The Algebra of Continuous Piecewise Polynomials

LOUIS J. BILLERA*

Department of Mathematics, Cornell University, Ithaca, New York 14853, and Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

DEDICATED TO THE MEMORY OF D. R. FULKERSON

For a triangulated d-dimensional region $A \subset \mathbb{R}^d$, we consider the algebra $C^0(A)$ of all continuous piecewise polynomial functions on A. We find generators for $C^0(A)$ as an \mathbb{R} -algebra and use these to give an isomorphism between $C^0(A)$ and a quotient of the face ring A, of A. We then study the structure of $C^0(A)$ as a module over $R = \mathbb{R}[y_1, ..., y_d]$, the polynomial ring in A indeferminates, giving generators for $C^0(A)$ as an R-module. These form a free basis when A is a shellable complex. In general, we show that $C^0(A)$ is a free R-module whenever A is a disk. O 1989 Academic Press. Inc.

1. INTRODUCTION

For a finite pure d-dimensional simplicial complex A (rectilinearly) embedded in \mathbb{R}^d , we define C'(A) to be the set of all C' functions $F: A \to \mathbb{R}$ such that for each maximal $\sigma \in A$, $F|_{\sigma}$ is given by a (real) polynomial in d variables. (Here, pure means all maximal simplices in A have dimension d.) Such an F is C' at a point $x \in A$ if the value at x of any partial derivatives up to order r of $F|_{\sigma}$, for σ a maximal simplex containing x, is independent of the choice of σ . The elements of C'(A) are called piecewise polynomials, splines, or finite elements.

The set C'(A) forms a vector space over \mathbb{R} . Of particular interest are the subspaces $C'_m(A)$ of elements F such that each $F|_\sigma$ is of degree at most m, $m \ge 0$. In general, one would like to find the dimension and a basis for each of these, a problem originally stated in this form by Strang [13, 14]. See [3] for further discussion of the general problem as well as specific results for the case d = 2, especially for r = 1.

Additionally, C'(A) forms a ring under pointwise multiplication. (If A is a A-pseudomanifold all of whose links are pseudomanifolds, one can use [3, Theorem 2.4] to give an easy proof of this. Otherwise, one can use a

170

0001-8708 89 \$7.50 Copyright (* 1989 by Academi

Copyright (* 1989 by Academic Press, Inc. All rights of reprodution any form reserved

multivariate form of the product rule.) In fact, if $R = \mathbb{R}[y_1, ..., y_d]$, the polynomial ring in d indeterminates, then C'(A) is an R-algebra via the diagonal embedding $R \subseteq C'(A)$ which sends $p \in R$ to the piecewise polynomial P with $P|_{\alpha} = p$ for all $\sigma \in A$. It is the purpose of this paper to study the R-algebra C''(A) of all continuous piecewise polynomials over a d-dimensional complex $A \subseteq \mathbb{R}^d$.

We begin in Section 2 by specifying a finite set of \mathbb{R} -algebra generators for $C^0(A)$. In Section 3 we consider relations on these generators and use these to relate $C^0(A)$ to A_A , the face ring of A. We show that as a ring, $C^0(A)$ is the quotient of A_A by a principal ideal. As a consequence, we derive the dimensions (as vector spaces over \mathbb{R}) of the subspaces $C^0_{a}(A)$. In Section 4 we consider the R-module structure of $C^0(A)$, using a slight modification of a result of Kind and Kleinschmidt to obtain a set of R-module generators. In the case that A is a disk, we show that $C^0(A)$ is a free R-module (i.e., has a basis over R), and for shellable A, we give a free basis. This basis is shown to have a triangular form that may prove useful in computation. $P(S^1) \cap P(S^1) \cap P(S^1)$

2. \mathbb{R} -Algebra Generators for $C^0(A)$

We first consider the problem of identifying a set of generators for $C^0(A)$ as algebra over \mathbb{R} . Suppose the vertices of A are $v_1, v_2, ..., v_n$. Let X_i be the unique piecewise linear function on A defined by $X_i(v_i) = \delta_{ij}$, where δ_{ij} is the Kronecker delta, i, j = 1, ..., n. It is straightforward to see that $X_1, ..., X_n$ forms a basis for $C^0_i(A)$ as a real vector space; consideration of this basis traces back at least to a 1943 paper of Courant [5]. We will refer to the functions X_i as the Courant functions of A.

The aim of this section is to show that $X_1, ..., X_n$ generate $C^0(A)$ as an \mathbb{R} -algebra, that is, for each $F \in C^0(A)$ there is a real polynomial G in n indeterminates so that as functions on A, $F = G(X_1, ..., X_n)$.

