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A LOWER BOUND FOR ADJACENCIES ON THE TRAVELING
SALESMAN POLYTOPE*

A. SARANGARAJAN?

Abstract. We study adjacency of vertices on Ty, the asymmetric traveling salesman polytope of
degree n. Applying a result of G. Boccara {Discrete Math., 29 (1980), pp. 105-134] to permutation
groups, we show that T}, has ((n — 1)(n — 2)! 2 logn) edges, implying that the degree of a vertex of
Tr is Q({n — 2)!logn). We conjecture the degree to be Q((n — 2)!(logn)*) for any positive integer k.
We compute the density function 6, given by the fraction of the total number of vertices adjacent
to a given vertex for small values of n, and conjecture that it decreases with n.
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1. Introduction. The asymmetric traveling salesman polytope (ATSP) is one of
the widely studied polytopes in combinatorial optimization for its intrinsic relation
to the traveling salesman problem. Many results are known about the facets of this
polytope (see chapter 8 of [4] for a detailed survey), but not much is known about
adjacency of vertices on this polytope. From an optimization point of view, study-
ing adjacency helps in estimating the size of exact neighborhoods for local search
algorithms. Such estimates have been carried out in [7] for the symmetric TSP.

The most common relaxation of the ATSP is the Birkhoff (or assignment) poly-
tope B,. We study the relationship between the faces of B,, and T, specifically the
edges of T;, arising from certain two-dimensional faces of B,,. These edges are counted
using a result of Boccara [2] giving us the lower bound for the number of edges of
T,. In particular, we show that T}, has Q((n — 1)(n — 2)!?logn) edges and thus each
vertex of T}, has degree Q((n — 2)!logn).

We define some terms that will be used for the rest of this paper. Let S, be the
symmetric group of degree n, i.e., the set of all permutations of [n] := {1,2,...,n}.
We call a permutation even (odd) if it can be expressed as a product of an even (odd)
number of transpositions. Two permutations are said to have different parity if one is
even and the other odd. Given o € S,,, we define the corresponding n x n permutation
matrix X, € R by

1 ifoli)=j
Xg P { \ ’
(Xo)is 0 otherwise.

We denote by B, the Birkhoff polytope of degree n, given by
B, :=conv{X, : g € S, }.
Let
Tn = {0 € S, : 0 is a cycle of length n} C S,,.
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The ATSP of degreec n is defined by
T :=conv{X, : 0 € Tp.},
so that

T, C B, C R™.

Thus if F is a face of By, then FNT, is a face of T}, induced by F.

We call two vertices adjacent on a polytope P if they form an edge of P. The
graph of P is a graph whose nodes are the vertices of P with two nodes adjacent if
the corresponding vertices are adjacent on P.

A partition of n is a sequence of positive integers X 1= (A1,...,\g), with S\, =n
and Ay > Az > -+ > A and we indicate this by A - n. We call A an even (respectively,
odd) partition if n — k is even (respectively, odd). Let & := (1,1,...,1) be the identity
partition. If # € S, is a product of k disjoint cycles of lengths Iy, ...,I; (including
cycles of length 1) in nonincreasing order, then (l1,...,lx) is a partition of n. We call
(l1,..., L) the cycle type of m. A composition of n is a sequence of positive integers
A= (A1,..., Ak) with 3°\; = n and we indicate this by A = n. Hence a partition
of n into k parts can define up to k! distinct compositions by permuting the parts
of the partition. A k-partition (respectively, a k-composition) of n is a partition
(respectively, a composition) of n into k parts.

If f(n) and g(n) are two positive valued functions, then we say f(n) = Q(g(n)) if
there exists a positive constant ¢ such that g{n) < cf(n), for all allowable values of n.

2. The edges of the ATSP. We will denote the matrix X, by ¢. We study
faces of B, induced by a pair of vertices o,7. The following result found in [1,
Proposition 2.1} and in [3] shows that these faces are in fact cubes.

PROPOSITION 2.1. Ifo~ln = Hle C; € S, where Cyq,...,Ck are disjoint cycles,
then the smallest face F, . of By, containing both o and « is a k-cube, where k < L%J
The wertices of Fy . are given by o l;esC;, for S C [k].

The convex hull of the vertices of F, , that correspond to cycles of length n is
a face of T,,. In particular, if o,7 € 7, and o0~ = C,C; is a product of two
cycles of even length, then F, » is a 2-cube. Since 0C} and ¢C; have parity different
from that of o, neither can be n-cycles. Thus ¢ and 7 are adjacent on T;,. We now
find the number of such representations. To do this, we need the following result [2,
Corollary 4.8].

PROPOSITION 2.2. Letl = (l1,...,lx) b n. Let g(l) be the number of ways of
writing o permutation of cycle type | as a product of two n-cycles. Then

_2(n—1)! ey (™)
(2.1) g(l) = Y (-1 ,
n+1 ICi k) (s([))

if L is an even partition and zero otherwise. Here s(I) =3,/ l;.
Thus if [ = ({1,l2), and n is even, then

(2.2) g(b) = 2(2—;11)' (1 -t (Z>_ ) ’

and if [ = (3,15, l3). and n is odd, then



A LOWER BOUND FOR ADJACENCIES ON THE TSP 433

This result is generalized in [6] to give the number of ways of writing a permutation
as a product of an arbitrary number of n-cycles.

THEOREM 2.3. Let e,, be the number of edges of T, n > 3. Then
en = Q((n — 1)(n - 2)2logn).

