ADVANCES IN MATHEMATICS 76, 170-183 (1989)

The Algebra of Continuous Piecewise Polynomials
Louis J. BILLERA*

Department of Mathematics, Cornell University,
Ithaca, New York 14853, and
Department of Mathematies, Rutgers University,
New Brunswick, New Jersey 08903

DEDICATED TO THE MEMORY OF D. R. FULKERSON

For a triangulated J-dimensional region 4 < RY, we consider the algebra C°4)
of alf continuous piecewise polynomial functions on 4. We lind generators for
(1) as an R-algebra and use these to give an isomorphism between C°(4) and a
quotient of the face ting 4 of .1. We then study the structure of C%4) as a module
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over R=R{y,, ... v;], the polynomial ring in 4 indeterminates, giving generators

for C%4) as an R-module. These form a free basis when 4 is a shellable complex.
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In general, we show that C%4) is a free R-module whenever 4 is a disk.  © 1989

Academic Press. Inc.

1. INTRODUCTION

For a finite pure d-dimensional simplicial complex 4 (rectilinearly)
embedded in R, we define C’'(4) to be the set of all C”" functions F: 4 - R
such that for each maximal o € 4, F|, is given by a (real) polynomial in 4
variables. (Here, pure means all maximal simplices in 4 have dimension d.)
Such an Fis " at a point xe 4 if the value at x of any partial derivatives
up to order r of F|,, for ¢ a maximal simplex containing x, is independent
of the choice of 6. The elements of C'(4) are called piecewise polynomials,
splines, or finite elements.

The set C'(4) forms a vector space over R. Of nma:oc_wn interest are the
subspaces €', (4) of elements F such that each F|, is of degree at most m,
m=0.In mo:ﬁm_. one would like to find the dimension and a basis for each
of these, a problem originally stated in this form by Strang [13, 14]. Sce
[3] for further discussion of the general problem as well as specific results
for the case d =2, especially for r=1.

Additionally, C’(4) forms a ring under pointwise multiplication. (If 4 is
a d-pseudomanifold all of whose links are pseudomanifolds, one can use
[3, Theorem 2.47] to give an easy proof of this. Otherwise, one can use a
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multivariate form of the product rule.) In fact, if R=R[y,,.., »,], the
polynomial ring in  indeterminates, then C’(4) is an R-algebra via the
diagonal embedding R C’(4) which sends pe R to the piecewise
polynomial P with P|,= p for all o€ 4. It is the purpose of this paper to
m:_av, :6 R-algebra C°(4) of all continuous piccewise-palynomials over a

;

We begin in Section 2 by specifying a finite sct of R-algebra generators
for C(A). In Section 3 we consider relations on these generators and use
these to relate C°(4) to A, the face ring of 4. We show that as a ring,
C°%4) is the quotient of 4, by a principal ideal As a consequence, we
derive the dimensions (as vector spaces over R) of the subspaces C7(4).
Section 4 we consider the R-module structure of C"(4), using a slight
modificaton of a result of Kind and Kleinschmidt to obtain a set of
R-module generators. In the case that 4 is a disk, we show that C%4)isa
free R-module (i.e., has a basis over R), and for shellable 4, we give a free
basis. This basis,s shown to have a triangular form that may prove useful
in oo_:?:.:_o: \QA;,? -

R-A1.GEBRA GENERATORS FOR C (1)

We first consider the problem of identifying a set of generators for C'(4)
as algebra over R. Suppose the vertices of A arc v, 0y, .0, Let X, be the
unique piecewise lincar function on A defined by X (v,)=4,, where 3, is
the Kronecker delta, i, j=1, .., n. It is straightforward to see that X, ., X,
forms a basis for C{(4) as a real vector space; consideration of this basis
traces back at least to a 1943 paper of Courant [5]. We will refer to the
functions X, as the Courant functions of A.

The aim of this section is to show that X X, generate C°(4) as an.
_R-algebra, that is, for each Fe C%4) there is a real polynomial
indeterminates so that as functions on 4, F=G(X, .., X,).