Suppose Δ is a d-complex in \mathbb{R}^d with vertices $v_1, ..., v_n$. Let v_0 be a new vertex and consider the join of v_0 and A, $\hat{A} = v_0 \cdot A$, defined as a subset of \mathbb{R}^{d+1} by considering

$$A \subset \{(1; y)| y \in \mathbb{R}^d\} \subset \mathbb{R}^{d+1}$$

 $v_0 = (0; 0) \in \mathbb{R}^d$ and maximal simplices of \hat{A} being the join (convex hull) of maximal simplices in \hat{A} with the point v_0 . For any $F \in C^0(A)$ we associate a function \hat{F} on \hat{A} as follows. Let $m = \deg F \equiv \max_{a,c,b} \deg F|_a$ and define

$$\hat{F}(y_0; y) = Y_0^m F\left(\frac{1}{y_0}y\right), \tag{2.1}$$

^{*} Supported, in part, by the National Science Foundation under Grant DMS-8403225

when $y_0 > 0$, and $\hat{F}(0; y) = 0$. It is easy to check that $\hat{F} \in C^0(\hat{A})$, $\hat{F}(1; y) = F(y)$ and if X_i is a Courant function on A then \hat{X}_i is the corresponding Courant function on \hat{A} . Denote by \hat{X}_0 the Courant function on \hat{A} corresponding to v_0 . We will need the following simple observation.

LEMMA 2.2. If $C^0(\hat{A})$ is generated by \hat{X}_0 , \hat{X}_1 , ..., \hat{X}_n as an \mathbb{R} -algebra, then $C^0(A)$ is generated by X_1 , ..., X_n .

Proof. This is immediate from the above discussion, since if $F \in C^0(A)$ and \hat{F} is given by (2.1), there is a polynomial \hat{G} in n+1 variables so that

$$\hat{F} = \hat{G}(\hat{X}_0, \hat{X}_1, ..., \hat{X}_n).$$

But for any $y \in A$,

$$\begin{split} F(y) &= \hat{F}(1; y) \\ &= \hat{G}(\hat{X}_0(1; y), \hat{X}_1(1; y), ..., \hat{X}_n(1; y)) \\ &= \hat{G}(0, X_1(y), ..., X_n(y)) \\ &\equiv G(X_1, ..., X_n)(y). \quad \blacksquare \end{split}$$

THEOREM 2.3. For any d-dimensional complex A embedded in \mathbb{R}^d , $C^0(A)$ is generated as an \mathbb{R} -algebra by its Courant functions $X_1, ..., X_n$.

Proof. The proof is by induction on the number of maximal simplices in A. If A consists of a single a-simplex a, then the functions $X_1, ..., X_{d+1}$ give the barycentric coordinates of a point $y \in a$ in terms of the vertices $v_1, ..., v_{d+1}$. In particular, if v_{ij} is the jth coordinate of vertex v_i , then if $v_i \in a$,

$$y_i = \sum_{i=1}^{d+1} v_{ii} X_i(y).$$
 (2.4)

Thus, if $F(y) = F(y_1, ..., y_d)$ is a polynomial function on σ , then using (2.4) we can write $F(y) = G(X_1, ..., X_{d+1})(y)$ for some polynomial G.

In general, suppose $\bar{A} = A \cup \bar{\sigma}$, where σ is a maximal simplex in \bar{A} and A has fewer maximal simplices than \bar{A} . Here $\bar{\sigma}$ denotes the family consisting of σ and all its subsets. (Note that we are freely moving between the notion of A as a family of subsets of $\{v_1, ..., v_n\}$ and A as triangulated region in \mathbb{R}^d .) By Lemma 2.2, we may assume there is a vertex v_0 in each maximal simplex of \bar{A} . Assume $\sigma = \{v_0, ..., v_d\}$ and let

$$\tilde{\sigma} \cap A = \bigcup_{j=1}^{n} \tilde{\tau}_{j},$$

where the τ_i are the maximal simplices in $\bar{\sigma} \cap A$.

By our assumption, $v_0 \in \bigcap_{i=1}^{t} \tau_j$. Using an affine transformation, if necessary, we may further assume that the embedding is such that $v_0 = 0$ and for i > 0, $v_i = e_i$, the *i*th unit vector in \mathbb{R}^d . Thus, for each *j* there is a subset $S_j \subset \{1, ..., d\}$ so that

$$\tau_i = \{ y \in \text{conv} \{ v_0, ..., v_d \} : y_i = 0 \text{ for } i \in S_i \}$$

