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Abstract. An expository account is presented describing the use of methods of commu-
tative algebra to solve problems concerning the enumeration of faces of convex poly-
tepes. Assuming only basic knowledge of vector spaces and polynomial rings, the enuy-
meration theory of Stanley is developed to the point where one can see how the Upper
Bound Theorem for spheres is proved. A briefer account is then given of the extension
of these techniques which yielded the proof of the necessity of McMullen's conjectured
characterization of the f-vectors of convex polytopes. The latter account includes a
glimpse of the application of these methods to the study of integer solutions to systems
of linear inequalities.

Introduction and Summary

There has been much progress lately on questions concerning the enumeration
of faces of various dimensions in convex polytopes. Specifically, one might be
interested in bounds on the number of faces of one dimension (say, the number
of »ertices) given information on the number of faces of some other dimension
(say, the number of facets). More generally, one might ask whether there exists
a polytope having a predesignated number of faces of each dimension. Ques-
tions such as these go back to Euler, and they remain of fundamental interest
in the context of mathematical programming today.

. N important development in this field has been the introduction by Stan-
ler \f some methods from the field of commutative algebra. He used these
techniques first to obtain an extension of the Upper Bound Theorem of
McMulien from polytopes to general triangulated spheres. This theorem gives
tight upper bounds on the number of faces in each dimension in terms of the
numbver of vertices (and, by olarity in the case of polytopes, also bounds in
terms of the number of facets) S sequently, he combined these methods with
Some recent results in algebraic geometry to complete the proof of McMullen's
conjectured characterization of the face-counting vectors of simplicial convex
polytopes. The latter result applies equivalently to simple (i.e., nondegenerate)
Polytopes and provides a complete description of the relationships between the
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numbers of faces of various dimensions for polytopes in either class. To date,

there is no proof of this purely combinatorial result that avoids the algebraic

machinery of Stanley.

This paper will describe this use of ring theoretic methods on problems of

facial enumeration for convex polytopes. After introducing the problem and

describing the major results for f~vectors of polytopes, some basic ideas from
‘commutative algebra will be introduced and discussed. To each simplicial con-

vex polytope P. we then associate a commutative ring, certain invariants of
which are related to the number of faces of P in each dimension. We will see

how classical algebraic results on these invariants together with some recent

developments in commutative algebra related to invariant theory lead to a
proof of the Upper Bound Theorem in a general setting provided by a certain

class of simplicial complexes. A theorem of Reisner which characterizes com-
plexes in this class is then discussed. Finally, after describing the construction
used by the author and Lee to prove the sufficiency of McMullen’s conditions,
we will examine Stanley’s proof of their necessity in enough detail to begin to
see a striking connection between the numbers of faces of a polytope and the
integer points in a related system of convex cones. The possibility of using
these methods to shed light on general integer programming problems is one of
the most exciting aspects of this area of research.

J-Vectors of Convex Polytopes

Bv a convex polytope P we mean the convex hull of a finite point set in a real
Euclidean space. Equivalently, P can be defined as the bounded intersection of
finitely many closed half-spaces. By a face F of P we mean the intersection of P
with a hyperplane having the property that P is contained in one of its closed
half-spaces. Thus, the empty set is always a face of P, and we call P a face of P
(whether or not it arises in the above manner). All other faces will be called
proper faces, and they are finite in number. Each face of a polytope P is again a
polytope.

We define the dimension of a polytope P, dim P, to be the dimension of
aff (P), its affine hull. and say that P is a d-polvtope if dim P=d. In this case
each face of P, except P itself, has dimension less than dJ. For each
= —1,0,1,...,d—1, let f;(P) denote the number of 1-dimensional faces of P.

In particular, f_,(P)=1 counts the empty face, fo(P) is the number of verrices.
£1(P) is the number of edges and f,_,(P) is the number of facets of P. We de-
note by f(P) the vector (f_,(P), fo(P), ..., fi_1(P)), called the f-vector of P. For
a comprehensive treatment of the theory of convex polytopes and, in particu-
lar, of f-vectors see [11]. For survey of the latter topic which includes a discus-
sion of the more recent results, see (19]. :

Let f(P*) denote the set of all f-vectors of d-polytopes. There is considera-
ble interest in describing the set f(P“) exactly, but this remains an open prob-
lem. However, we can describe aff (f(P?)) and certain inequalities satisfied by
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each f€ f(P?). First, each SE f(P?) satisfies the Euler Equation
\cl\_+\wl H\wl_H_IAI _vn.
and, further, this equation specifies the affine hull, namely Lo

AMSPN=MS s for oo fas ) fr= 1, fom fi 4 ... =1 —(=1?

The inequalities are somewhat harder to describe i

“EM:\SW curve in R? given by x(1)=(1, 1%, 7, ceen 19) m.”a n—__whmﬁa.ﬂwuzw_%hﬁmﬁ

1<hL<...<{, with n>d. Define C(n, to be th
V=Ax(1)),x(12),...,x(t,)). While the actual ﬂvo_ﬁovn ccﬁmwzmm_o”wow:mm::__ o
dure mnvo:a.m on the choices of the 1,s, it is known that its 830.:»8;2038-
ture, In particular, its f-vector, is independent of the ’s. We use the s m:Mn.
ﬁ.?., d) to refer to this combinatorial type. It is easily seen that C(n dji P o
plicial d-polytope, that is each facet (and thus, each proper face) mm implen
(an (r— 1)-polytope having just r vertices). # simplex

. One of the most remarkable properties of the polytope C(n, d) is that it i
neighborly, that is, each pair of vertices forms an edge of C(n ,5 In fact __,_m
k=1,...,1d/2], the convex hull of any k-subset of V is a face ow n,.? d) I re
[x] Qozo..mm the _m.nmnmg integer less than or equal to x.) Thus among m: N.A mna
—.ocmm with n vertices, C(n, d) clearly has the maximum number of m-_,uommo»,wm
i=0,1,..., _&\N_l. {. That C(n, d) has the maximum number of i-faces, am
all d-polytopes with n vertices, for all i is the content of the Upper mSh d NOwsm
orem. first formulated by Motzkin [27] and proved by McMullen (22 .hﬂ v
have that for all d-polytopes P with n vertices b Thus we

J(PY<[(Cn, dy).