Suppose 4 is a d-complex in R? with vertices v,. .., v,. Let v, be a new
vertex and consider the join of v, and A, 4 =v,- 4, defined as a subset of
R4+ ' by considering

Ac (v reR c R,

vo=(0; 0) € R* and maximal simplices of 4 being the join (convex hull) of
maximal simplices in 4 with the point v,. For any Fe C (1) we associatc a
function F on 4 as follows. Let m=deg F=max, _,deg F|, and define

, _,
:r::u ,..‘“;.A»z ,_Y _N:
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when y¢>0, and F(0;y)=0. It is easy to check that Fe C°(4),
FQ; ZI F(y) and if X, is a Courant function on A then X, is the
corresponding Courant function on A. Denote by X, the Courant function
on 4 corresponding to v,. We will need the following simple observation.

LemMa 2.2. I C°(A) is generated by X,, X,
C™A4) is generated by X |, ... X,.

, X, asan R-algebra, then

Proof.  This is immediate from the above Emncmm_o: since if Fe C%4)
and Fis given by (2.1), there is a polynomial G in n+ 1 variables so that

=G(X,, X,, ... X,).
But for any ye 4,
F(y)=F(;y)
=G(Xy(1: ) X (1 p), e X(15 1))
=G0, X\ (p), . X, (1))
=G(X,, ... X)) 1

THEOREM 2.3, For any d-dimensional complex 4 embedded in RY, C(4)
is generated as an R-algebra by its Courant functions X |, ..., X

ne

Proof.  The proofl is by induction on the number of maximal simplices
in 4. I A consists of a single d-simplex o, then the functions X, .., X, ,
give the barycentric coordinates of a point yeos in terms of the vertices
vy, ... 0y, . In particular, if v, is the jth coordinate of vertex v,, then if

Vea,
d+1

=2 v, X(p) (24)
il
Thus, il F(y)=F(y,. ... r,)is a polynomial function on g, then using (2.4)
we can write F(y) = G(X,, .., X,, )(») fot some polynomial G.

In gencral, suppose =AU g, where o is a maximal simplex in A and A
has fewer maximal simplices than 4. Here 6 denotes the family consisting
of o and all its subsets. (Note that we are freely moving between the notion
ol 4 as a family of subsets of {v,, .., v,} and 4 as triangulated region in
R‘) By Lemma 2.2, we may assume there is a vertex v, in each maximal
simplex of 4. Assume o = {vg, .., v,} and let

!
gy = C T,

1 =1

where the ¢, are the maximal simplices in 6 N A.
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By our assumption, v,e()!_, 1, Using an affine transformation, if
necessary, we may further assume that the embedding is such that v,=0
and for i>0, v,=e,, the ith unit vector in R% Thus, for each j there is a

subset S, {1, .., d} so that
={yeconvi{vy, ..v,}:y,=0 for ie S}

Now, supposc Fe C"(4). By induction, we may assume /| ,=0. Thus, as
a polynomial function on o, F|,=0 on 1, for each j ie.,

Fle () (riieS>=1 (2.5)
g -0

as a polynomial in y,, ., y,, where I,=<y,:i€S, > denotes the ideal
generated by that set of p,. The 7, are “face ideals” in the terminology of
Reisner [8] and correspond via the lattice anti-isomorphism of [8,
Proposition 1] to the faces t, of o (actually, to the faces t Moghofavfeg))
By [8, Lemma 1] (and its proof), we have that F=()/ =1,, where

=\Jt,=an

and 1, is the ideal generated by (squarc-free) monomials not supported
on L.
Thus for yea

Fiyl= ¥ A: ._A_Y.‘\_A.,‘_....,i (26)

el viep
pea fra)

by (2.5). Define FeR[ X, .., X,] by

I X,)Gx,, . X). (2.7)

e g

By (2.6), F|,=F|,. To complete the prool, we must show Fi ,=0, and
soF=Fon 4 UF _ # (), there must be a re A with F},#0 Thus by (2.7),

top for some p¢ 3, pa But then pe =X, whichis impossible. I

3. RELATIONS AND THE FACE RING

We consider now relations on the generators of CU'L)=R[X ..., X,]
and usc these to relate ("°(4) to the face ring of 4 of Stanley {9] and
Reisner {8 ].
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For a simplicial complex 4 with vertices v,, v,, .., v,, the face ring of 4
(over R} is the ring

A, =Rlx,, .., N, /1, (3.1)

where R[x,, .., x,] is the polynomial ring in n indeterminates and, as
in Section 2, I, is the ideal generated by square-free monomials not
supported by faces of 4, ie,

Ly=Cx, - x, i {o,, .0, ) €4). (3.2)

A, has proved to be cnormously useful in dealing with questions of
enumeration in certain complexes [9, 11]. Here, perhaps for the first time,
it will be used to obtain structural as well as enumerative consequences, in
this case, with regard to the ('® piccewise polynomials on 4.