Now, suppose $F \in C^0(\bar{A})$. By induction, we may assume $F|_A = 0$. Thus, as a polynomial function on σ , $F|_{\sigma} = 0$ on τ_i for each j, i.e.,

$$F|_{a} \in \bigcap_{j \ge 1} \langle y_{j}; i \in S_{j} \rangle = I \tag{2.5}$$

as a polynomial in $y_1, ..., y_d$, where $I_j \equiv \langle y_j : i \in S_j \rangle$ denotes the ideal generated by that set of p_i . The I_j are "face ideals" in the terminology of Reisner [8] and correspond via the lattice anti-isomorphism of [8, Proposition 1] to the faces τ_j of σ (actually, to the faces $\tau_j \setminus \{v_0\}$ of $\sigma \setminus \{v_0\}$). By [8, Lemma 1] (and its proof), we have that $I \equiv \bigcap I_j = I_2$, where

$$\Sigma = \bigcup \ \bar{\mathbf{t}}_{j} \equiv \bar{\mathbf{\sigma}} \cap A$$

and I_2 is the ideal generated by (square-free) monomials not supported on Σ

Thus for $y \in \sigma$

$$F(y) = \sum_{\substack{p \neq 1 \\ p \in \sigma \text{ [rn]}}} \left(\prod_{i \in p} y_i \right) G_p(y_1, ..., y_d)$$
 (2.6)

by (2.5). Define $\overline{F} \in \mathbb{R}[X_1, ..., X_n]$ by

$$\bar{F} = \sum_{\substack{\rho \neq 1 \\ \rho + |\sigma| |\{n\}}} \left(\prod_{(i_1 \in \rho)} X_i \right) G_{\rho}(X_1, ..., X_d). \tag{2.7}$$

By (2.6), $\overline{F}|_a = F|_a$. To complete the proof, we must show $\overline{F}|_A = 0$, and so $\overline{F} = F$ on \overline{A} If $\overline{F}|_A \neq 0$, there must be a $\tau \in A$ with $\overline{F}|_A \neq 0$ Thus by (2.7), $\tau \supseteq \rho$ for some $\rho \notin \Sigma$, $\rho \subset \sigma$. But then $\rho \in A \cap \overline{\sigma} = \Sigma$, which is impossible.

3. RELATIONS AND THE FACE RING

We consider now relations on the generators of $C^0(A) = \mathbb{R}[X_1, ..., X_n]$ and use these to relate $C^0(A)$ to the face ring of A of Stanley [9] and Reisner [8].

(over ℝ) is the ring For a simplicial complex A with vertices $v_1, v_2, ..., v_n$, the face ring of A

$$A_{.1} = \mathbb{R}[x_1, ..., x_n]/I_{.1},$$
 (3.1)

where $\mathbb{R}[x_1,...,x_n]$ is the polynomial ring in *n* indeterminates and, as in Section 2, I_J is the ideal generated by square-free monomials not supported by faces of Δ , i.e.,

$$I_A = \langle x_{i_1} \cdots x_{i_k} \colon \{v_{i_1}, ..., v_{i_k}\} \notin A \rangle. \tag{3.2}$$

this case, with regard to the C^0 piecewise polynomials on Δ . it will be used to obtain structural as well as enumerative consequences, in enumeration in certain complexes [9, 11]. Here, perhaps for the first time, A, has proved to be enormously useful in dealing with questions of

By Theorem 2.3, there is a surjective W-algebra homomorphism if and only if there is a $\sigma \in A$ such that none of the X_i is identically zero on This is due to the fact that a product $X_{i_1} \cdots X_{i_l}$ is not identically zero on A functions $X_1, ..., X_n$ satisfy all the defining relations of A_1 given in (3.2). To see the connection between A_J and $C^0(A)$, note first that the Courant

$$\mathbb{R}[x_1, ..., n] \to C^0(A)$$
 (3.3)

defined by sending x_i onto the Courant function X_i . The discussion above shows that the map (3.3) induces a well-defined surjection

$$A_1 \to C^0(A) \tag{3.4}$$

with \bar{X}_i going to X_i , \bar{X}_i being the image of x_i under the canonical surjection $\mathbb{R}[x_1, ..., x_n] \to A_i$. Thus as \mathbb{R} -algebras,

$$C^0(A) \cong A_A/K, \tag{3.5}$$

where the K is the kernel of the map (3.4). We wish to describe the ideal K

 $X_1 + \cdots + X_n$ takes the value 1 identically on Δ , we have $\bar{x}_1 + \cdots + \bar{x}_n - 1$ is an element of the ideal K. We show, in fact, that it generates K as an further relation on the Courant functions $X_1, ..., X_n$. Since the function Note that, in addition to the relations in (3.2), there is at least one

(J) - 1 0

THEOREM 3.6. As R-algebras

To the second

$$C^0(A) \cong A_A/\langle \hat{x}_1 + \dots + \hat{x}_n - 1 \rangle.$$

Proof. We proceed by induction on the number of maximal simplices

austes Something of U 10

show there is an isomorphism Suppose A consists of a single d-simplex σ with vertices $v_1, ..., v_{d+1}$. In this case $A_d = \mathbb{R}[x_1, ..., x_{d+1}]$ and $C^0(A) \cong \mathbb{R}[x_1, ..., x_d]$. Thus we must

$$\mathbb{R}[x_1, ..., x_d] \cong \mathbb{R}[x_1, ..., x_{d+1}]/\langle x_1 + \cdots + x_{d+1} - 1 \rangle$$