M:MMM :8. ::.372 of i-faces of C(n, d) is known for each i as a function of n
ndd, this gives upper bounds for each f£;(P) in terms of n= f,(P) (and d), and
thus _-_Ez.m_:_nm which must be satisfied for each JES(P) ’ A
A particularly important component of f(C(n,d)) is .

n=ld+ )22\ | (n—[d+2)/2)

?.Rs.@* )
- n—d ’

which i i i

.cc.mqﬂ_m N__“m maximum number of facets in a d-polytope with n vertices (or by

o lwc € maximum number of vertices in a d-polytope with »n .,mnnz,o-,
Tse. by the above discussion we have .

n

£A(C(n, :.:HAIT |

ﬂolnc,_.:. _
\.AO\M:. A m:a, _m.”.m\wnwl“.mmwﬂ_ ] or [25] for a general expression for the terms of
e . .

do not N“ﬂ__nﬂm Mwwn:v:o: of f(P) :mm. remained elusive for general d. There

Ioio<2. fone M<.n.= reasonable nOEwQ:Rm as to a final set of conditions.

is considerabin s estricts to the case of simplicial polytopes, then the situation

plicia) dpol Hv\ etter understood. In fact, the set JUP¥) of all f-vectors of sim-
Ylopes is completely known, being specified entirefy by a list of li-
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near equations, linear inequalities and nonlinear inequalities. We will describe
these in turn. First note that by the usual polyhedral polarity [11], to each d-po-
lytope P there corresponds another d-polytope P* which has the property that
Si(Py=f4-1-i(P*).In particular, when Pis simplicial, then P* is simple (or ron-
degenerate, in linear programming terms), that is, each vertex is on precisely d
facets. Thus, describing f(P¢) is equivalent to describing the J-vectors of all
nondegenerate d-polytopes. Further, one proves the Upper Bound Theorem by
first showing that the maximum numbers of faces must occur in simplicial po-
lytopes, and then proving the Upper Bound Theorem for simplicial poly-

topes.
First, we note that each fE f(P?) satisfies the Dehn-Sommerville Equa-

tions
d—1 ;
d . . \.\..—q_ .“|—&l_.
Bt 3 (=D |y A=A
for k=—1,0,1,...,d— 1. The equation E<, is just the Euler equation. it is
known that {(d + 1)72] of these equations are independent, and they completely
determine aff (f(P?)). Thus the dimension of aff (f(P?)) is [d/2). See [11] or

[25] for details.
To be able to describe the remaining conditions, we must apply a change of

variables to the space of f-vectors, first suggested by Sommerville [32}, which
recasts the Dehn-Sommerville equations in a particularly simple mua. To this

end, take fin f(P?¢) and define the polynomial P w.,,m,.ﬁ , N, w& -
[~ M .
L*e

d-1
fw= 2 fir*!

j==1

h()=(1 -ty f/(1=1)). 5 £ (£-")
t-1

Since f is of degree d, h is again a polynomial, say Lz

and let

d
hi)= 2 hit'.
i=0
If f=f(P) then we define the h-vector of P to be the vector of coefficients of
h(1), that is h(Py=(hg, h, ....h,). Note that ho(P' =1 since f_,(P)=1L.
The veetor h (P) can be obtained from f(P) b+ ‘neans of an invertible linear
transformation, whose inverse is given by

b5 (4

im0 &l\.lm

Thus f, is a nonnegative linear combination of h,. ....h, .. and so an inequality
of the form h(P)<h(P) implies the corresponding inequality AP)y<f(P). In
fact, the proof of the Upper Bound Theorem proceeds by showing
h(P)<h{C(n, d)) for the simplicial d-polytopes with n vertices. In terms of the
h-vector of P, the Dehn-Sommerville equations become h,=h, . for
i=0,1,....1d/2). (See [26] or {25} where our A, ., corresponds to their g { (1))

1L. Polyhedral Theory and Commutative Algebra 6
|

Let A(PY) denote the set of h-vectors of simplici -
above &mn.:mmmoz. knowing h(P¢) is equivalent %__M_-Mh:ﬁmo_whoww.ww%w the
now describe the set of linear inequalities satisfied by all \m\MQ.K Thon
were first proposed by McMullen and Walkup in the form of a Qm.q ; d_nw
hax\ﬁ.. me.zzk Conjecture, which stated that k,, ,>h,, for i=0, | NM\\M_:N@_&
M__,._rcw.._a light of the Um:.:-mosin:\:_o equations, these mznn:m:mmm m.-:v:\ :_mm

e h-vector E:mn.cn unimodal. In terms of the fs, h,,,>h, implies a |

.co::a on f; as a linear function of the J's forj<i<{d/2]; :_Mmo lower b oiMn
imply the lower bounds given in the so-called Lower Bound Theorem o by
Barnette {2] (see [26]). proved by

To complete the description, we must establish a last bit of notatj

To ca . . s tion. For
W%qm___“_ﬁ integers h and i, we note that A can always be written uniquely in the

b= :... w0 L
; i—1)

where n,>n; ]
€ ni>ni_>..>n>j>1. (Choose m to be the largest integer with

n;
h WA .v. etc.) Define the ith pseudopower of h to be

i
}A..V" B...T_ +A=..I_+~ + + 3\+—
i+1 i VA WA
Put 0?=0 for all i.
We state the nonlinear inequalities on the components of the h-vector (and

thus the f-vector) togeth i i iti i
terivationy o epy gether with the earlier conditions in the form of a charac-

HM_M“MM_‘.AZWZ____._Q.:__U Conditions): An integer vector h =(hy, h, h,)is the h
a simplicial ¢ - i i ollowin: )
ditons hoa > p onvex d-polytope if and only if the following three con-
(W) hi=hy_;,i=0,1,...,[d/2),
(i) b\ >h;,i=0,1,...,[d/2]-1, and
ﬂ.& ho=land b\ —h <(h —h_)®, i=1,... d/’2]-1
ﬁqo<n%¢o:~w.§o$:§:o: was conjectured in 1971 by McMullen [24], [25], and
oo A&M u_a,_z._.oq &m m.m:a for the case of d-polytopes having n vertices s,&n:w
and Lee [3 .A e sufficiency of m:mmn conditions was proved in 1979 by Billera
[42], The _TM _..1 ﬁon:cima,u__:o,i immediately by a proof of necessity by Stanlev
work of m“um _o o m:.:._n_nmov\ depends heavily on insights provided by earlier
eral triar, =_= ey {36} in which the Upper Bound Theorem was extended to gen-
The Uaoom_. mm._o:m oﬁ. spheres by means of techniques of commutative algebra.
techniques M :m.onwm_Q .m.ﬁmzam this earlier work. introducing powerful new
the u_mnvqmmmw“:&mmgm_m geometry. In the rest of this paper, we will describe
niques i i
the —wqog of this qmu__ﬂmﬁ eveloped by Stanley and outline the steps leading to
ote t : :

the aom:__m:mum.ﬁw_w_mﬁ.\.marﬁoa of unbounded polyhedra are not covered by any of

