then I(o) = l(aff o) and
Z(l(c)) = affc. N

Recall that for an ideal 1, 1" is the ideal generated by all r-fold products of elements
of I. The next proposition is proved in [6].

Proposition 1.2 (Algebraic Criterion): Let A be a d-complex andlet F: A — R be a

piecewise polynomial function. Then F € C'(A) if and only if for every pair of faces o,,

o2 in Aq. Fg,-Fg, lies in I(o;nay)™'. M

Remark and Notation: If ONC,= T € Aq4.y, then I(oNo,) = I(T) is principal and
generated by an affine form, which we denote %,; or ;. If o € A4, note that
Proposition 1.1(b) implies (o) = (0). We simplify notation by setting [{1) = I{(T)™*' and
IT = 9.1-"“.

The following corollary can be found in [4].

. Corollary 1.3: If A is hereditary then F € C"(A) if and only if for every pair of faces o,,
O, in A4 which meet in a d-1 face 1. Fo,Fo, € tr) = (E,). m



We now describe some important properties of C'(A). Given an ordering oy.....0y of
the d-simplices of A, F € C'(A) can be represented as a t-tuple of polynomials in R, i.e.
F = (fy.....fy), where each f, is just Fo, In this way we see that C'(A) is a submodule of
R!, the free R-module of rank t = f4(A). The R-algebra structure of C'(A) is given by
pointwise multiplication.

Recall that the rank of a module M over R is the dimension of M ®; F as a vector
space over F, the quotient field of R, i.e., F=R(x,.....Xxq). the field of rational functions in
d variables over R. The rank of M is also the maximal number of R-linearly independent

elements in M. (See [17].) C"(A) has the following structure as an R-module. See [6]
for the proof.

Proposition 1.4: Let A be a d-complex. Then C"(A) is a finitely generated torsion free
R-module with rank = f4(A). B

When A is a hereditary d-complex, we can view C'(A) as the kernel of a map
between free R-modules. This representation was used in [6] to study the structure of
C™(A). In particular, we can use it to compute bases for CT(A) when it is free [7]. The
representation is constructed as follows. Let G(A) be the graph of A, as defined earlier

in this section. Given an ordering of A4 and Ad?,. we define the boundary matrix of A,

9(A), to be the transpose of the node-arc incidence matrix of G(A), ie.,

1 if v; is the smaller vertex of e,
o(A) = (a;) = -1 if v is the larger vertex of e,
0 otherwise

.o



If A 'is hereditary, we define the matrix associated to C"(A), A(A,r), to be

.In

where d = 3(A), n = fd?1. and if 0, € Aa?h %, is the form defining o, and T, = ;.
(Note that the right-hand section is a diagonal matrix.) Let M(A.r) denote the kernel of
A(A.r). 1t is ciear that M(A,r) does not depend on the ordering of Ad?1. The following
proposition, from (6], follows easily from Corollary 1.3.

Proposition 1.5: If A is hereditary then for any ordering of Aq, c'(A) = M(AF). B

Note: We can generalize the concept of C'(A) in a number of ways. First, we can vary
r to get a local notion of differentiability. Let p : A — N be an order preserving
function and let py = p(o). We can now define C¥(A) to be the set of piecewise
polynomial functions F, on A, such that for every pair o4, 0,3, of d-simplices, Fochz €
I(T)YT where T = 0,N0,. Since j; S g Whenever T C O, we have that Koo C 1(1)Hr,
Thus C*(A) is determined by {jg : & is maximal with respect to lying on more than one
d-face}. Then elements of C*(A) will be all piecewise polynomial functions on A which
are differentiable of order ps-1 on o. If p is the constant function equal to r«1, this
means that C*(A) is just C'(A) as previously defined. If A is hereditary then C*(A) is
determined by (Hg : © € Ad?1) where Ad?1 is the set of d-1 interior faces of A. In this
paper. we will only consider C'(A), but in fact all of the results are true for CH(A) with
minor modifications to the proofs.

Another generalization we can make is to assume that we are working over a general
field of characteristic zero in place of R. Polyhedra can be considered to be in an
appropriate ordered subfield (say, @ or R) and the relevant data extended to K (by

tensor product). From now on K will denote any field of characteristic zero unless
otherwise specified.



2 A Local Criterion for Freeness

In this section we give a local criterion for Cr(A) to be free over R, which will
reduce our study of freeness to complexes that are stars of vertices. This result,

however, only applies to simplicial complexes. First, we need some preliminary results.

Proposition 2.1: Let M be a finitely generated module over a Noetherian ring S. Then M
Is projective over S if and only if Mp is free over Sp for all maximal ideals P in S.

Proof: See [18; Chapter 2,Theorem 14]. This proves the result for finitely presented S-
modules, but since S is Noetherian, all finitely generated S-modules are finitely
presented. H

The following important result is due to Quillen and Suslin. (See [16] or [20].)
Proposition 2.2: Let S = k[x;,....xq] where k is a PID. Then projective modules over S
are free. 1

Let S be a graded ring where Sy is a field. Let S, = ®;,; S; be the irrelevant

maximal ideal of S. The following is Lemma 10.4 in [11].

Proposition 2.3: Let S be a Noetherian graded ring where Sy is a field. Let M be a

finitely generated graded S-module and let P = S

.- Then M is free over S if and only if
Mp is free over Sp. W

The following lemma can be found in [6].

Lemma 2.4: Let A CKYand T € A. Then C'(stT) is a graded R-module. N

Recall that for a subset X of K9, I(X) denotes the ideal of polynomials in S =

Klx;.....xg] which vanish on X, and for T in S, Z(T) is the set of zeroes of T in K.