Proof. Suppose n = 2m is even. Let n € S,, have cycle type A, = (n—2r,2r),1<
r<m/2. If o,m € T,, and 07 1 = 7, then by the argument before Proposition 2.2

o and 7 are adjacent on T},. By (2.2), the number of ways of writing 7 as a product
of two n-cycles is

9N = -2%;—111 <1 - (;)—j > (’;;11)! as (;) >2,

and every such pair of n-cycles induce an edge in 7,,. Now the number of permutations
of cycle type A, is at least n!/(4r(n — 2r)). Hence, counting each edge exactly once,

e > (n"- 1)' tm/2) n! _ (,n_ 1)!2 |m/2] i . 1
" T 2n41) — dr(n-2r)  4(n+1) ~ \2r n-2r
(n—1)12 & (n—1)12 ,
> L > A ) _ _ — 91 ‘
= 8(n+1) 2 Ur> gm+ 1) 8™ = 2 —1)(n - 2)Flogn)

r=1

[fn =2m-+1isodd, then let n € S, have cycle type AL = (2m—2r,2r,1),1 <7 < m/2.
By (2.3), the number of pairs of n-cycles whose product is 7 is

00 =B 1 (") - (1) 1) 2

and each such pair induce an edge in T,,. Hence the bound for e, follows as
before. 0

The lower bound for the degree now follows from observing that T}, is a vertex
symmetric polytope. If o,m € T, then there exists v € S, such that o = yry~L.
Hence vertices  and m, are adjacent on T, if and only if o is adjacent to ym;y~!. As
a result the degree of each vertex of T, is the same value deg (n) and

2en, (n—1)!
(n—D! = 4n+1)

(2.4) deg (n) = logm = Q((n — 2)!logn).

3. Further discussions. The degree bound shows the graph of T, to be fairly
dense. This may not seem very surprising considering that the diameter of T,, is 2
as shown in [5]. For the Birkhoff polytope B,, the degree of a vertex is known to be

o (M (n = k — 1)!, while for the symmetric TSP it is Q([ 252 ]) as shown in [7].

An expression for the number of edges of T}, can be written as

f nx g(A) h(A)
(3.1) en = E ; ,
Abn, AA£E 2
A even
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where n) is the number of permutations of cycle type A and h(}) is the fraction of
the pairs of n-cycles (o, 7) which are adjacent on T}, and such that o~ !z has cycle
type A. Hence h(A\) = 1 if X corresponds to a cycle or a product of two cycles of even
length. It is natural to ask how large e,, would be if this summation is taken over all
k-partitions A for a fixed k. We estimate this partially.

CONJECTURE 3.1. For any positive integer k,

deg(n) = Q((n — 2)!(logn)*).

The rationale for this conjecture stems from the following argument. From (2.1)

it follows that for an even partition ! = (l1,...,1) F n,
2(n — 1)! 2k-1 (n—1)! A
) > - > fi >
g() > 1 <1 )2 T or n > 2°,

since each term in the summation in (2.1) is at least —1/n except for the term cor-
responding to the empty set which is 1. Let n; be the number of permutations that
can be expressed as a product of ¢ disjoint cycles (including cycles of length 1). We
estimate the asymptotic growth of n; with i fized. We have

n! -
a BT —1)! i—1
ng = Z iyly -l Q((n = 1)!(logn)* ™).
<l1 ----- ll) Fn
The above sum is taken over all i-compositions of n. The last equality follows from

the lemma below.
LeEMMA 3.2. Let

n
fi(n) = Z lllz"'li’
(l1,..,,li)|=n

the sum being taken over all i-compositions of n. Then fi(n) = Q((logn)*~1). In
particular, we show that if n > 2, then fi(n) > ¢;(logn)*~1, ¢; = 2=(-1(-2)/2,

Proof. We prove this by induction on i. The result is straightforward for i = 1.
Then for i > 1 and n > 2¢,

(n/2]
; ll(n f1 1( )

As I < n/2, we have by induction fi_1(n — 1) > ¢;—1(log(n — 11))*"2 > ¢;(logn)i~2
since log(n — {1) > log(n/2) > 1/2logn. Hence

[n/2] 1 1
) > o (logn)i—2 il
fi(n) = ¢;(logn) Z <l1 + —

) > ci(logn)' ™! = Q((logn)"™"),
=1

proving the result. a

The conjecture amounts to showing that for each k, there exists a positive constant
hy such that h(X) > hy for any k-partition A of n and any n such that n — k is even.
If this were true, then summing (3.1) over all k-partitions of n yields

hing(n — 1) I o n)k-1
i) Q((n — 1)(n - 2)*(logn)*~)
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when n ~ k is even. If n — k is odd, then we sum (3.1) over all (k + 1)-partitions of

n to get a bound of Q((n — 1)(n — 2)!?(logn)*) for e,. This yields the conjectured
bound for deg (n).

We define the density 6, of T,, to be the fraction of the total number of vertices

adjacent to a given vertex, i.e., &, := deg(n)/((n — 1)! — 1). Our bounds on deg (n)
show that 6, = Q(logn/n). It would be desirable to bound this number either away
from 0 or below 1 as n — o0. Since T3 and Ty are simplices and Ty is 2-neighborly,
they have a density of 1. Using MAPLE, some other densities were computed by
constructing the cube Fy, . for a fixed n-cycle 0 and examining when the n-cycle 7
was adjacent to o. These are tabulated below:

n deg (n) On
6 110 0.92
7 628 0.87
3 4174 0.83
9 32433 0.80

We observe that 6, decreases with n for n < 9. We conjecture that this holds in

general.
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