Scussed here. For treatments of this topic, see {17}, [6], 5] and _._m_‘
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As an interesting consequence of the sufficiency proof, Lee {18a] has shown
that for every simple d-polytope P with n facets there is another such polytope
P’ with f(P")= f(P) such that the diameter of P' is at most n—d + 1, one more
than the bound given by the Hirsch conjecture. Thus if there are examples
where this conjecture fails badly, it will not be due solely to the number of

edges (or to the number of faces of any other dimension).

The Stanley-Reisner Ring of a Simplicial Complex

By a simplicial complex on a vertex set V=|v,, v, ... v, we mean a subset A of
2% such that G €A. FC G implies FEA and each [v}€4. In other words, A is an
independence system for which each one-element set is independent. We de-

fine the dimension of A, dimA, to be d — 1, where d=max|F], the maximum
Fea

cardinality of an F in A. Our main example of a simplicial complex will be the
boundary complex of a simplicial d-polytope P: the set V will be the vertex set
of P and A will consist of all vertex sets of proper faces of P plus the empty set.
In this case, the two uses of d are consistant.

An element F of A will be called a face (or simplex) of A, and if |Fl=i+ I, F
will be called an i =face. We define fi(4) to be the number of i-faces of A, and
we call f(A)=(_1(4), fuold), s Su_1(A)) the frvector of A (again f_,(A)=1
counts the empty face). We define the quantities h,(A), 0<i<d, by means of
the same polynomial relation as in the case of polytopes, and let
h(A)=(ho(A), ..., hs(4)) be the h-vector of A.

Let k be a field, and let R=k[X), ..., X.] be the ring of polynomials in n in-
determinates over k. If X§' ... Xi"is a monomial in R (where the a,’s are none-
gative integers), we define its support to be the set {v,: #0). We define an ideal

I, in R by
Nb"A\ﬂ.. ...\ﬂ;” ~._A—.~A...A~.>J _C.._...;C_.Lmbv.

the ideal generated by all sqaure-free monomials whose support is not a face of
A. Finally we define the ring k[4]= R/I,4. k|A] has come to be called the Sran-
lev-Reisner ring of A. It was first considered in this form by Stanley {35], [36]
and Reisner [29}, although it is a special case of a more general notion consid-
ered earlier by Hochster [13].

In the case where A is the boundary complex of a triangle with vertices vy,
s, and ts, i.e.. A={ri, val, e, sl e, vy el desh fed OF 1y is the ideal gener-
ated by the monomial X, X; X1 The ring k[A] consists essentially of all poly-
nomials in X,, X, and X; none of whose monomials is divisible by X, Xs Xu.

In order to get information on the h-vector (and thus the f-vector) of the
complex A from the ring k[4], we need to discuss the notion of a grading on

k[A]
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Graded Algebras and Their Hilbert Functions

Let k be a field. By a graded k-algebra we mean a commutative, associative rin
A such that k CA4 (and so A4 is a vector space over k), together with a no__nn:cm
of subspaces A4; of 4 indexed by the nonnegative integers such that

1) A is the vector space direct sum of the 4,,

denoted A =A4,PA4,0 ... DA4,D ...,

2) Ay=k,

3) \.A..}nk_,:. i.e., the product of an element of A; with an element of 4; is

in A, ’

4) A is finitely generated as a k-algebra, i.e., there are finitely many ele-

ments Xiy ey X in A such that each element of 4 can be written as a po-
lynomial in x,, ..., x, with coefficients in k.

We note that the polynomial in (4) is not necessarily unique. If the x,’s can
all be chosen from A4, then A is called standard. -

A m.::u_m example of a graded k-algebra is 4 =k[X], the polynomial ring
over k in one indeterminate. Here 4; is the set of all k-multiples of the monom-
ial X'. A bit more interesting is the ring=k[X,, ..., X, ], where A, is the vector
space mn:a:‘mnm by all monomials of degree i. Normally, one takes the degree
of a monomial X35',..., Xi" to be the total degree, a,+a,+ ... +a,. Notice
:o&gnb that by defining degree by w,a, +w,a,+ ... +w, a,, where :“n w;'s Em
arbitrary positive integers, one gets different gradings on A, i.e., different .&32
2:::5:%. A;. Choosing different gradings for an algebra can prove useful for
some mﬁn__ow:o:m. For our puposes, however, we will always consider a poly-
nomial ring to be graded by total degree, making it a standard k-algebra. ’
. An element in a graded k-algebra A is said to be homogeneous (of degree )
if it cn_ozm.m to A; for some i. Since the 4,’s are vector subspaces of 4, any k-li-
near combination of homogeneous elements of the same degree is wmm:_ homo-
geneous of that degree, and by (3) above, the product of homogeneous ele-
ments .o», any degree is homogeneous. By (1), each element a of 4 can be writ-
ten uniquely as a finite sum of homogeneous elements, at most one of each de-
gree. These are called the homogeneot's components of a. It follows from this
EE the x;’s in (4) can always be chosen to be homogeneous. In a polynomial
ﬂzm. the notion of homogeneous element coincides with the usual notion of

omogeneous polynomial
:acwﬁ:n_“”._u -_: Alis mu.E to be :.o:.omm:ao:m.:, I can be generated by homoge-
:m:_m, - mq“ M_Mﬁ. mﬂn_\:m_nnzz. _h..mon eacha in 1, all the homogeneous compo-
direct oo amno,iﬁoaﬁ.mohn such ideal I, considered as a k-vector space, has a

[=1,@1,01,®...
wh = ey .
:omawh\5~33. _J‘o.a that _.ﬂ Iis a proper ideal, that is, I # A4, then [,=0. (From
e term “ideal™ will necessarily mean “proper ideal™.) Thus each ho-

mogeneouys i . ) . .
g us ideal is contained in the maximal (homogeneous) ideal

A, =@,:i>0.
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sometimes called the irrelevant maximal ideal. The most important fact to be
noted about a homogeneous ideal I in a graded ring A4 is that the quotient ring
A/ has a natural grading given by (4/1);=A;/I;. Thus the quotient of a (stand-
ard) graded k-algebra by a homogeneous ideal is again a (standard) graded -
algebra.