Lemma 2.5: Let o C K9 be a simplex and let T, and T, be faces of o. Then
I(14) « I(73) = K{T,NTy).
Proof: The lemma follows from two observations.

(1) If 1y and T, are both faces of a simplex, then T,NT, is a face of maximal



possible dimension, i.e. aff (TyN7,) = aff1, N aff T,.

(2) For an affine subspace A of K9, I(A) is generated by affine forms (Proposition
1.1(a)). For affine subspaces A and B, it follows that I(A) « I(B) is a radical ideal, and
so by [16; 1.8(c).(1)], I(A) + I(B) = I(ANB).

Applying (1) and (2) we now have:
I(14NT3) = Waff(14NT,)) = I(aff 1, NaffT1,) = Kaffty)s I(affTy) = I(Ty)+ 1(1,). W

Remark: The above result is false if o is not a simplex. For example, let o be the
trapezoid in Figure 1 below. Then T,NT, = & but affTyNaffTty, = {p}. so I(1y)+1(1,y) =
I(p) # R and I(TyNTy) = (&) = R.

FIGURE 1
Trapezoid

Lemma 2.6: Let A € K9 and P 2 maximal ideal of R. Let

S(P) = {1 € A:I(1) CP, and T is minimal with respect to this propertyl. Then

(a) Each face o € A4 contains some T € S(P). If o is a d-simplex, this T is unique.

(b) Let P = (xy-ay,....x4-a4) Where v = (21.....84) is a vertex of A. Then for o € (stv)g. v
is the unique face of o in S(P).

Proof:

(a) If o € Aq, then {o) = (0) C P. This implies there is some T C o (possibly T = o)
which is also in S(P). Suppose now that o is a simplex. Let T and T* be faces of o.
Then by Lemma 2.5, I(TNT") = I(1) + I(1*). If T and T* are both in S(P), then this
implies I(TNT') C P. But T and 1" were minimal with respect to this property so v = 1'.
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(b) Suppose T € S(P) and T C o where o € (stv)q. Since I(1) C P we have Z(P) C
Z(1(7)). But Z(P) = v and Z(I(1)) = aff T by Proposition 1.1(a) and (b), so this implies v
€ aff 7. Let H be a supporting hyperplane for o such that H N ¢ = 1. Then H contains
aff 1 so it must containv. Thenve HN o sove 1. Now by minimality, T =v. &

We can now prove the main result of this section.

Theorem 2.7: Let A be a d-complex.
(a) 1f C'(A) is free over R then C'(sto) is free over R for all o in A-{#].

(b) If A is simplicial then the converse is also true: If c'(sto) is free over R for all o
in A-{2}. then C'(A) is free.

Proof : Let P be a2 maximal ideal of R, S{(P) be as in Lemma 2.6, and let T € S(P).
Suppose that stT has the following property:
(3) For each o € (st1)4., there is exactly one 1' C o which is in
S(P), namely 7' = T.

Let s =f4(stT) and t =T4(A). Then C'(stT) C RS and C'(A) C Rt as seen in Section 1.
order A4 so that the first s elements are in stT. For F in C'(A) we can then write
F = (fy.....Ty) according to this ordering. Recall that T(T) = I(1)™! for any T in A. Let
M = { (f5.1.....1;) € RS : {-f; € T(oyNo;) whenever oiNo; contains some T € S(P) }.

We claim the following:

(4)  As Rp-modules, C'(A)p = [C'(stT) @ Mlp.
We prove this as follows. From above we see that both C'(A) and C'(stT) ® M are
submodules of Rt. Since there are fewer conditions on (fy,....fy) in C'(stT) ® M than in
c'(A), we may view c'(A) as a submodule of C'(stT) ® M. Then by localizing at P we
have the induced inclusion

c(A)p C [C(str) @ Mp

since localization is exact ([2; Proposition 3.3]). We must show the reverse inclusion.
Let (fy.....f4)/s be in [c"(str) ® Mlp. where s¢ P. Let o; and o; be distinct d-simplices.

case I: If oNoj contains no 1° € S(P) then I(oyNo;) £ P. (If I(o)No;) C P then the
minimal T in oyNo; with this property would be in S(P).) Since P is prime, this implies
Toino;) £ P. Thus there is some x; € T(o)No;) - P.
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case 2: If o\Nojcontains some 1° € S(P), then by (3) either both 0,,0; € stt or

both i,j > s. This implies f;-f; € Tlo|No;) by the definitions of C'(stt) and M. In this
case, we set x;; =1.

Let x denote the product of all the x;i's. Then x lies in T(o,no,-) - P whenever
oNo;is as incase 1. Then sx ¢ P since s ¢ P and x ¢ P, and
(Fyeeed /s = X(fq,f)/xs € C(A)p

since x(fq,....fy) = (xfq.....xfy) is in c'(a) by construction. This gives the reverse inclusion
and proves (4).

(a) Let v = (a,....a4) be a vertex of A. Then P = (x;-3,....X4-34) is @ maximal ideal of
R. Let s = fy(stv) and t = f4(A). Order A4 so that the first s are in stv. Then by
Lemma 2.6(b), stv satisfies property (3), so (4) gives:

(5)  As Rp-modules, C'(A)p = [C'(stv) @ Mp.

If C'(A) is free over R then Cr(A)p is free over Rp by Proposition 2.1. Then by (5),
[C'(stv) ® M] is free over Rp. But [C(stv) ® Mlp = Cr(StV)p ®Mp so Cr(stv)P is
projective since it is a direct summand of a free module. But finitely generated
projective modules over local rings are free ([16; Corollary 3.5]) so Cr(stv)P must be
free. We now apply Lemma 2.4 and Proposition 2.3 to get that c'(stv) is free over R.