Let $S = \mathbb{R}[x_1, ..., x_d]$ and consider the surjection

$$S[x_{n+1}] \rightarrow S$$

this map is the ideal generated by $x_{d+1} - a$. It is easy to see (by [15, Corollary 1, p. 31], for example) that the kernel of defined by $x_{d+1} \mapsto a = 1 - x_1 - \dots - x_d$ (this is the map (3.4) in this case).

prove the theorem, we must show that if $a = p(\bar{x}_1, ..., \bar{x}_n)$ and $p(\bar{X}_1,...,\bar{X}_n)$, and the image of a under the map (3.4) by $p(X_1,...,X_n)$. To In general, an element $a \in A_A$ may be represented as a polynomial

$$\bar{a} = p(X_1, ..., X_n) = 0$$
 (3.7)

in $C^0(A)$, then there is some $b \in A_A$ so that

$$a = (\bar{x}_1 + \dots + \bar{x}_n - 1)b \tag{3.8}$$

in A_{J} .

of σ that are not in Δ . If $v_1, ..., v_n$ are the vertices of \overline{A} , suppose $v_1, ..., v_k$, $k \le n$, are in Δ and $v_{k+1}, ..., v_n$ are in $\overline{\sigma} \setminus A$. In particular, the latter set of $\rho_1, ..., \rho_s$. With this interpretation, $\bar{x}_{k+1}, ..., \bar{x}_n$ exist in A_d and are all equal generated by the square-free monomials $m_1, ..., m_n$ corresponding to vertices is among the ρ_i . We can view $A_{ij} \cong A_{ij}/J$, where J is the ideal has fewer maximal simplices than \overline{A} . Let $\rho_1,...,\rho_s$ be all the minimal faces Suppose now that $\bar{A} = A \cup \bar{a}$, where σ is a maximal simplex in \bar{A} and A

If $a = p(\bar{X}_1, ..., \bar{X}_n) \in A_{\perp}$ and (3.7) holds in $C^0(\bar{A})$ then

$$p(X_1, ..., X_k, 0, ..., 0) = 0 (3.9)$$

in $C^0(A)$. By induction, (3.8) holds in A_A , that is, there is a $b \in A_A$, so that

$$p(\bar{X}_1, ..., \bar{X}_n) = (\bar{X}_1 + \cdots \bar{X}_n - 1)b$$
 (3.10)

elements via the canonical surjection $A_1 \rightarrow A_2$, we have that in A_A (where we can list all $n \bar{x}$,'s by the comment above). Lifting these

$$p(\bar{x}_1, ..., \bar{x}_n) = (\bar{x}_1 + ... + \bar{x}_n - 1)b + \sum x_i m_i$$
 (3.11)

holds in A_A , for some $\alpha \in A_A$

ace of the simplices ρ_i , they can only be faces of other faces of use they would have to be in Δ). Thus, we can assume that the α_i of are all elements of A_n , the face ring of $\bar{\sigma}$ (otherwise $\alpha_i m_i = 0$), as all the m_i . So we have

$$\sum \alpha_i m_i = q(\bar{x}_i, ..., \bar{x}_n)$$
 (3.12)

in A_{σ} and $q(X_{l},...,X_{n})=0$ in $C^{0}(\bar{\sigma})$ by (3.7) and (3.11), where $v_{l},...,v_{k+1},...,v_{n}$ are all the vertices of σ . By induction again, there is a b' in A_{σ} so that

$$\sum \alpha_i m_i = (\bar{x}_i + \dots + \bar{x}_n - 1)b'$$
 (3.13)

: A

Now A_a is just the polynomial ring in $x_1, ..., x_n$, and each monomial appearing in the expression on the left side of (3.13) is divisible by one of the m_i , so the same must hold on the right side. This can only happen if $b' = \sum \beta_i m_i$, for some $\beta_i \in A_a$. As before, we can view $A_a = A_{\beta}/\langle \bar{x}_1, ..., \bar{x}_{i-1} \rangle$ and lift (3.13) to A_{β} . Now (3.13) lifts to

$$\sum \alpha_i m_i = (\bar{X}_1 + \dots + \bar{X}_n - 1) \sum \beta_i m_i + \sum_{i \in I} \gamma_i \bar{X}_i$$
 (3.14)

in A_j . Finally, A_j inherits the finest grading of the polynomial ring (by monomials), and so we can conclude that each monomial appearing in the unique representation of the term $\sum \gamma_j \bar{x}_j$ in (3.14) must be a multiple of one of the m_i as well as of one of the \bar{x}_j , j < l. Again, by the choice of ρ_i , we have $\bar{x}_j m_j = 0$ if j < l, and so $\sum \gamma_j \bar{x}_j = 0$ in A_j . Combining this, (3.14), and (3.11), we obtain the desired conclusion.