It is immediate that the standard graded k-algebras are precisely the quo-
tients of polynomial rings (with the standard grading) by homogeneous ideals.
If we let A be a simplicial complex and define the ideal I, and the ring k[A] as
before, then I, is a homogeneous ideal in the polynomial ring R since it is gen-
erated by monomials, which are surely homogeneous (in any of the gradings
mentioned for R). Thus k[A] is a standard graded k-algebra for any simplicial
complex A.

Let A be any graded k-algebra. Since each 4; is a vector space over k, it
makes sense to consider its dimension, denoted dim; A,. It follows from the fact
that A is finitely generated as an algebra that dim; 4; is finite for each i. (4 is in
fact a Noetherian ring). We define the Hilbert function of A by

HA, h=dim4,, i>0.
The Hilbert series of A is defined to be the formal power series
FA,n= 2 HA, ).
i»0
Since Ao =k, we always have H(4,0)=1, and so the constant term of F(A, 1)
is always 1. For 4 =k[X], each H(A, i)=1 and so in this case

FAN=1/(0=0=1+t+0+0+ ...
When A =k[X,, ..., X,], a straightforward counting argument gives
F(A4,n=[l/(1=-n]"

since in this case H (A, i) is the number of monomials of degree i in n variables.
Note that for any simplicial complex D, H(k[4], 1) is always the number of ver-
tices in A.

In the case that A is a standard k-algebra, it is known that for i sufficiently
large, H(A, i) is a polynomial function of i. This polynomial is called the Hil-
bert polynomial of A, and its degree is d— | where d=dimA. the Krull dimen-
sion of A. In general, dim4 is defined to be the longest length r of strictly in-

creasing chain
PpChHC...CPh,

of (homogeneous} prime ideals or, equivalently, the maximum number of ele-

ments of 4 which are algebraically independent over the field k (i.e., satisfy no
nontrivial polynomial over k). See. for example. (1] for further details. We will
use this observation about the degree of the Hilbert polynomial later to show

that dimk{A]= 1 +dimA for a simplicial complex A.

As an example, let 4 be the standard k-algebra kX, Y}/(XY). 4 is thering of

a simplicial complex consisting merely of two points (and no other simplices).
Then H{A. ) =1 and H{4,)=2 for i>0. Thus the Hilbert polynomial is the
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constant polynomial 2 of d imA4 = i
o egree 0 and so dimA = L. Finally, F(4, D=(1+1)/
Let A be a graded k-algebra of Krull dimensio
) : nd. A (homogeneous) syst

of parameters for A is a set 8,,6,, ..., 6, of homogeneous elements in \N ’ N Mi
:o:momnzoozm elements of positive degree) such that 4 is a finitel ozwam.ﬁm
=”o ule over the subalgebra k(6,, ..., 8,] (the algebra of all polynomials in the
elements 6,,..., 6,). A system ol parameters is always algebraically indepen-

dent over k (see [31]) and g0 k[8,, ... 8,] s in fact a pol . An equiv-

alent condition _.o.q 0, ..., 0, to be a system of parameters is that 4/(0

e a fini e i ‘
& a:n:ao s ver k, where (8, ..., 6,) denotes the ideal
. In the case A4 is a polynomial ring in n indeterminates, the Krull dimensi
_m.n_mmn_w n, and the indeterminates themselves form a system of parameter. e
will any nonsingular k-linear transformation of the indeterminates ﬁo:mﬂ_mw
A=k[X]and let 8= X" Since for every f€ A4, f(X)=g (X)) + Xh(X?) .e<:: nﬁ“
h uo..«:oamm_m, A is finitely generated over k[X?] with generators _.m:a \% w”a
so 6 is a system of parameters for 4. Equivalently, 4/(f) is generated as a .
space over k by the images of 1 and X. vetor
It is a consequence of the Noether Normalization y
EBB&AG always exists forany graded k-algebra 4 m_mm_:nq.:M ﬁ_r_u_:_w _m_ w”m_ﬂ.mw..
._u.::aq. if 4 is standard and & is an infinite field (like E‘n Bz.ozm_& there nxv“
ists a system of parameters each of whose elements is homogeneous o._. degree 1
(that is, nmn.: 6;€4,) (1]. The proof in this case is quite intuitive, proceedin
somewhat like the process of obtaining a basis for a vector space _uno:. a set w
generators. One starts with a set of algebra generators x,,..., x, for 4 ASEM:
are chosen from 4, if 4 is standard). If these are m_mnvnwmom,__v” independent
then 50« form a system of parameters, and we are done. If not, then %33 is m.
_...o;:o.a_.m_ zw_m.:o: satisfied by x,, ..., x,. Assume for the Boawa that this re-
_m__u_o..d Is monic in x,, that is, the coefficient of the highest power of x,, say the
_3 , 1s 1. Then x!" (and .m:.:mm__nq powers of x,) can be expressed as m sum of
.”:_<2 powers of x, multiplied by polynomials in x,, ..., x,_,. Thus 4 is a fin-
_»M«v_\ mm:M_.m:ww.”:o@_“:m over Ex_..:..«.‘;__. Now continue the process with
qn_m.‘mmu .a.u_n“mm_m ; _a wi o<m=~=m:<.,ﬁov with a system of parameters. While the
e e :m_a:M Em.m:mwmn:nmgnn _E___ not m_.imv\m .cm monic, it is always possible,
ke it i . to replace the x;’s by linear combinations of the x,’s to
o Mm ___ﬂm:i.o. no__m_aoq.k.u»ﬁ,«. ‘ﬁ._\?‘z.v. At the first step one gets the relation
. » which is not monic in either variable. Making the linear change

. X'=x—y
one gets the relation .