Let o € A. To see that Cr(stc) is free over R, let o have vertices vy,....v, and let
Lip = stV fori 2 1, and £y = stavy. Then by the above result, Cr(zl) is free for
all i. This proves (a) since £, = st,0.

(b) Let P be any maximal ideal in R. We claim that as Rp-modules,

c'ap = I, 8, C (st1) Jp.

To prove this, let p € S(P). Since A is simplicial, Lemma 2.6(a) implies that stp
satisfies (3). Then (4) gives:

(6)  As Rp-modules, C'(A)p = [C'(stp) ® Mlp.
By Lemma 2.6(a), we also have that . eas(P)Cr(stT) C R! since each 0 € A4 belongs to
€

exactly one st7. But it is easy to see that

c"(stT)

= O
T ¢ S(P)-{p}
since they are both submodules of R'-$ and the conditions on (fy,....f;.s) are the same.
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This is again because of Lemma 2.6(a). Substituting . @sm {p}Cr(StT) for M in (6)
¢ s(P)-

proves the claim.
If Cr(st'r) is free over R for all T € A-{Z}, then Cr(stT) is free over R for all

., . r . . . . r .
7€ S(P). This implies [T ?S(P)C (st1)] is free over R which implies [T ?S(P)C (st1))p is

free over Rp by Proposition 2.1. By the claim, Cr(A)p is free over Rp. But this is true

for all maximal P, so Propositions 2.1 and 2.2 imply C'(A) is free over R. B

Corollary 2.8: Let A C K¢ be simplicial. Then C'(A) free if and only if C(stv) is free

for all vertices v in A,.

Proof: Suppose Cr(stv) is free for all vertices v in Ay. If o € A-{&], then stp,o is the

same complex as sts,O for any vertex v of o. Apply (a) from the theorem to stv to

get that Cr(ststvo) and hence Cr(stAc) is free. Now apply (b) to get that C"(A) is free.
The converse follows immediately from (a). B
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3 A Necessary Condition for Freeness

We may restrict our study to hereditary complexes with the following result.

Theorem 3.1: Let A C K be a pure connected d-complex. If C (A) is free then A is a
hereditary complex.

Proof: Suppose A is not hereditary. Then stT is not strongly connected for some T €
A-{Z}. Choose T maximal with respect to this property. Note that if Cr(A) is free then
Cr(StT) is free by Theorem 2.7(a). Thus we may assume without loss of generality that
A = st1. Since A is not strongly connected, G(A) is not connected, where G(A) is the
graph of A as defined in Section 1. Let £ C A be the subcomplex of A corresponding to
one of the connected components of G(A). Let t =f4(A) and s =14(Z). Let 0,,0.....0¢
be an ordering of the d-faces of A such that the first s are in £. Then for F in Cr(A).
we may write F = (fy,f,,....1{) where f; = Fo,. Foranyi. oy D1, s0 o) C I(1). Let 1=
I(1). Then for any i and j, I(ojNo;) C 1. Recall that for o in A, T(o) = 1(o)™". Then
To\no;) € T. Define amap ¢: C(A) — T by @(F) = ,-f,. Since F € C'(A),
f1-1; € T(oyNoy) which is contained in T by above. This shows that ¢ is well-defined.
¢ is clearly R-linear. Now let : T — c'(A) be defined by () = (1.1.....1,0,0....,0),
where the first s components are f. To show that { is well-defined, we must show
that (1) € c'(a). By Proposition 1.2, it is sufficient to check that f = - O € T(c.no,-).
whenever 1sis s and s«lgjst.

We claim: oNo; = 1 whenever 1siss and s+1<jst. To prove the claim, first
recall that oyNo; O 7. Thus st(oNo;) C st1. This implies G(st(oyNo;)) C G(stT) since
any vertex or edge of st(ojNo;) will be a vertex or edge of stT. Sincei < sand j 2
s+1, oiNo; meets two connected components of G(A'). This shows that G(st(o;No))) is

disconnected. But T was maximal with respect to this property, so o)No; = T, proving
the claim.

The claim implies T(oyNo;) = T(1). But f e T= (1) so f € T(oyNo;) as desired,
showing that ¢ is well-defined.

It is easy to verify that ¢y is the identity map on T, so the exact sequence

L4 -~
0—— ker¢ — C(A) — T — 0

splits, which gives
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(*) c'A) =T o ker ¢.

Notice that T must have codimension ¢ 2 2. Otherwise the star of T will consist of
either one d-face or two adjacent d-faces and both of these are hereditary. Since affT
is defined by at least c affine functions, and I(T) = I(affT) by Proposition 1.1(b), 1 =
I(1) will be minimally generated by at least c elements. Then T will also be minimally
generated by at least ¢ elements. In particular T is not principal so it cannot be a free
R-module. (This is because ideals in R have rank 1.) If C'(A) is free, then by (%), T is
projective since it is the direct summand of a free module. Then T must be free by
Proposition 2.2. This is a contradiction, so A must be hereditary. B

Remark: If A is not connected, let A', A2, ..., AP be the connected components of A.
Then C'(A) = @ C'(Al). To see this just notice that if F € C'(A), then there are no
conditions on Fgy and F, if o and 7 lie in different components of A. By Proposition 2.2,

this implies c'(A) is free if and only if Cr(A‘) is free for all 1 <i < n. Then by Theorem
3.1, we have

Corollary 3.2: If C'(A) is free then Al is hereditary for all 1 sisn. ®

In particular, there is no loss of generality in assuming that A is connected.
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4 Freeness whend = 1 or 2

When A is a 1-complex or a 2-complex freeness is completely characterized by the

combinatorial properties of A. This means that freeness is independent of the particular
embedding of A in K or K2,

Theorem 4.1: 1If d=1, C'(A) is free for any A and r.