In particular, since $\bar{x}_1 + \cdots + \bar{x}_n - 1$ is not a zero divisor and the Krull dimension of A_i is d+1 [9], we get that the Krull dimension of $C^0(A)$ is d

As a first application of Theorem 3.6, we compute the dimensions of the subspaces $C_m^0(A)$ of continuous piecewise polynomials of degree at most m. Since by (3.2) the ideal I_i is homogeneous in the usual grading of $\mathbb{R}[x_1,...,x_n]$ by total degree, A_i is a graded ring. We denote by A_m the subspace of all homogeneous elements of degree m (images under the map $x_i \mapsto \bar{x}_i$, of all degree m homogeneous polynomials) and let

$$A^{(m)} = A_0 \oplus A_1 \oplus \cdots \oplus A_m.$$

Proposition 3.15. As vector spaces over 民,

$$C_m^0(A) \cong A_m$$
.

Proof. Restricting the surjection (3.4) to the subspace $A^{(m)}$ gives a surjection onto $C_m^0(A)$ by the proof of Theorem 2.3, and so we get an exact sequence of vector spaces

$$0 \to A^{(m)} \cap K \to A^{(m)} \to C_m^0(A) \to 0, \tag{3.16}$$

where $K = \langle \bar{x}_1 + \cdots + \bar{x}_n - 1 \rangle$.

Now consider the map

$$A^{(m-1)} \to A^{(m)} \cap K$$

defined by $p\mapsto p(\bar{x}_1+\cdots \bar{x}_n-1)$. The map is clearly injective (consider the nonzero homogeneous component of p of least degree). It is surjective as well since if $q=p(\bar{x}_1+\cdots+\bar{x}_n-1)\in A^{(m)}$, then $p\in A^{(m)-1}$ (consider the lexicographically first monomial in p of highest degree; its product with the first \bar{x}_i dividing it will not be zero and cannot be cancelled).

Thus by (3.16) we have isomorphisms

$$C_m^0(A) \cong A^{(m)}/A^{(m)} \cap K \cong A^{(m)}/A^{(m-1)} \cong A_m.$$

Recall that the Hilbert function of the graded algebra A_{\perp} is defined by

$$H(m) = \dim_{\mathbb{R}} A_m$$

for $m \in \mathbb{N}$. This was explicitly computed by Stanley in [9, Proposition 3.2] (see also [12, p. 63]), and so we have the following result. We define $f_i = f_i(A)$ to be the number of *i*-dimensional simplices in A.

Corollary 3.17. For a pure d-dimensional simplicial complex $A \subseteq \mathbb{R}^d$,

dim
$$C_m^0(A) = \sum_{i=0}^{d} f_i \binom{m-1}{i}$$
 (3.18)

for m > 0.

Clearly, dim $C_0^0(A) = 1$. For m = 1, (3.18) gives dim $C_0^0(A) = f_0 = n$, a fact already illustrated by the basis $X_1, ..., X_n$ for $C_1^0(A)$. For the first few values of m > 1, we get from (3.18) that dim $C_1^0(A) = f_0 + f_1$, dim $C_1^0(A) = f_0 + 2f_1 + f_2$, and dim $C_1^0(A) = f_0 + 3f_1 + 3f_2 + f_3$.

Up to this point, the assumption that A be a pure complex is probably not necessary. In particular, a direct proof of Corollary 3.17 can be given that does not require A to be pure.

4. $C^0(A)$ AS AN R-MODULE

We use the relationship between $C^0(A)$ and A, to study the R-module structure of $C^0(A)$, obtaining a combinatorially defined generating set for

 $C^0(A)$ over R and a sufficient condition for $C^0(A)$ to be a free R-module. In order to do this, we must modify somewhat the treatment of the face ring for shellable complexes due to Kind and Kleinschmidt [7]. (See also Garsia [6] and Baclawski and Garsia [1] for similar treatments of the face ring for shellable complexes.)

For any ordering of the maximal simplices $\sigma_1, \sigma_2, ..., \sigma_t$ $(t = f_d(A) = \text{number of } d\text{-simplices in } A)$ of the (pure d-dimensional) simplicial complex A, we denote by

$$A_i = \bar{\sigma}_1 \cup \cdots \cup \bar{\sigma}_i \tag{4.1}$$

the subcomplex generated by the first *i* maximal simplices; $A_i = A$. As in the proof of Theorem 3.6, we consider the minimal faces of σ_i that are not in A_{i-1} (where we let $A_0 = \phi$, the empty complex). Denote these faces by $\rho_1^i, \dots, \rho_N^i$, where $s_i \ge 1$.