0=xy=(r+¥)y=y +x'y

which i o .
is mo:n_w monic in v. We get, then, that x' is a system of parameters for 4. which

mvﬁ:“:na by I and vy as a module over k[x').
for m.msaﬂﬁ_i UMB:ES; which are homogeneous of degree | need not exist
mensional a_ﬂa_.o& k-algebras f:m: k is a finite field. In fact when A is a 1-di-
simplicial complex (i.e.. a graph) and k is a field with g elements
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then one can show that k{A] has a system of parameters which is homogeneous
of degree 1 if and only if Aisq+1 colorable. This is a consequence of a resuit
of Stanley, mentioned in [50], which states that (for a d-dimensional complex
A) homogeneous elements of degree |, 6., ...,8,, form a system of parameters
for k[A] if and only if the d by n matrix of coefficients expressing the 6; as li-
near combinations of the x;'s (generators of k{A}, corresponding to vertices of
A) has the property that, for each face of A, the set of columns corresponding
to its vertices is linearly independent.

Cohen-Macaulay Rings: h-Vectors as Hilbert Functions

We turn now to the task of showing how the h-vector of a simplicial convex po-
Iytope can be viewed as the Hilbert function of a certain graded k-algebra [36].
We bezgin by considering a general simplicial complex D and restrict later to a
special class of complexes which includes boundary complexes of simplicial
convex polytopes as well as general simplicial balls and spheres.

Let A be a (d— 1)-dimensional simplicial complex and k[4] be the asso-
ciated k-algebra. Recall that the f-vector f(A)=(f_1, Jo. -- ., f4-1) and h-vector
h(A)={hy, ..., ha) are related by the polynomial equation

h()=(1-=0ft/(1-1)
where d—1

fo=sAa.0= 2 fit'"!

jo=— 1
and J
hy=h@A.n= 3 ht.
j-0
Now H(k[A], m) is the number of monomials of degree m with support in
A, and a straightforward counting argument proves the following resulit.

Lemma 1: H(k[A],0)=1 and for all m>0,
d—1

HkiALmy= 3 f; i
j=0

m—1

Corollary 2: dimk{A]l=d=1 +dimA4

Proof: For SVQ. H (k[A], m) is given by a polynomial of degree d — 1, and so
dimk [A]=d by earlier comments.

Lemma 3: (1 —1)¢ F(k[Al, n=h{A.1).

Proof: 1t is sufficient to show that the Hilbert series of kfA] is given by
f(t/(1—1). But yo
far(l=m= 3 o+ [ S L

L

IR
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m:@ it is again straightforward, using Lemma 1, to verify that the coefficient of
£ in this series is given by H (k[A], m).

. We are now led to ask, for a standard graded k-algebra 4 of Krull dimen-
sion d, when (1—1)Y F(A, 1) is again the Hilbert series of a graded k-algebra
We :w_<o seen that this series is a polynomial when A =k{A] for some (d — :-&..
Sn:m_o:w_ complex A. In fact, it is generally true that (1 —1)" F(A, ) is a poly-
nomial when A4 is a standard graded k-algebra which can be generated as an al-
mncqm by r elements of degree 1 (see, e.g. [45]). This can be proved using the fol-
_os.:zm q.nmcz [39, Theorem 3.1]. Recall that if I is homogeneous ideal in 4, then
I inherits a grading from A given by [;=InA;. We can then Ln::o
H,j)=dim, I; and F(1, ) as before.

For a€A, define Anna=|{r€4:ra=0}. Anna is an ideal which is homoge-
neous when a is.

Lemma 4: Let 4 be a graded k-algebra, and let § be a homogeneous element of
degree m>0. Then

(1—t"YF(4,0)=F(A4/(0),1)— (" F(Annd. ).
Proof: By linear algebra we get for each j and homogeneous ideal /

H(A,j)=H(l,j)+H(A/L}))
and so
FA,.0)=F(,n)+FA/L1).

Now let I={(f) and note that for each j we have
H(l,j+m)=dim,(64))
"QmE»\A\.|ﬁ=5r A\A~3>==QV
=H(4,))— H(Annd, ),

and so
F(I,)=t"[F(A,t)— F(Ann@,1)].

Eliminating F(1, 1) yields the desired result.

) Lemma A is of special interest in the case where Ann# is the zero ideal. that
is, where @ is not a zero divisor. For then F(Ann#. 1)=0 and if, further, the de-
gree of A is |, we have

(1—nFA, n=FA4/0).1),

M.Mnu—___wﬂn series of the graded k-algebra 4/(f). The problem is now whether
gree 1) mmmmm A so that \A\AS itself has a homogeneous non-zero divisor (of de-
class _.. al mﬁ.u on, nosm_::_:m the process for d steps. We next describe the
zC algebras for which this process can always be carried out.

of wuwmwu“u”n:h” m _mﬁama k-algebra A of Krull dimension d always has a system
Aisa :::o_,,. mr: _ﬁ asetf,, ..., 8, of homogeneous elements in 4 , such that
be o Q;E:L(wmm. :m\?:na modulie over :._n subalgebra k{f,,....6.4]. A is said to
tem of ner caulay graded »-w_mmc.qm if for some (equivalently, for each) sys-

parameters ,, ... f,, 4 is a free module over k[0, ... 0,]. This means
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that there are homogeneous elements 77, ..., 1, in 4 so that eacha in 4 has a
unique representation of the form

a= M Q_ENAQT..;Q&V

i1

where the p;’s are polynomials in 8,,...,6,. It is a characterizing property of
Cohen-Macaulay k-algebras that every system of parameters is a regular se-
quence (or an A-sequence), that is. each system of parameters 8, ..., 0, for A
has the property that for i= {,....d, 6, is not a zero divisor on the ring
A/(By, ..., 0 _\). (In fact, the existence of a sequence having this property is
normally taken as the definition of a Cohen-Macaulay ring, the freeness being
a consequence in this case. See {31] or {15] for details.)

We can now state a key result of Stanley {36}, [39, Corollary 3.2}, whose ori-
gins trace back to work of Macaulay [20].

Theorem 5: Let 4 be a standard graded k-algebra of Kruil dimension d, and let
8, ...,8, be a system of parameters for 4 which is homogeneous of degree 1.
Suppose A is Cohen-Macaulay. Then

(1—1yF(A,1)=F(B.»

where B=A/(0,, ..., 6.).

Proof: Since A is Cohen-Macaulay, 6,, ..., 8, is a regular sequence. The asser-
tion now follows from Lemma 4 and the subsequent discussion.