Proof: R = K[x] is 2 PID and by Proposition 1.4, c'(a) is a finitely generated torsion

free R-module. By the structure theorem for modules over a PID, Cr(A) is free.

Remark: There are more constructive ways to prove this. (In the exampie below we
describe an explicit basis for c'(A) over R.) However, we want to note that when d=1,

R is a PID and so submodules of free modules are always free, but when d>1, this is in
general false.

Example: Let A C K be a connected 1-compiex. Then A is just a line segment
partitioned into n=1,(A) pieces, with interior vertices (points in K) a; < a; < - .- < an;.
Let 2; = x-3;. Recall that g, = QIM. Using Proposition 1.2, it is routine to verify that

a free basis for Cr(A) as a submodule of R" is given by

{11, ....1), (0.8, ...1,), 0,08, ....1,), ... (0,...0,T,. )}

Lemma 4.2: If ACK? is a connected 2-complex, then A is hereditary if and only if it is
a manifold (with boundary).

Proof: Consider A C K2. In a plane, the star of a polygon o is O itself and the star of
an edge consists of one polygon or two adjacent polygons (meeting in an edge). The
star of a vertex v consists of a union of polygons which contain v. Since this is

embedded in K2, it will be strongly connected if and only if it is a disk. W

Proposition 4.3: If A is hereditary, then c"(A) has projective dimension at most d-2.
Proof: Since A is hereditary, Cr(A) = M(A.r) by Proposition 1.5, where M(A.,r) is the
kernel of the map A(A,r) as defined in Section 1. Let M = M(A,r), A = A(A,r) and
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N = cokerA. Consider the exact sequence

0— M—s R™k A, Rk, N— 0,
Then M is 2 2nd syzygy module of N. By the Hilbert Syzygy Theorem [15; p.176], N has
projective dimension < d, and Schanuel's Lemma [15; p.167] implies that any two 2nd
syzygies are projectively equivalent so M must have projective dimension < d-2. H

The next theorem characterizes freeness of C (A) when A is a 2-complex.

Theorem 4.4: Let A be a 2-complex. Then C'(A) is free if and only if A is a manifold
(with boundary).

Proof: If C'(A) is free then each connected component Al of A is hereditary by
Corollary 3.2. Now by Lemma 4.2, Al, and hence A, is a manifold. Conversely, suppose
A is a manifold. Then it is hereditary by Lemma 3.2. Since d = 2, Proposition 4.3

implies Cr(A) is projective and freeness follows from Proposition 2.2. B
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5 Freeness when r = 0 (the Continuous Case)

In this section we introduce the face ring A,, of a simplicial complex A. We will
think of A as an abstract simplicial complex since A, is completely determined by the
combinatorial properties of A. We set d = dim A.

If A CK?is pure of dimension d (so that C%(A) is defined), we show that C9(A) and
A, are isomorphic as graded K-algebras, where A is the join of A and a new vertex v.

Using this isomophism we can completely characterize freeness for C9(A).

Definition S.1: Let A be an (abstract) simplicial complex A with vertices vy,...,v,, and let
A = k[x;,....x;] for some field k. We define 1, be the ideal in A generated by square-free
monomials corresponding to vertex sets which are not faces of A, i.e.,

Ia & (Xj-e Xy 2 1€i1< " <ip<n and {vj....v | € A).
Then the face ring of A over k, A,. is defined to be the quotient A/I,. (See [19] or

[28] for a detailed study of the face ring, also called the Stanley-Reisner ring.)

Let S be a finitely generated graded k-algebra with Krull dimension d. A set
{84.....84} of homogeneous elements in S, is said to be a (homogeneous) system of
parameters for S if S is a finitely generated module over k[©;,....64]. A graded k-algebra
is Cohen-Macaulay if it is a free module over k[6,,...,64], for some (equivalently, every)
system of parameters {8,,....84} for S. To see that this is equivaient to other definitions
of Cohen-Macaulay, see [24; Proposition 6.8].

Definition 5.2: A simplicial complex A is Cohen-Macaulay over k if A, is a Cohen-

Macaulay ring.

A topological characterization of Cohen-Macaulay complexes due to Reisner can be
found in [18].

The following result is Theorem 3.6 in [S). It is proved there for K = R, but the
proof is the same for arbitrary fields K.
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Proposition 5.3: Let A be a simplicial d-compiex. As K-algebras,
COLAY = Ap/(Ty+ -+ Up-1),
where y; is the image of y; in A,. N

For 1 <isn, let X;: A — K denote the unique piecewise (affine) linear function on
A such that XI(Vj) = §;; . where §; is the Kronecker delta. These functions are called
the Courant functions of A. The isomorphism from Proposition 5.3 is induced by the
map ¢ : A — CO9A) which sends y; to X, .

Given two simplicial complexes A and A’, we define the join of A and A' by A'A' =

{oUr:0€ A, Te A'}). We may view a simplex o as the complex consisting of all

faces of 0. In this way we can define A'c, the join of A with 0. Given A with

vertices {vq.....V,l, let A denote the join of A with a new vertex vy, and let A = Aly,] =

Klyo.Uy.....unl. The following lemma follows immediately from [19; Lemma 3].
Lemma 5.4: Az/(Up - 1) = Ax.
Theorem 5.5: Let A be simplicial d-complex. As graded K-algebras, CO(A) = A,.