To see the connection between A, and C°(A4), note first that the Courant
functions X, ... X, satisfy all the defining relations of A4, given in (3.2).
This is due to the fact that a product X, --- X, is not identically zero on 4
if and only if there is a o € A such that none of the X, is identically zero on
g. But such a o must have v, ., 0,
X, - X, #0as a fupction on A if and only if {v,, ., 0 }€1 142

L T AR e ) Q.
By Theorem 2.3, there is a surjeclive R-algebra homomorphism

R[] = COA) (3.3)

defined by sending x; onto the Courant function X,. The discussion above
shows that the map (3.3) induces a well-defined surjection

A= CY4) (3.4)

with ¥, going to X,, ¥, being the image of .x; under the canonical surjection
R[x,....x,]— A4,. Thus as R-algebras,

CA)= A4 /K, (3.5)

where the Kis the kernel of the map (3.4). We wish to describe the ideal K.

Note that, in addition to the relations in (3.2), there is at lcast onc
further relation on the Courant functions X, .., X,. Since the function
X+ - + X, takes the value I identically on 4, we have ¥, + - + ¢, — 1
is an clement of the ideal K. We show, in fact, that it generates K as an
ideal of 4 ,.

TuroreM 3.6, A4s R-algebras U VIR RN

CUDYZ A+ -+ 8, = 1)

among its vertices, showing
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Proof. We proceed by induction on the number of maximal simplices
in 4.

Suppose A consists of a single d-simplex o with vertices vy, .., vy, ,. In
this case A,=R[x,, .., x,,,] and C'A)=R[x,, ., x,]. Thus we must
show there is an isomorphism

Rx o X IRy, 1+ xy — 1)

Let S=R[x,, .., x,] and consider the surjection
Slx, ]S

defined by x,, ,+»a=1-x,~ -~ —x, (this is the map (3.4) in this casc).
It is easy to see (by [ 15, Corollary 1, p. 317, for example) that the kernel of
this map is the ideal generated by x,,, -«

In general, an element ae A, may be represented as a polynomial
p(%,, .., %,), and the image of « under the map (3.4) by plX,, .., X,). To
prove the theorem, we must show that if « = p(x,, .., ¥,) and

d=p(X, X, =0 (3.7)
in C°A), then there is some he A, so that

a=(%,+ -+ X, )b (3.8)

in A, ~
Suppose now that 4 =4uUd, where o is a maximal simplex in 4 and A
has fewer maximal simplices than 4. Let p,, .., p, be all the minimal faces
of o that are not in 4. If vy, .., v, are the vertices of 4, suppose v, .., ty,
k<n, are in 4 and v, , ..., v, are in 6\A. In particular, the latter set of
vertices is among the p,. We can view A =4 4/J, where J is the ideal
generated by the square-free monomials my, .., m, corresponding  to
p1 . p,. With this interpretation, ¥, , ,, .., X, exist in 4, and are all equal

to 0. B
If a= p(X,, ... ¥,)€ A and (3.7) holds in C"(A) then

pX,, . X, 0..0)=0 (3.9}
in C''(A). By induction, (3.8) holds in 4 . thatis, there is a be 4 ,, so that
PO, )=k v, = Vb (3.10)

in A, (where we can list all 7 ¥,'s by the comment above). Lifting these
elements via the canonical surjection A ; = A4 ,, we have that

PG L=, b Y am, (311

holds 1in A4 ;, for some x,€ 4

LeC
o Wl 3wl

gk
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«ce of the simplices p;, they can only be faces of other faces of
.ise they would have to be in 4). Thus, we can assume that the a;,
.1) are all elements of A, the face ring of & (otherwise a,m,=0), as
< all the m,. So we have

Y om; =q(%,, .., X,) (3.12)

in 4, and (Y, .. YXY,)=0 in C"%F) by (3.7) and (3.11), where
Uy, oy Ug o4, - U, are all the vertices of o. By induction again, there is a b’ in
A, so that

Yoam=(5+ - +5,— )b (3.13)
in 4,

Now A, is just the polynomial ring in x,, .., x,, and each monomial
appearing in the cxpression on the left side of (3.13) is divisible by
one of the m,, so the same must hold on the right side. This can only
happen if b'=3 fim, for some flie 4,. As before, we can view
A, =A4;/{x\,..., % > andlift (3.13) to 4 ;. Now (3.13) lifts to