The vector $s = (s_1, ..., s_r)$ depends upon the given ordering of the maximal simplices of A. If s = (1, 1, ..., 1) for some ordering, A is said to be shellable and the ordering is called a shelling of A. For complexes that are not shellable, there may be some interest in studying orderings that minimize s in some reasonable sense (e.g., minimum sum or lexicographically or some combination).

For our purposes, assume the ordering $\sigma_1, \sigma_2, ..., \sigma_t$ to be fixed. For each i, we let $m_1', ..., m_s'$, be the square-free monomials in A_A corresponding to the faces $\rho_1', ..., \rho_s'$. If A has vertices $v_1, ..., v_n$ and dim A = d, then suppose $C = (c_n)$ is a $(d+1) \times n$ matrix, with rows indexed 0, 1, ..., d and columns indexed by the vertices, such that the columns corresponding to any simplex of A are linearly independent. (This is the case, for example, if any $(d+1) \times (d+1)$ submatrix is invertible; this is the assumption of [7].) For $0 \le i \le d$, we define the linear form

$$\theta_i = c_{i1}\bar{X}_1 + \dots + c_{in}\bar{X}_n \tag{4.2}$$

in A_j. The following is a partial generalization of the main theorem of Kind and Kleinschmidt [7].

THEOREM 4.3. Considered as a module over the subring $\mathbb{R}[\theta_0, ..., \theta_d]$, A_A is generated by the monomials m_i^i , $1 \le i \le t$, $1 \le j \le s_i$.

Proof. The proof is a straightforward extension of the inductive proof of generation given in [7] and will not be repeated here. We will only note that the apparent weakening of the hypothesis on the matrix C causes no problem since the proof in [7] uses only the invertibility of the subsets of columns corresponding to the maximal simplices. The fact that multiple

generators are introduced when a new maximal simplex is added is easily incorporated into the argument.

We note here that a consequence of Theorem 4.3 is that the linear forms $\theta_0, \theta_1, ..., \theta_d$ form a homogeneous system of parameters for A_d since the Krull dimension of A_d is d+1 [12]. (This fact was known by Stanley [personal communication, 1976], and noted by him without proof in [10].) The full result of Kind and Kleinschmidt is that if $\sigma_1, ..., \sigma_t$ is a shelling of A_d (and so $s_t = 1$ for each i), then the t monomials $m_1^1, ..., m_t'$ form a free basis for A_d over the (polynomial) subring $\mathbb{R}[\theta_0, ..., \theta_d]$. More generally, for any Cohen-Macaulay complex A_d (for example, A_d a A_d -disk), A_d is a free module of rank $t = f_d(A)$ over $\mathbb{R}[\theta_0, ..., \theta_d]$. (See, e.g., [12] for a discussion of Cohen-Macaulay complexes and some basic references. An elementary survey of some of the relevant material can be found in [2].)

We show now that Theorem 4.3 leads to generators for $C^0(A)$ over R. For disks, for example, this translates to freeness of $C^0(A)$ as an R-module, and gives free generators when A is shellable. To this end, if m_i^I is one of the square-free monomials in $\bar{x}_1, ..., \bar{x}_n$ from the theorem, let M_i^I denote the corresponding monomial in the functions $X_1, ..., X_n$.

THEOREM 4.4. For any pure d-complex A, $C^0(A)$ is generated as an R-module by the piecewise polynomial functions M_p^i , $1 \le i \le t$, $1 \le j \le s_i$.

Proof. As in (2.4), we write for $p \in A$ (considered as a point set in \mathbb{R}^d)

$$y_i = \sum_{i=1}^{n} v_{ii} X_i(y),$$
 (4.5)

where v_{ij} is the jth coordinate of vertex v_i of A. Define a $(d+1) \times n$ matrix $C = (c_{kl})$ by

$$c_{kl} = \begin{cases} 1 & \text{if } k = 0\\ v_{kl} & \text{if } k > 0; \end{cases}$$

$$\tag{4.6}$$

C clearly satisfies the property that the columns corresponding to any simplex of A are linearly independent. Thus the elements $\theta_0, \theta_1, ..., \theta_d$ of A defined by (4.2) define a subring $\mathbb{R}[\theta_0, \theta_1, ..., \theta_d]$ such that the monomials m'_i give generators of A₁ over this subring.

The result now follows from the surjection (3.4) and the fact that, by (4.5), the image of $\mathbb{R}[\theta_0, \theta_1, ..., \theta_d]$ under that map is the ring $R = \mathbb{R}[[x_1, ..., x_d]]$.