Proof: By Proposition 5.3, CO%(A) = Az/(Jp+ =" + Un-1). The map from A to A which
sends y; to y for 1 sisn,and yo to yp - Yy - =* - y, induces an isomorphism
Az/(Go+ " +Un-1) = Az/(Tp-1).
By Lemma 5.4, this gives an isomorphism @ : A, — C%(4A), and § is induced by the
map ¢ : A — R' which sends y; to X; where 1 < i < n. To see that this is a graded
isomorphism, notice that for i > 1, X; is a piecewise affine form which vanishes at the
origin, so X; € R' will be homogeneous of degree 1. This shows ¢ is a homogeneous
map of degree 0, so C%(A), the image of the map, is a graded subalgebra of Rt, and ¢
will be an isomorphism of graded algebras. N

For a further discussion of homogeneous maps and graded modules, see [6] or [34].
Notice that CO(A) is defined whenever A is a (d+1)-complex, i.e., A is pure and embedded

in K91, Then A = Ik, A need not be embedded in K¢, but it will be pure. This gives the
foliowing corollary.
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Coroilary 5.6:

(a) As graded K-algebras, CO(stv) = A, .

(b) 1If P is a simplicial polytope and 3P is the boundary complex of P, then as graded K-
algebras, CO(zp) = Agp., where £p is the complex of convex cones (fan) generated by
faces of P with respect to an origin in the interior of P. N

We note here that the linear forms x,.....xq form a homogeneous system of

parameters for C%(Zp), since C%(Ep) is finitely generated as a module over R =KI[xj.....Xq].
Thus if we form the graded algebra

B = CUEp)/(x4.....x)COUEP),

then B = Bo @ By ® --- ® By where dimgB; = h;, and h = (hy,....hg) is the h-vector of P
(see [28]). Here the elements of B, can be interpreted as continuous piecewise
polymonial functions on £p of degree i (modulo functions of the form x;Fy«+...+XsFp, i.e.
elements in (xy.....x¢)C%(EZp)). The element w € By crucial to the proof of necessity in the
g-theorem ([27],[29]) can be interpreted as the class of a suitable piecewise linear
function on Zp; it is reasonable to conjecture that the support function of the polar
polytope P* will always work.

From Coroliary 5.6 we readily obtain the following.

Corollary S.7: The following are equivalent:

i. CO(stv) is free
ii. CO%stv) is Cohen-Macaulay

lii. Ay, is Cohen-Macaulay. N

The next theorem extends Theorem 4.7 from [S], which says that if A is a Cohen-
Macaulay (simplicial) complex, then C%(A) is free. We obtain a complete characterization
of freeness for C%(A) when A is a simplicial complex. We show that freeness in this

case is a combinatorial property of A, independent of the embedding in K9. The following
lemma is straightforward.
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Lemma 5.8: Let A be any simplicial complex. Then A has Cohen-Macaulay links of

vertices if and only if A has Cohen-Macaulay stars of vertices. W

Theorem 5.8: Let A be a simplicial d-complex. Then C%(A) is free over R if and only if
A has Cohen-Macaulay links of vertices.

Proof: Suppose A has Cohen-Macaulay links of vertices. Then by Lemma 5.8, A has
Cohen-Macaulay stars of vertices. By [S: Theorem 4.71, C9(stv) is free for any v in A,.
Applying Corollary 2.8, we see that C%A) is free.

Conversely, let v € Ag. If CO(A) is free then by Theorem 2.7, CO9(stv) is free. By
Corollary 5.7, this implies Ay, is Cohen-Macaulay. B

Remark: A finite simplicial complex which has Cohen-Macaulay links of vertices is also

called Buchsbaum [22] or aimost Cohen-Macaulay [3]). For a further discussion of these

complexes see also [14] or [32].

In Section 8, we will characterize those complexes for which c%(A) has a reduced

basis, i.e. a free basis which is computationally useful.
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6 Cf(A) as an Inverse Limit

For a partially ordered set (poset) P, let {Aglaep be an inverse system of rings over
P. and let lim, A, denote the inverse limit of the A,'s. (See [20; pp.49-56] for details.)
As usual, let A be a d-complex and R = K[xy,....xq]. The faces of A form a poset under

inclusion. We show that Cr(A) is the inverse limit over A of certain quotients of R.

Proposition 6.1: Cr(A) = lim, R/ (o), where the limit is taken over o € A.

Proof: If T C o, the restriction maps @g; : R/ (o) — R/1(7) are those induced by the
identity map on R. By (4.3), (o) C T(1). so these maps are well defined. This shows
that {R/ (o), ¢} is an inverse system over A. By the proof of the existence of inverse
limits [20; Theorem 2.22], we may view lim, R/ T(o) as a subalgebra of Tig ¢ o R/ T(O).
In fact, since A is finite, we may view lim, R/ (o) as a subalgebra of TI R/T(o) for o
maximal. Since A is pure and 1(c) = (0) for o € Ay . this means lim, R/ T(0) is actually
a subalgebra of R, where t = f4(A). Let oy.....0¢ be an ordering of Aq. Then

(f1.....1;) € lim. R/ T(o) if and only if for all i and j, whenever TCoNo;, f; = f; mod
T1): this happens if and only if for all i and j, f; = f; mod T(O'|no'j). But by Proposition
1.2, this is equivalent to (fy,....f;) € C"(A). B

Note: A is not a directed set, so some of the usual properties of inverse limits will not
hold here. However, since A is finite, we obtain some other useful properties. For

example, in this case, the inverse limit commutes with tensor products.

We get immediately from the proposition (and its proof) that C'(A) is an R-algebra,
with pointwise multiplication and scalar multiplication as a subalgebra of Rt, where
t = 14(A).