We will say that a complex A is a Cohen-Macaulayv complex (over k) if its as-
sociated k-algebra k[A] is Cohen-Macaulay. Later we will describe conditions
on A which will insure that k{A] is Cohen-Macaulay. These conditions will de-
pend on the choice of field k, but it sufficies for now to note that if A is Cohen-
Macaulay over any field, then it will be Cohen-Macaulay over the rationals.
Thus if we omit mention of k when we specify that A is a Cohen-Macaulay
complex, we will assume that k is the field of rational numbers, Q. Recall that
for any complex A, k[A] is always a standard k-algebra, and thus. if k is an in-
finite field. there always exists a system of parameters which is homogeneous
of degree |I.

When we refer to a vector of finite length as a Hilbert function, we mean
that vector with a sequence of zeros appended to it. The following is a conse-
quence of Theorem § and Lemma 3.

Corollary 6: The h-vector of a Cohen-Macaulay complex A (over k) is always
the Hilbert function of a standard graded k-algebra B. In fact, we can always
choose k=0, and take B to be k[A)/{f, ..., 0,), where d=dimA + 1, and the
8,'s are homogeneous elements of degree | which form a system of parameters
for k{A]. In this case, h, counts the number of 1, of degree i, where the elements
M, ..., 1, are as specified as above.

‘
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1t follows from work of Hochster [13] that k[A] is Cohen-Macaulay when-
ever A is the boundary complex of a simplicial convex polytope. This uses the
fact, shown by Bruggesser and Mani, that boundary complexes of polytopes
are always shellable [7}. A complete characterization of when k{A] is Cohen-
Macaulay was later supplied by Reisner [29], who showed that, in fact, k[A] is
Cohen-Macaulay for any simplicial sphere or ball. We will discuss Reisner’s
result a bit later, after discussing the relevance of Corollary 6 to the Upper
Bound Theorem.

O-Sequences and the Upper Bound Theorem

As 4:__ m::c_.maw_ convex polytopes, one can ask for any simplicial complex A
having n vertices and dimension d — 1, whether the inequality of f-vectors

SA)<Sf(C(n, d)) (1

holds ,w}m_.m, mm.cm_.oqm. C(n, d) is the boundary complex of the cyclic d-poly-
tope with n vertices. As before, this inequality is implied by the inequality of h-
vectors )

h(AYy<h(C(n,d)). (2)
In the presence of the Dehn-Sommerville equations
hi(Q)y=h,_;4A), i=0,...,[d/2]
(2) is equivalent to

hi(d)< n—d+i—1

I

, i=0,...,[d/2]. 3)

See [22] or [25] for details. We will show that (3) holds whenever 4 is a Cohen-
Zmom.:.mw complex. In particular, since the Dehn-Sommerville equations hold
for triangulations of (d — 1)-spheres ns well as for the boundaries of simplicial
&-vo._ﬁovom (16}, [11]), we get that (2) and hence (1) hold for these complexes,
proving the Upper Bound Theorem for spheres as well as for polytopes.

.._,:m key to showing (3) for a Cohen-Macaulay complex A is Corollary 6,
which says that the h-vector of such a complex is the Hilbert function of a
m:.:ama graded k-algebra. Accordingly, we turn now to characterizing such
Hilbert functions.
the _lﬂn.. k/_;.\ X, bea :w\n of m:aﬁm::m.:m:nm. and let m and m’ be monomials in
o W m:m e amzo..a 5_\3 to mean m A.u:;aam m’, that is, the power of each X, in
. oﬂ_om. that inm'. By an order ideal of monomials we mean a nonempty
30:035.3@:035? such .::: meM, ~.=_=i = me&M, that is, all divisors of
Bo:oz:w_m G M are also in M. In vw:._nc_m:. 1€ M for each order ideal of
m ooq:?:mma - For a monomial m. we write degm to denote the total degree of
Ho H B in the standard fashion CS% deg X, =1). A sequence of integers
iale ~$.m Nr 1s called oziQ.nmazm:nm if there exists an order ideal of monom-

uch that for each i, H,=|{me M: degm =i}l
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We define an ordering on the set of all monomials in X, ..., X, by m<m’if
degm <degm’ or if degm =degm’ and m precedes m’ in the lexicographic or-
der induced by X, < X, < ... X, (so, for instance, X, < X{ <X, <X, X;<X?). The
following theorem is due to Stanley [39], [{36], who attributes it essentially to
Macaulay {21].

Theorem 7: Let H,, H,, H,, ... be a sequence of integers. The following four
conditions are equivalent. .
(i) There exists a standard graded k-algebra 4 with Hilbert function
HA.i)=H, fori=0.
(i) Ho, Hy, Ha, ... is an O-sequence.
(iti) Hy=1. H,>=0and fori>1

O0<H,, , <H.

(iv) Let n=H,. and for each i>0, let M, be the (lexicographically) first H,
monomials of degree /i in n variables. Then M= |j M, is an order
ideal of monomials. i>0

The hard part of this theorem is the implication (ii) = (iv), which was
proved by Macaulay. The proof of a more general version can be found in [8].
Condition (iit) was first considered by Stanley [35]) [36]. A proof of the equival-
ence of (iii) and (iv) can be found in [4, Prop. I]. The connection between the
algebra and the combinatorics is provided by the equivalence of (i) and (ii),
which we consider further.

To see (ii} = (i), suppose M is an order ideal of monomials in X,,..., X,
counted by the O-sequence H;. Let A =k[X,, ..., X,}/], where I is the homoge-
neous ideal generated by those monomials not in M. Then H (A4, i) = H, for each
i. On the other hand, (i) = (ii) is a consequence of the following result [39, The-
orem 2.1}.

Lemma 8: Let 4 be a standard graded k-algebra and let x,, ..., x, be a set of ho-
mogeneous elements of degree | which generate 4 as a k-algebra. Then there is
an order ideal of monomials in x|, ..., x, which forms a vector space basis for
A over k.

The proof of Lemma 8 proceeds by a greedy algorithm. Inductively form a
k-basis M for A4 by putting | in M. and continue at each step by choosing the
first monomial (in the ordering defined above) which is linearly independent of
those already in M. 1t folows easily that M is a k-basis which is an order idea}

of monomials.
Theorem 7 allows us to prove Stanley's Upper Bound Theorem for Cohen-

Macaulay complexes [36, Corollary 4.4},

Theorem 9: Let A be a (d — |)-dimensional Cohen-Macaulay complex with n
vertices. Then fori=0.. ., d.