In particular, we have shown that the θ_i 's defined by (4.2), (4.5), and (4.6) form a homogeneous system of parameters for A_A , and so, in particular, they are algebraically independent. If A is Cohen Macaulay,

in particular, if A is a disk, this means that there will be homogeneous elements $\eta_1, ..., \eta_r$ in A_A (i.e., homogeneous polynomials in $\bar{x}_1, ..., \bar{x}_n$) such that the η_i form a basis for A_A as a free module over $\mathbb{R}[\theta_0, \theta_1, ..., \theta_n]$. (See, e.g., [9, Proposition 4.1].) We show next that, under the map (3.4), this translates to the freeness of $C^0(A)$ over R.

THEOREM 4.7. If A is a disk (more generally, if A is any Cohen-Macaulay complex), then $C^0(A)$ is a free R-module of rank $t = f_a(A)$.

Proof. Let $\theta_0, \theta_1, ..., \theta_d$ be the homogeneous system of parameters for A_1 defined above, and let $\eta_1, ..., \eta_d$ be homogeneous elements that form a free basis for A_1 over $\mathbb{R}[\theta_0, \theta_1, ..., \theta_d]$. Let $\bar{\eta}_1, ..., \bar{\eta}_d$ be the images of these elements under the surjection (3.4). As before, $\bar{\eta}_1, ..., \bar{\eta}_d$ generate $C^0(A)$ as an R-module. To show that they form a free basis, suppose there is a relation

$$\sum_{i=1}^{l} p_{i}(y_{1}, ..., y_{d}) \bar{\eta}_{i} = 0$$
 (4.8)

in $C^0(A)$, where each $p_i \in R$. Then lifting (4.8) to A_A , we get that

$$\sum_{i=1}^{r} p_{i}(\theta_{1},...,\theta_{J}) \eta_{i} \in \langle \theta_{0} - 1 \rangle$$

by Theorem 3.6, and so there exist $q_i(\theta_0, \theta_1, ..., \theta_d)$ in $\mathbb{R}[\theta_0, \theta_1, ..., \theta_d]$ so that

$$\sum_{i=1}^{t} p_{i}(\theta_{1}, ..., \theta_{d}) \eta_{i} = (\theta_{0} - 1) \sum_{i=1}^{t} q_{i}(\theta_{0}, ..., \theta_{d}) \eta_{i}.$$

By the freeness of A_{\perp} , we get

$$p_{i}(\theta_{1}, ..., \theta_{d}) = \theta_{0}q_{i}(\theta_{0}, ..., \theta_{d}) - q_{i}(\theta_{0}, ..., \theta_{d})$$
(4.9)

for each *i*. Since the θ_i 's are algebraically independent and the degree of θ_0 on the left of (4.9) is zero, we conclude that each $q_i = 0$, and so each $p_i = 0$.

We remark here that $C^0(A)$ can be shown to be a free R-module for any A-manifold $A \subset \mathbb{R}^d$. The proof involves an application of Theorem 4.7 to various localizations of $C^0(A)$ and the fact that projective modules over polynomial rings are free. It will appear as a part of a forthcoming general study of the rings $C^0(A)$.

In the case that A is a shellable d-complex in \mathbb{R}^d (and thus a shellable disk), the result of Kind and Kleinschmidt [7] is that one can take $\eta_i = m_i^2$,

the monomial corresponding to the unique minimal face introduced at the *i*th stage of the shelling. Letting M, be the corresponding product of the appropriate Courant functions, we get the following.

COROLLARY 4.10. For shellable A, $C^0(A)$ is freely generated as an R-module by the piecewise polynomial functions $M_1, ..., M_\ell$.

As before, we let $f_i = f_i(A)$ be the number of *i*-dimensional simplices in $A = (f_{-1} \equiv 1)$, and we define, for $0 \le k \le d+1$,

$$h_k = \sum_{i=0}^{k} (-1)^{k-i} {d+1-i \choose d+1-k} f_{i-1}.$$

Then we have that $t = f_d = h_0 + h_1 + \cdots + h_{d-1}$, $h_0 = 1$, $h_1 = f_0 - d - 1$, and $h_{d+1} = (-1)^{d+1} (1-\chi(d))$, where $\chi(d)$ is the Euler characteristic of d (and so $h_{d+1} = 0$ if A is a d-disk). Further, if we define the degree of a piecewise polynomial to be the maximum degree of any of its components, h_k is the number of M, that are of degree k. (See, e.g., [4, Proposition 2].) Thus there are no elements in the basis of degree larger than d. While different shellings of A will lead to different basis elements M'_k , the h_k 's are clearly invariants of A.