We can also use the inverse limit characterization of C"(A) to define CT(A) for
complexes which are not pure or embedded. In this case, we may still view C'(A) as a
subalgebra of T R/ o) for o maximal. However, C'(A) will only be a submodule of 2
free R-module if A C K9 is pure of dimension d.
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Rings which arise as the inverse limit of domains over finite posets have also been
studied in [10; p.108], [12], [23] and [33]. In particular, [10] gives a description of the
face ring of a simplicial complex (see Section S) as an inverse limit. In this case Ag is

just K[yy.....yx] where o = {vy.....vg}. More details about this example can be found in [23]
and [33].

One benefit of the characterization of C"(A) and A, as inverse limits is that we can
use it to give a direct proof of Theorem 5.5:

Let R = Klxg.....xq] and let R, denote R/lz. For o € A, we define a map fo: Ao — Rg
by sending y;, where v,€ o, to the class in Ry containing all linear forms in Xg.....Xg Which
have a value of 1 at the vertex v,, and O at all other vertices of o, i.e.,

{26,: 851 (v)=1, and L4, (v))=0 for all vjeo, j#il.
These maps are easily seen to be well-defined and compatible with the restriction maps
on {Ag} and {Rg}. To see that each fg is an isomorphism, note first that if p is a d-
simplex, then Ry = R = KlXxg.....xq] is generated by the d+1 linear forms {8, :i€p}). For
any o, choose pJ> o with dimp=d, and note that in R = K[, : i€p), I5 = (L, : j€o).
Then Rg sK[_Q_p_, : iepl, and so the map Tp., — Y, for vieo, gives an inverse to fg4.
Since inverse limit is a functor (in this case from inverse systems to graded K-

algebras), the isomorphisms {fs} induce an isomorphism between A, and C'(A) .
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7 Freeness, Bases, and Hilbert Series

In this section, we develop some tests to determine whether C’(A) is free, given a
particular A and r. By Theorem 3.1, we may assume A is hereditary. The idea for the
first two tests comes from Saito [21] who proved similar results for determining when
derivation modules of hyperplane arrangements are free. See also [25]. The second and
third tests only apply when A is a central complex (i.e. the star of a vertex), in which
case C'(A) will be a graded module.

Let R = K[xy....xgl, and let A be a hereditary d-complex with t = f4(A). Recall that
elements of C"(A) may be viewed as t-tuples of R, given an ordering of Ag.

Lemma 7.1: Let T and 1° be distinct interior d-1 faces of A. If afft = afft’, then T
and 1' cannot both be faces of the same d-face O.
Proof: If T and 1" are faces of 0, then T = afftT N o and 1" = afftT" N o. Since T and

7' are distinct, affT cannot be the same hyperplane as afft’. B

Proposition 7.2: Let {F;.....,F;} be elements of C"(A). Let Q be the product of {(£,)*'},
where 1 ranges over Adt_)]. Then det [F,....,Ft] is in QR.

Proof: Let T € Ad?,. say T = 04NO,. Then each Let F; = (fy.....fy)7. Then

1 )
fir e Tt 1fn'fzn O AT P
fa1 oo Tot 1PY 1Py
det [Fl-"--Ft] = =
ft‘ ves ftt ft1 ese ftt

For each i, £, = (2,)*! divides f;;-f5 (by Corollary 1.3), so I, divides det [Fy,....Fy). This
is true for all 7. If the &,'s are distinct, then they are pairwise relatively prime, so Q
must divide det [Fy.....,F{] . If the 2;'s are not distinct, we can do the following.
Suppose 2; = Ly Thenif T = 0yNO, and T' = o;NC;, we must have i and j both
greater than 2, by Lemma 7.1. Assume without loss of generality that (i,j) = (3.4).
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Then
f11-12 Tyt -T2y
f21 T2t
det [F;.....Ft] = f3|-f41 . f3t -f4t
T4 Tt

For each i, ¥, divides fg-T4 so (Z,)2 divides det [F;.....F,], etc. B

Theorem 7.3: {Fy,...Ft} in C"(A) form a basis over R if and only if det [Fy,....F;] is in
QK*™.

Proof: Suppose det [Fy.....,F] = Q. Then clearly {F,.....Fy} must be linearly independent
over R. By Cramer's Rule, QR! C (Fy.....Fy), the R-module generated by F,,....,Fy. Let
F € C"(A) - {0). Then QF € (Fy....Fy). s0 OF = ¥}y r,F; for some {r;} in R. Then
rQ = r(det [Fy....,F¢])

det [Fy ... Fioy TiFj Fiog .. Fyl

= det [Fy ... Fiy ZrjFj Fiay oo Fyl

= det [Fy ... Fi.y QF Fiq ... Fyl

= Q(det [Fy ... Fioy F Floy oo Fed)
which lies in Q2R by Proposition 7.2. So Q divides r. Then F = $(r,/Q)F; € (Fy.....Fp).

Conversely, suppose {Fy,...,Fy} form a basis for C"(A). By Proposition 7.2, det

[Fy....Fe] = rQ, for some re R-{0}. Fix T in Aq.¢%. Let Q; = Q/%,. Thenif 7 = o,Noy,,
then (Q;,Q;.0....,0) is in C"(A), if the 27's are distinct. Then

\QT
Q; Q
eo,t-'=|0 o0 o

0 0 .. Q

But this determinant is equal to rsQ, for some s in R-{0}, since each column is in C'(A),

and so can be written as a combination of the F\'s. Thus r divides Q,!-!. Since T was
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arbitrary, this means that if the 2.'s are distinct, r must be a constant, i.e., r € K*.
Suppose the f,'s are not distinct, for example, &, = 2;». By Lemma 7.1, we may
assume that T = oyNo, and 7' = o3No4. Let Q; = 0,/%,;. Then

1. ]

Q,

g, o
eQ,t'=|0 0 Q

0 0 & 0o

0 0 a,

Thus r divides G,''. Since T was arbitrary, r must be a constant, i.e., r € K*. The

proof is simifar if there are more than two T in Ad?, whose ideal is the same linear
form. N

Corollary 7.4: Let A be a central complex. A set of homogeneous elements {Fy,....,F¢} in
C"'(A) form a basis over R if and only if Z,:, deg(F)) = fd?,(A)(r*l).