SNam = (X4 4V, - DY Bm 4+ Yy, (3.14)
IR

in A ;. Finally, A, inherits the finest grading of the polynomial ring (by
monomials), and so we can conclude that each monomial appearing in the
unique representation of the term 3y, in (3.14) must be a multiple of one
of the ni, as well as of one of the ¥,, j </ Again, by the choice of p,, we

have x,m, =0 j </, and s0 3 y,¥,=0in 4 ;. Combining this, (3.14), and
{3.11), we obtain the desired conclusion. |}

In particular, since ¥, + --- + X, — 1 is not a zero divisor and the Krull
dimension of A, is d+ 1 [9], we get that the Krull dimension of C°(4)
is d.

As a first application of Theorem 3.6, we compute the dimensions of the
subspaces C2(4) of continuous piecewise polynomials of degree at most m.
Since by (3.2) the ideal I, is homogeneous in the usual grading of
R[v,. ... v,] by total degree. A, is a graded ring. We denote by A, the
subspace of all homogeneous elements of degree m (images under the map
x,++ %, of all degree m homogeneous polynomials) and let

=4, A, D - DA,

PrROPOSITION 3.15. Ay vector spaces over R,

CoA) = A4,
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Proof. Restricting the surjection (3.4) to the subspace A'™ gives a
surjection onto C2(4) by the proof of Theorem 2.3, and so we get an exact
sequence of vector spaces

Cl\n.::ﬁ/.kl+ l.:..lvﬁ,“:\-wlwc. Au_ov

where K=<(x,+ - +x,—1).
Now consider the map
\A:: __lv\A.::D\ﬁ‘

defined by p+» p(x, + --- %, — ). The map is clearly injective (consider the
nonzero homogeneous component of p of least degree). It is surjective as
well since if g=p(%,4+ --- +Xx,—1)e A", then pe A" ' (consider the
lexicographically first monomial in p of highest degree; its product with the
first ¥, dividing it will not be zero and cannot be cancelled).

Thus by (3.16) we have isomorphisms

CoA)y= A" KAt V>, |

Recall that the Hilbert function of the graded algebra 4, is defined by
Hm)=dim, 4,

for me N. This was explicitly computed by Stanley in {9, Proposition 3.2 ]
(see also [12, p.63]), and so we have the following result. We define
fi=f{A) to be the number of i-dimensional simplices in A.

. . S d
CorotLarY 3.17. For a pure d-dimensional simplicial complex A < R”,

d -1
dim =3 £(™ (3.18)

=0 !
Jor m> 0.

Clearly, dim C2(4)= 1. For m=1, (3.18) gives dim C{(4) = f,=n, a fact
already illustrated by the basis X, .., X, for C2(4). For the first few values
of m>1, we get from (318) that dim CY(A)=f,+ f,. dim C{A)=
fo4 2004 froand dim CHAY= [, + 3, +3/, ¢+ .

Up to this point, the assumption that A be a pure complex 1s probably
not necessary. In particular, a direct proof of Corollury 3.17 can be given
that does not require .1 to be pure.

4 ("4} AS AN R-Mobutk

We use the relationship between C°(.1) and A, to study the R-module
structure of C"(1), obtaining a combinatorially defined generating set for
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L"(4) over R and a sufficient condition for C%(4) to be a free R-module.
In order te do this, we must modily somewhat the treatment of the face
ring for shellable complexes due to Kind and Kleinschmidt [7]. (See also
Garsia [6] and Baclawski and Garsia [ 1] for similar treatments of the face
ring for shellable complexes.)

For any ordering of the maximal simplices a,,0,,..,0, (t=f,(4)=
number of «-simplices in 4) of the (pure d-dimensional) simplicial complex
A, we denote by

4,=6,0 - UG, (4.1)

the subcomplex gencrated by the first i maximal simplices; A, = A. As in the
prool of Theorem 3.6, we consider the minimal faces of o, that are not in
A, | (where we let A,=¢, the empty complex). Dcnote these faces by
Py pt, where s, 1

The vector s=(s,...s,) depends upon the given ordering of the
maximal simplices of 4. If s=(1, 1, ..., 1) for some ordering, 4 is said to be
shelluble and the ordering is called a shelling of A. For complexes that
are not shellable, there may be some interest in studying orderings
that minimize s in some reasonable sense (e.g., minimum sum or
lexicographically or some combination).