EXAMPLE 4.11. Let A be the triangulation of a quadrilateral (with vertices v_1, v_2, v_3, v_4) by adding a single vertex v_0 in the interior. If the maximal simplices are ordered

$$v_0v_1v_2$$
, $v_0v_2v_3$, $v_0v_3v_4$, $v_0v_1v_4$

we get a shelling, which yields the free basis

$$1, X_3, X_4, X_1X_4$$

for $C^0(A)$ over $R = \mathbb{R}[y_1, y_2]$. If, instead, we choose the shelling

we obtain the basis

In either case, we have $h_0 = 1$ degree 0 element, $h_1 = 2$ degree 1 elements, and $h_2 = 1$ degree 2 elements in the basis.

Finally, we remark here that the basis given in Corollary 4.10 is triangular in the following sense. Suppose $\sigma_1, \sigma_2, ..., \sigma_r$ is the shelling of A that produced the basis $M_1, M_2, ..., M_r$, and let A_r be defined by (4.1). Then $M_1 = 1$ and for i > 1, the function M_r is zero on $\sigma_1, ..., \sigma_{r-1}$. The

corresponding to the minimal face of σ_i not in A_{i-1} , and so it must vanish reason for this is that M_i is the product of the Courant functions

already achieved on σ_i , for i < i. at most $m - \deg M$, so that p, M, is the best approximation of this form to σ_1 . If polynomials $p_1, ..., p_{r-1}$ have been chosen, then choose p_r of degree property noted above, the choice of p_i does not effect the approximation the function $f = \sum_{i=1}^{j-1} p_i M_i$ on the simplex σ_i . Because of the triangular approximates the function f (in whatever sense is of interest) on simplex polynomial approximation (of degrees at most m) to an arbitrary function f on A. Start with a polynomial p_1 of degree at most m that best This suggests the following scheme for obtaining a continuous piecewise

 $C_m^0(A)$ in terms of the h,'s. In particular, dim $C_m^0(A)$ is the coefficient of t^m that one can obtain a direct computation of the dimensions of the spaces of the basis. Thus this basis has the following reduced property: whenever in the power series $F = \sum_{i=1}^{n} p_i M_i$ then deg $p_i M_i \le \deg F$ for each i. One consequence of this is F in terms of the basis $M_1,...,M_r$; this follows from the triangular property If $F \in C^0(A)$, the above scheme will produce the unique representation of

$$\frac{h_0 + h_1 I + \dots + h_d I^d}{(1 - I)^{d + 1}}.$$

That this is the same as (3.18) is discussed in [9, 12].

REFERENCES

- I. K. BACLAWSKI AND A. M. GARSIA, Combinatorial decompositions of a class of rings, Adv. Math. 39 (1981), 155-184.
- L. J. BILLERA, Polyhedral theory and commutative algebra, in "Mathematical Programming: The State of the Art" (A. Bachem, M. Grötschel, and B. Korte, Eds.), pp. 57-77, Springer-Verlag, Berlin, 1983.
- L. J. Billera, Homology of smooth splines: Generic triangulations and a conjecture of Strang, Trans. Amer. Math. Soc. 310 (1988), 325-340.
- 4. L. J. BILLERA AND C. W. LEE, A proof of the sufficiency of McMullen's conditions for Evectors of simplicial convex polytopes, J. Combin. Theory Ser. A 31 (1981), 237-255.
- R. COURANT, Variational methods for the solution of problems of equilibrium and vibration, Bull. Amer. Math. Soc. 49 (1943), 1-23.
- A. M. Garsia, Combinatorial methods in the theory of Cohen-Macaulay rings, Adv. in Math. 38 (1980), 229-266.
- B. KIND AND P. KLEINSCHMIDT, Schälbare Cohen-Macaulay-Komplexe und ihre Parametrisierung, Math. Z. 167 (1979).
- œ G. A. RESNER, Cohen Macaulay quotients of polynomial rings, Adv. in Math. 21 (1976).
- 9 R. P. STANLEY, The upper bound conjecture and Cohen-Macaulay rings, Stud. Appl. Math. 54 (1975), 153-162.

10. R. P. STANLEY, Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249 (1979), 139-157.

ALGEBRA OF CONTINUOUS PIECEWISE POLYNOMIALS

- 11. R. P. STANLEY, The number of faces of a simplicial convex polytope, Adv. in Math. 35 (1980), 236-238.
- 12. R. P. STANLEY, "Combinatorics and Commutative Algebra," Birkhäuser, Boston, 1983.
- 13. G. STRANG, Piecewise polynomials and the finite element method. Bull. Amer. Math. Soc 79 (1973), 1128-1137.
- G. STRANG, The dimension of piecewise polynomial spaces and one-sided approximation, in "Proceedings, Conference on Numerical Solution of Differential Equations (Dundee, 1973)," pp. 144-152, Lecture Notes in Mathematics, Vol. 365, Springer-Verlag, New York, 1974.
- 15. O. Zariski and P. Samuel, "Commutative Algebra," Vol. I, Van Nostrand, Princeton, NJ/Springer-Verlag, New York, 1958