Proof: Since the F's are homogeneous, the degree of det [F;....,F{] is either O or the sum
of the degrees of the F\'s. The proof now follows using Proposition 7.2 and Theorem
73. 1§

Let R = K[xy....,xq] where K is a field. Let M be a finitely generated graded R-module.
We will assume this means that M is graded by N. Then R = @ R; where i 20 and R,
consists of the homogeneous elements of degree i and M = ® M; where RM; C M,;. The
Hilbert function of M is defined by H(M.i) = dimg M;. Since M is finitely generated and R

is finitely generated as a K-aigebra, it follows that this function takes values in N. The
Hilbert series of M, which we will denote &(M,\), is the series 3 H(M.i) Al in NIIAIL
F(M,A) is known to have the following standard form. (See for example [26].)

Proposition 7.5: If M is finitely generated then S(M.A) has the form P(M.A)/(1-A)¢

where P(M,A\) is a polynomial in A with integer coefficients. B
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Proposition 7.6: Let R = K[x;.....xq4] where K is a field. Suppose M is a graded R-module
which is free of rank t, and let {G;.G,.....G¢} be a homogeneous basis for M. Let deg(Gs)
denote the degree of Gs and P(M,A) = YaAl. Then a = #{G, : deg(Gs) = i}. In
particular, if M is free, then the coefficients of P(M,\) are non-negative.

Proof: {x,.....xq} is clearly a regular sequence on R (R-sequence). It is also an R'-
sequence, since for 1 < i < d, RY/xR!'= (R/xR). If M is free then M = R! so {x;.....xq}
is an M-sequence. (See [stai*] for a description of regular sequences.) By [26, Cor.
3.2], we see that the Hilbert Series of M has the form
FIMA) = FIM/(Xq,...xgMA) 7 (1-2)¢

since each x; has degree 1. Then by the definition of P(M,\),

*) P(MA) = FIM/(Xq.....Xg)M,A).
Let M = M/(X{....xg)M. Then since P(M.A) = TaAi, (*) implies a; = dimg M;. Let
{Gy.....Gt} be a homogeneous basis for M over R. Then it is easy to see that {Gy.....G¢}

is a basis for M as a vector space over K. Then a basis for M, over K consists of those
Gs which have degree i. Thus a; = #1{G : deg(Gs) = i}. B

Corollary 7.7: Let A be a central complex. Suppose C'(A) is free with homogeneous
basis {Fy,Fp....Fth. If P(CT(A)A) = TaAl, then a = #{F, : deg(F,) = i}. In particular, if
C'(A) is free, then the coefficients of P(C"(A).,A\) are non-negative. N
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8 Reduced Bases for C'(A)

Let R = K[xy.....Xxs] and A C K9 be a d-complex. Recall that C:(A) is the subspace of
C"(A) consisting of piecewise polynomials of degree at most k. If A is the star of a
vertex, then C'(A) is graded, and if C'(A) is free over R, then given any homogeneous
module basis we can write down a vector space basis for C;(A) over K, for any k in N.
We define an analagous version of a homogeneous basis in the non-graded case. Givenr,
we characterize those complexes for which such a basis exists. We also provide a
characterization when r=0 which depends only on the combinatorial properties of A.

More generally, let M C R! be a submodule. Let My) = { F € M : deg(F) < k } where
if F = (fy....1y), deg(F) denotes the maximum of the total degrees of the f{'s. The
following is straightforward.

Proposition 8.1: Let M C Rt be a graded submodule which is free over R. Let A=
{H;.....H;} be a homogeneous basis for M. Then

A¢ = { mH, : mis a monomial in R and deg mH; s k }
is a K-basis for My). #

Remark: If A is the star of a vertex, then C'(A) is graded by Lemma 2.4 and C(A)y) is
just C:(A), so a K-basis for C:(A) will be Ag.

1f C7(A) is free but A is not the star of a vertex, it is useful to know when a basis

for C;(A) over K can be constructed using a given basis for C"(A) over R. With this in

mind, we make the following definition.

Definition 8.2: For any module M C R!, we say that [ = {Gy.....G¢} is a reduced basis for
M if T is a free basis, and F = ¥ G, implies deg(r;G;) < deg F.

Notice that if M is graded, then any homogeneous basis for M will be reduced. A free
Grobner basis for M (if one exists) will be a reduced basis if the ordering respects the
total degree ordering on R. See [6] or [7] for a description of Grobner bases.
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Lemma 8.3: Let M C R! be a submodule of rank n. If M contains a generating set B
with n elements then M is free with basis B.
Proof: Since M is torsion free, then if S is any multiplicative set in R, the map

¢: M— Mg givenby @(m) = m/1
is injective. Thus we may assume M C Mg as R-modules. If B = {by,....by} generates M
over R then B/1 = {b;/1,....b,/1} generates M(g) over R(g) = F. the quotient field of R.
From [2], M(g) = M®gF. Then n = dimg M(g) so B/1 is a basis for M(g). Since M C M(q).
any non-trivial relation on B will give a non-trivial relation on B/1. Thus M is free with
basis B. &

Proposition 8.4: Let M C R! be a submodule. ThenT = {G,,...,Gi} is a reduced basis if
and only if for each k € N,

My = {mG; :1<j<t, m is a monomial in R and deg mG; < k}
is a K-basis for M.