For our purposes, assume the ordering ¢, a4, ..., g, to be fixed. For cach
i, we letnr, .., mi be the square-free monomials in A ; corresponding to the
faces pi...opi. I 4 has vertices vy, ..,v, and dim 4 =d, then suppose
C=1(c,) s a (d+1)xn matrix, with rows indexed 0, 1, .., ¢ and columns
indexed by the vertices, such that the columns corresponding to any
simplex of .1 are linearly independent. (This is the case, for example, if any
{d + 1) x(J+ 1) submatrix is invertible; this is the assumption of [7].) For
0 <i<d we define the lincar form

Q.H ﬁ._.w.._ + - +n..:‘mz AANV

in 4,. The following is a partial generalization of the main theorem of
Kind and Kleinschmidt [7].

Tutorem 4.3 Considered as o module over the subring R[0,. .. 0,], 4,
is generated by the monomials my, 1<i<t I<j<s,.

Proof. The proof is a straightforward extension of the inductive proof
of generation given in [ 7] and will not be repeated here. We will only note
that the apparent weakening of the hypothesis on the matrix C causes no
problem since the proof in {7] uses only the invertibility of the subsets of
columns corresponding to the maximal simplices. The fact that multiple
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generators are introduced when a new maximal simplex is added is easily
incorporated into the argument. J

We note here that a consequence of Theorem 4.3 is that the linear forms
0y, 0,,..,0, form a homogeneous system of parameters for A, since the
Krull dimension of 4, is d+ 1 [12]. (This fact was known by Stanley
[personal communication, 19767, and noted by him without proof in
[10].) The fuli result of Kind and Kleinschmidt is that if 6y, ., 0, is a
shelling of 4 (and so s, = 1 for each i), then the t monomials m), .., m{ form
a free basis for 4, over the (polynomial) subring R[0,, .., 0,]. More
generally, for any Cohen-Macaulay complex 4 (for example, 4 a d-disk),
A, is a free module of rank (= f,(A4) over R[0,, .., 0,]. (See, e.g., [12] for
a discussion of Cohen -Macaulay complexes and some basic references. An
elementary survey of some of the relevant material can be found in [2].)

We show now that Theorem 4.3 leads to gencrators for ('°(A4) over R.
For disks, for example, this translates to freeness of ('*(4) as an R-module,
and gives frec gencrators when A is shelflable. To this end, if m;1s one of the
square-free monomials in X, .., £, from the theorem, let M; denote the
corresponding monomial in the functions X, ., X .

TiroreM 44, For any pure d-complex A, C"(A) is gencrated as an

R-module by the piccewise polynomial functions M1 <i<n P <j<y,.

Proof.  As in (2.4), we write for pe 1 (considered as a point sct in R

¥= 0 v, A ) (45)

where v is the jth coordinate of vertex ¢, of A. Define a (d 4 1) xn matrix
C={c,) by

efl A o

vy il k>0;
C clearly satisfies the property that the columns corresponding to any sim-
plex of 1 arc linearly independent. Thus the elements 0,,0,, .., 0, of 4,
defined by (++.2) define o subring R0, 04, .., 0,7 such that the monomials
m! give generators of A4 over this subring.

The result now follows from the surjection (3.4) and the fact that, by
(4.5), the image of R{0,, 0, .. 0,] under that map is the ring
R=RLy,. .., 1§

In particular, we have shown that the 0's dehned by (4.2), (45), and

{4.6) form a homogencous system of parameters for 4,, and so, in
particular, they are algebraically independent. 11 4 is Cohen Macaulay,
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in particular, if A is a disk, this means that there will be homogeneous
elements 1, .., n, in 4, (i.e., homogeneous polynomials in ¥, ..., ¥,) such
that the #, form a basis for 4 , as a [rce module over R[0,, 0, .., 0,]. (See,
e.g.. [9. Proposition 4.1].) We show next that, under the map (3.4), this
translates to the freeness of C*(A4) over R.

Turorem 4.7. If A is a disk (more generally, if A is any Cohen-
Macaulay complex), then C*(A) is a free R-module of rank 1= f,(4).