\:u,AAzi.Tr.‘l_v

]
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Proof: We know that h(4) is the Hilbert function of a standard graded k-alge-
bra. One can check directly from the definition of A that h,(A)=n—d. Other-
wise, using the notation of Corollary 6, note that

\:Abvua_a» m_
"Q:ﬂ» »—B—.\\_
=HklAL, H)—-H(, 1)

where I=(f,, ..., 6,). We know that H (k{4], |)=n, and since the 6,'s are all ho-
mogeneous of degree 1 and linearly independent (the are algebraically inde-
pendent), we have H(J, 1)=d, proving the assertion. )

We complete the proof in two different ways. First, by (ii) of Theorem 7,
there is an order ideal of monomials in h,(A)=n—d variables having h, (4)
monomials of degree i. This can be no more than the toral number of monom-

ials of degree i with n—d variables, which is :!&..II_ . Alternatively, we
proceed by induction. Note that !
h@)=n—d=(""7),
and if
—d+i-2
h_ ()< " &.T_- B
h'l
then by (iii) of Theorem 7
h(@)<hizD
n—d+i-2\¢-"
<
i—1

n~d+i—1
i

and again the result follows.

Note that (due to the presence of tue Dehn-Sommerville equations) the Up-
per Bound Theorem for spheres and polytopes requires the inequalities in The-
orem 9 only for i up to [d/2]. The rest are redundant in this case. For general
Cohen Macaulay complexes, however, the later inequalities are not necessarily
consequences of the earlier ones. For Cohen-Macaulay complexes that do not
satisfy the Dehn-Sommerville equations (simplicial balls, for example), The-
orem 9 does provide an upper bound on the f-vector, though it is not that given
by (1). See [30] for a treatment of upper bounds in even more general com-
piexes.

Finally, we have noted that the Cohen-Macaulay property, and thus the
Upper Bound Theorem, for the boundary complex of a simplicial polytope fol-
lows from the shellability of polytopes. But this is precisely the property
needed in McMullen’s proof for this case (see {22] or [25]). although he requires
that certain special shellings exist, and this may not be true for a general shella-
ble sphere. Further, not all spheres are shellable.
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Reisner’s Theorem: When k|A] is Cohen-Macaulay

The question of whether one could characterize topologically those complexes
A for which k{A] is Cohen-Macaulay was first raised by Hochster [13], who was
originally motivated by questions in invariant theory. A complete answer was
given by Reisner {29, Theorem 1], whose work was done independently of that
of Stanley on upper bounds {35}, and who was unaware of the implications of
his work in enumeration theory.

To describe Reisner’s conditions, we need the following notation. If Fis a
face in the simplicial complex A, the link of Fin A, denoted I k{F,A), is defined
by

Ik[F,Al={G€A: GnF=9,GuFeA).

For each F, Ik{F, A] is a subcomplex of A. (It is the contraction of F in the case
that A is the complex of independent sets in a matroid.) Note that
1k[g, Al=A.

Theorem 10: For a simplicial complex 4, k[A] is Cohen-Macaulay if and only
if for each face F of 4, including F=4,

H,(k[F,A); k)=0 for i<dim/k[F,A],

that is, the reduced homology of /k[F, A] with coefficients in k vanishes except
possibly in the dimension of Ik{F, A}.

It is known that if A is a triangulation of a manifold or a manifold with
boundary, then the homology conditions on the links of nonempty faces F au-
tomatically hold, so it reduces to a requirement that the reduced homology of
A vanishes below dimd. In particular, this is true for triangulations of balls
and spheres. (See, for example, [12].) It is easily checked that this result implies
that for 1-dimensional complexes (i.e. graphs), being Cohen-Macaulay is equi-
valent to being connected. A triangulation of the projective plane shows that
whether k[A] is Cohen-Macaulay for a given A may depend upon the choice of
k [29. Remark 3]. It is relatively easy to show using these conditions that each
shellable complex is Cohen-Macaulay. (See [9] for the definition of shellable
complex.)

To help understand the meaning of this result, we will briefly describe the
notion of the reduced homology groups of a simplicial complex with coeffi-
cients in a field k. It will be clear that these conditions are really combinatorial
and algebraic in nature.

For a d-dimensional simplicial complex A, let C,,i=—1,0, 1, ..., d, be the
k-vector space (formally) spanned by all i-faces of A, the so-called space of i-
chains of A. C, is merely a vector space whose basis elements correspond to the
i-faces of A. or, equivalently, it is the subspace of k[.}], spanned by all square-
free monomials. Let V={v,, ..., v,] be the set of vertices of A, and for an r-face
F=lv., v, ..., 0.}, where iy <i;<... <i,, we define F; to be the (r—1)-face
ey}, forj=0, .. r For r=0, ..., d, we define the r' boundary map, a linear
transformation

é,: .Mwl»ﬁw;_,
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by specifying it on the basis of C, and extending by linearity. For an r-face F,
define ,
o(F)= 3 (-1)VF
j=0

"“OIN.:_A*N«..ule

For convenience, we define é&,,,=0.

It is not hard to check that with this definition of boundary map, the com-
position &,8,, (=0, for r=0,...,d. Thus for each such r we have
Imé,, ,CKeré,, where Im and Ker denote the image and the kernel (nullspace)
respectively. We now can define the r'" reduced homology of A with coefficients
in k to be the quotient vector space

H,(A:k)y=Kerd,/Imé, .,

forr=0,1,...,d. (To define the regular (non-reduced) homology, one proceeds
in the same way, except with C_,=0. The only difference is in the dimension
of the 0'" space, which is the number of connected components of A in the reg-
ular case, and one less in the reduced case. See, for example, [12] or [28] for de-
tails.)

A discussion of the proof of Reisner's Theorem is beyond the scope of this
paper. It involves the use of a characterization of the Cohen-Macaulay prop-
erty via the therory of local cohomology of rings. The homology of A arises out
of the calculation of the cohomology of k[A}. Other proofs of this result can be
found in [14] and [49], the latter being the most elementary.

Necessity and Sufficiency of the McMullen Conditions

In light of Theorem 7, we can give the following restatement of McMullen's
conditions.