Proof: If F € M), then F has degree < k. If I is a reduced basis, F = 3 rG;, where
deg(r,G;) < k. This shows that I, generates M). The linear independence of elements
from 'y over K follows from the linear independence of the G;'s over R and of the m's
over K.

Conversely, if F € M has degree k, then F is a K-linear combination of elements of Iy,
showing that I generates M (in a reduced way). That I' is a basis follows from Lemma
8.3 1

Remark: If C'(A) has a reduced basis, then any such basis contains the element

(c.c.....c), for some c € K - {0}.

Let A in K9*! be the join of A with a new vertex v outside of affA. Let R = RI[z.
Notice that C'(A) will be a graded R-module.

Theorem 8.5: C'(A) has a reduced basis if and only if C"(A) is free over R.

Proof: Let F € C"(A) be of degree n. By [6, Lemma 2.3], hF. the homogenization of F, is
in C'(A) and is homogeneous of degree n. Suppose C'(A) is free and let A = {Hy.....H;} be
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a homogeneous basis for C'(A). Then "F = ¥rH, where r, € R, deg(mH,) = n.
Evaluating at z = 1 and using well known properties of homogenization, we get

() F =R = SrDHD.

Then A(1) = {H{(1).....H,(1)} generates C"(A) over R, and t = rank C"(A), so by Lemma
8.3, A(1) is a basis for C'(A) over R. To see that it is reduced, note that in (%),
deg(ri(1)H;(1)) < deg riH; = n.

Conversely, let I = {G.....G;} be a reduced basis for C"(A) over R. Let H € C"(A) be
homogeneous of degree k. Then H(1) € C'(A) has degree n < k, and H(1) = 3rG,,
where deg(riG;) = n, < n. By [6, Lemma 2.3], hG,e C"(A) for alli. Then J = § zK-Ni
"r)("G)) € C"(A) and is homogeneous of degree k. Moreover, J(1) = ¥rG, = H(1). Since
H and J are both homogeneous of degree k, they must be equal by [6, Theorem 2.6].
This shows that 'T = {"Gy....."G,} generates C'(A). Since the rank of C'(A) is t, C'(A) is
free with basis 'T. W

We have the analogue of Corollary 7.4 for general A.
Corollary 8.7: Any reduced basis for C'(A), I = {Gy,....G}, satisfies
t 0
Zj:l deg(Gj) = fd-l(A)(r*l)-

Proof: Let I = {Gy,....G;} be a reduced basis for C'(A). In the proof of Theorem 8.5 we
-~ . h

saw that T = {hG|.....th} is a homogeneous basis for C"(A). Since deg(G,) = deg('G;) for

all i, the result follows from Corollary 7.4. N

Let A be simplicial d-complex. We can characterize those complexes for which co(A)
has a reduced basis, showing that when r = 0, the property of having a reduced basis is
a combinatorial invariant.

Corollary 8.8: C9%A) has a reduced basis if and only if A is Cohen-Macaulay.
Proof: Immediate from Theorems 5.8 and 8.5. B
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8 Further Results and Examples

Let A be a hereditary d-complex.. We show that C'(A) is free whenever A(r.A) is
surjective and use this fact to prove that c'(a) is free if G(A) is a tree. A special
case of this is when d = 1, since the graph of any connected 1-complex in K is a tree.

We also give an example to show that Theorem 5.9 is false if d = 3 and r=1.

Theorem 8.1:
(a) If A(A.r) is surjective then C'(A) is free.
(b) 1f A is hereditary and G(A) is a tree, then C (A) is free for any r.

Proof: If A is hereditary then c'(A) = M(A.r) by Proposition 1.5, where M(A,r) is the
kerre! of the map A(A,r): Rt*" — R given by the matrix

1,

'In

Here t = f4(A) = the number of d-faces of A, and n = fd:l(A) = the number of interior
d-1 faces of A. Then t = the number of vertices of G(A) and n = the number of edges.
By [8; Corollary 7.2], o has rank t-1, since A is hereditary. But if A is a tree, t = ne1,
which means d has rank n. This is the maximal rank possible, and since the entries of 3
lie in K, it follows that A is surjective. Let M = M(A,r), A = A(A,r). Then the
sequence

0 — M — Rt A, g0, 0
Is exact and it splits since R" is free, giving R*M = R"@® M. Then M is projective and
hence free by Proposition 2.2. R

The following example shows that that for d > 3, the embedding of A is important.
It also shows that freeness of C%(A) does not imply freeness for C1(A). Further, this
gives an example where A is a manifold and C'(A) is not free, showing Theorem 4.4 is
false for general d.
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Example 9.2: Let A be the octahedron in R3 with vertices at the unit vectors e,
triangulated by putting a vertex at the origin, as in Figure 2. C%A) is free by Theorem
5.8 In fact, C'(A) is free for all r. In terms of the Courant Functions (see Section 5),
a basis for C (A) is given by '
1.%"" X" (XX X, (X)L (XaXs)™ L (XaXeXs) L.
Let & be the same complex again but with vs = (1,1,1). Then c®(&) is free by
Theorem 5.9. We compute that P(C'(Z)A) =1+7A2+423.75.2A8-A7. This has a negative

coefficient so by Corollary 7.7, c¢'(Z) is not free.

Vg = (0.0,1)

va = (-1,0,0)

V3 = (0.‘ .0)

Vi = (0,-1,0) ==

V¢ = (1,0,0)

ve = (0,0,-1)

FIGURE 2

Regular octahedron
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