Proof. Let 0,,0,,..,0, be the homogeneous system of parameters for
A , defined above, and let y,, ..., 5, be homogeneous elements that form a
[ree basis for 4 , over R[0,, 0, .., 0,]. Let 7,, ..., 1j, be the images of these
elements under the surjection (3.4). As before, #,, ..., 7, generate C°(4) as
an R-module. To show that they form a free basis, suppose there is a
relation

i

M PO s =0 (4.8)

in C"(.1). where each p, e R Then lifting (4.8) to 4 ,, we get that
M PO, L0 el0,—1)
t=1

by Theorem 3.6, and so there exist ¢,(0,, 0, ..., 0,) in R[0,,0,,..,0,] so
that

2P0 0, =(0,—1) Y q.(0,, ... 0)n,.
e=1 =1

By the freeness of 4 |, we get
PAO o 0,)=04q,(04, ... 0,)—q(0,, ... 0,) (4.9)

for each i Since the 0's are algebraically independent and the degree of 0,
on the left of (49) is zcro. we conclude that each ¢,=0. and so each
p.=0. ]

We remark here that (.1} can be shown (o be a free R-module for any
d-manifold 4 = R“. The proof involves an application of Theorem 4.7 to
various localizations of C%4) and the fact that projective modules over
polynomial rings are frec. It will appear as a part of a forthcoming general
study of the rings C'(A).

In the case that . is a shellable d-complex in R (and thus a shellable
disk ), the result of Kind and Kleinschmidt [7] is that one can take n, = m?,

ARt
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the monomial corresponding to the unique minimal face introduced at the
ith stage of the shelling. Letting M, be the corresponding product of the
appropriate Courant functions, we get the following.

COROLIARY 4.10. For shelluble A, C%(A) is freely generated as an
R-module by the piccewise polynomial functions M, .. M.

As before, we let f; = f,(4) be the number of i-dimensional simplices in
(f_,=1), and we define, for 0k <d+ 1,

k i fdr -0y

\;l.uMcAi: d+ 1 —k F R
Then we have that ¢ = f,=h,+h + - +h,, , hy=1h=f,—d—1, and
hyo =(—=1)"1(1—x(4)), where x(4) is the Euler characteristic of 4 (and
so h,,,=0if 1 is a d-disk). Further, if we define the degree of a piecewise
polynomial to be the maximum degree of any of its components, 4, is the
number of M, that are of degree k. (See, c.g., [4, Proposition 27.) Thus
there are no elements in the basis of degree larger than d. While different
shellings of .1 will lead to different basis elements M/, the h,’s are clearly
invariants of 1.

Examerk 4.11. Let A be the triangulation of a quadrilateral (with
vertices v,, v, vy, v,) by adding a single vertex v, in the interior. If the
maximal simplices arc ordered

(02, DU, Uyl30y, Uyl Uy

we get a sheiling, which yields the free basis

LX, X, X, X,

for C%4) over R=R[y,, v;]. If, instead, we choose the shelling
D0 0, Dgly0y, Dl Uy, Doty

we obtain the basig
LV, X, Ny,

In either case, we have h, =1 degree 0 element, hy =2 degree | elements,
and h,=1 degree 2 clements in the basis.

Finally, we remark here that the basis given in Coroltary 410 is
triangular in the following scnse. Suppose a,, 6,, .., g, 1s the shelling of 4
that produced the basis M, M,, ., M, and let 4, be defined by (4.1}
Then M, =1 and for i> 1, the function M, is zecro on o,,...a, . The
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reason for this is that M, is the product of the Courant functions
corresponding to the minimal face of ¢, not in 4, |, and so it must vanish
ind, .

This suggests the following scheme for obtaining a continuous piecewise
polynomial approximation (of degrees at most m) to an arbitrary function
J on /A Start with a polynomial p, of degree at most m that best
approximates the function f (in whatever sense is of interest) on simplex
o,. If polynomials p,, .., p, | have been chosen, then choose p, of degree
at most m—deg M, so that p M, is the best approximation of this form to
the function f—3/_| p,M, on the simplex &, Because of the triangular
property noted above, the choice of p; does not effect the approximation
already achieved on o, for j<i.

If Fe C°(4), the above scheme will produce the unique representation of
Fin terms of the basis M, ..., M,; this follows from the triangular property
of the basis. Thus this basis has the following reduced property: whenever
F=3[_, p, M, then deg p, M, < deg F for each i. One consequence of this is
that onc can obtain a direct computation of the dimensions of the spaces
Co(1) in terms of the h’s. In particular, dim C2(4) is the coeflicient of ¢™

m

in the power series

hotht+ - +h !
A_I.~VL._ :

That this is the same as (3.18) is discussed in 9, 12].
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