Theorem 11: An integer vector h=(ho, hy, ..., hy) is the h-vector of a simplicial
d-polytope if and only if it satisfies the Dehn-Sommerville equations (h, =h, _,)
and the sequence of differences

:c; t_. ey m_&\w_‘
given by Hy=hy and H,=h,—h,_, fori=1,...,[d/2], is an O-sequence.

the proof of the sutficiency of these conditions makes use of the special or-
der ideal of monomials provided by (iv) of Theorem 7, when the sequence of
H,’s is an O-sequence. to construct a simplicial d-polytope P such that h=h(P).
The idea of this construction is to associate with each monoinial in this order
ideal a facet of the cyclic polytope C(n, d+ 1), where n=h, +d. One shows that
for suitable choice of r, <1, < ... <t,, there will be a point z in RY*' which is
bevond precisely those facets of C(n,d+ 1) corresponding to the order ideal
and beneath the rest. The desired polytope P turns out to be the intersection of
P'=conv(C(n.d+ 1)ufz}) with a hyperplane strictly separating - from
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C(n,d+1). The idea of constructing polytopes in this way over cyclic poly-
topes was inspired by a construction of Klee [17].

The association of facets of C(n,d+ 1) to monomials depends on a combi-
natorial characterization of the facets of cyclic polytopes known as Gale's even-
ness criterion, which states roughly that between any two x(t;) not in a given fa-
cet, there must be an even number of x(r;) in the facet (with between being in
the sense of the ordering of the #'s). This induces a pairing of some of the ver-
tices in any facet, and in the facet associated to a given monomial, the expon-
ent of X, in the monomial denotes the number of pairs of vertices which are to
be displaced i units to the right from the position of this pair in the facet
lx(t1), ..., X(ts+ )} Thus. considering just the incidence vector of the x(4,)’s in a
facet, the monomial 1 corresponds to the facet (1, 1,...,1,0,...,0), X, to the
facet (1,...,1,0,1,.1,0,...,0), X, to (1,...,1,0,0,1,1,0,...,0) and X3 to
(,....1,0,1, 1,1, 1,0,...,0). See [3] for a longer sketch of the proof, and [4]
for all the details,

To show that the conditions are necessary, it is enough, by (i) of Therorem
7. to find a standard graded k-algebra with Hilbert function H(4,i)=H, for
i=0,1,....[d/2]. Recall that by Corollary 6, if h=~h(P) for a simplicial d-poly-
tope P, then h; = H(B, i) for the graded k-algebra B=k[P|/{f,, ..., 8,), where the
8.’s form a system of parameters for k[P]. Now

mum:eu_ewNQ ew&

where each B, is a k-vector space of dimension h,. Stanley shows [42] that for a
suitable choice of 6,'s there is an element w € B, such that the linear map

T,:B;—B, .,

given by T, (x) =wx (recall that the B;’s form a grading) is injective (one-to-one)
for i <[d/2]. Since w is homogeneous, the ring A = B/(w) is a graded k-algebra.
Now take i <[d/2}. Since T is injective we have dim, Im T, =dim, B; and so

H{A, i+ )=dim B, . \/ImT,
=dimy B; ., —dim B,
=h, 11—l
N:_.:

Thus the H.'s are seen to form an O-sequence.

To find the element w, Stanley constructs from P an abstract algebraic vari-
ety which turns out to be essentially a complex projetive variety. This roric vari-
ety Xp [10] has the property that for a suitably chosen system of parameters
B.. ..., 0, for k{P). the spaces B, describe the cohomology of X, in even dimen-
sions. The existence of w then follows from the so-called “hard Lefschetz the-
orem’” for Xp. While the definition of X, is beyond the scope of this paper. it is
particularly intriguing to note what information about P goes into the construc-
tion of X,. Doing so allows us to briefly discuss an aspect of this subject with
potential interest to mathematical programming far beyong the topic at hand.

Let L be a rational convex polvhedral coune (i.e., given by finitely many ra
tional inequalities) in IR". We associate a graded k-algebra with L in the follow-
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ing way. For each z€Z", where Z is the ring of integers, let X* denote the mon-
omial X3'...Xi", z=(z,,...,2,). Now define A, to be the subring of
k[X\,.... X.] spanned by {X*:z€ LnZ"}. Since L is a convex cone (so is closed
under addition), it is immediate that 4, consists of all k-linear combinations of
monomials X* where z is an integer point of L. Using the fact that L is finitely
generated, it is an easy argument to show that A4, is finitely generated as a k-al-
gebra. The Krull dimension of A, is the same as the usual dimension of the
cone L. It is a theorem of Hochster [13] that 4, is Cohen-Macaulay for each L.
(See also [10].) In some sense, this result says something about the regularity of
the lattice points in convex cones. In general, a study of these rings may prove
useful in understanding the difficult problems involving integral solutions to li-
near systems. For work related to this topic, see [10], [13], [33], (34], {39]. [37],
[40), [44], [43] and [45], the last two of which are surveys.

To “describe” the variety Xp, let us assume that the origin is an interior
point of P and that all vertices of P are rational vectors. (Since P is simplicial. a
small perturbation of the vertices of P can assure this without changing the
combinatorial structure of P.) For each face F of P let cone(F) be the (rational)
cone spanned by F (and the origin), and let L be the polar cone to cone(F), i.e.,
L*=cone(F). Denote by A (F) the k-algebra 4, defined above. The toric variety
is made up of the so-calied affine schemes SpecA (F), called affine toric varie-
ties. The recipe for constructing X, from the SpecA (F) is derived directly from
how the various F’s fit together in P. (See [10] or [46] for more details.) We
should point out here that the crucial property of X, for this proof, its projec-
tivity, is equivalent to the convexity of P. Thus this proof does not work for
non-convex spherical complexes, and so the necessity of McMullen’s condi-
tions (other than the Dehn-Sommerville equations) remains an open gquestion
for triangulations of general spheres. piecewise linear (i.e., combinatorial [9])
spheres or even shellable spheres. This situation should be contrasted with the
case of upper bounds.

The important thing to note here is that the information used to specify g,
and then prove the necessity of last two of McMullens's conditions, come from
the location of integer points in the polars of the cones specified by the faces of
P. This provides a rather surprising ccnnection between two seemingly unre-
lated aspects of polyhedral theory: enumeration and integrality. Whether or
not this indicates the existence of a deep interplay between these subjects
which will aid our understanding and ability to deal with problems of integral-
ity is a question that can only be answered by further research.
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