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Abstract. The secondary polytope £(A) of a configuration A of n points in affine (d—1)-space
is an (n - d)-polytope whose vertices correspond to regular triangulations of conv(.A). In this
article we present three constructions of £(A) and apply them to study various geometric,
combinatorial and computational properties of secondary polytopes.

The first construction is due to Gel’fand, Kapranov and Zelevinsky and allows us to describe
the entire face lattice of £(.4). We then introduce the universal polytope U(A) C AgR"™, a

" combinatorial object depending only on the oriented matroid of .A. The secondary £(A) can

be obtained as the image of &(.A) under a canonical linear map onto R,

Our third construction is based upon Gale transforms or oriented matroid duality. It is
applied to analyze the complexity of computing ©£(.4) and to give bounds in terms of n and
d for the numbser of faces of (A).

1. Introduction and polyhedral preliminaries.

In their recent work on generalized hypergeometric functions and discriminants, Gel’fand,
Kapranov and Zelevinsky [10] introduced the secondary polytope £(A) of an affine point
configuration A, where the vertices of £(.4) are in one-to-one correspondence with the
regular triangulations of the “primary polytope” P = conv(A). In spite of its aigebraic
origin as the Newton polytope of the principal A-determinant (for A C Z¢), this polytope
is of independent interest for combinatorial convexity. A special case which has received
much attention in combinatorics [14, 15] and theoretical computer science [20] is the asso-
cishedron, which is the secondary polytope of a convex n-gon. ‘

It is the objective of the present paper to provide a self-contained and comprehensive
study of secondary polytopes. We shall give three alternative descriptions of £(A). In
Section 2 we start out with an exposition of the original construction due to Gel’fand,
Kapranov and Zelevinsky, including essentially the proof that they give in [11). This proof
is direct and algebraic in that it provides vertex coordinates for the secondary polytope.
Using these methods, we are able to give a complete description of the facial structure of
Z(A).

In Section 3 we express the secondary polytope Z(A) as the projection of the universal
polytope U(A) which is a certain polytope contained the exterior ‘algebra A.R™. This
approach is based on the techniques used in [9] and it has the important advantage that
it separates the combinatorial and metrical properties of the secondary polytope in a
systematic way. -
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In Section 4 we give a geometric description of £(A) using Gale transforms. Compared
to the two previous treatments, this point of view is the most constructive one because
it leads to an algorithm for computing all regular triangulations of A and therefore all
vertices of L(.A). We illustrate the effectiveness of the Gale transform approach with a
complete description of the secondary of the cyclic 4-polytope with 8 vertices.

Section 5 deals with the computational complexity of secondary polytopes. We give a Che s

bound in terms of n and d for the number of faces of £(A), and we show that our bound

is sharp for the class of Lawrence polytopes [1]. In particular, we will see that £(.A4) isa
- Ahe rad

zonotope whenever A is the vertex set of a Lawrence polytope.

Throughout this paper 4 = {aj,az,...,a,} denotes a subset of R? which spans
an affine hyperplane. A triangulation of A is a triangulation of the (d — 1)-polytope
P := conv(A) with vertices in A. We identify R® with the vector space R4 of real
valued functions on A. Given a fixed triangulation A of A, then every 3 € R" induces
a unique piecewise linear function gy a on the polytope P. More precisely, this function
is defined by assigning gy a(a;) := 9; for vertices a; of A and by the requirement that
gy,a be an affine function on each simplex of A. Consider the set )

C(A,A) := {9 € R": gy isa convex function, and
gy,a(ai) < ¢; whenever a; is not a vertex of A }.
It is easy to check that C(A,A) is a closed polyhedral cone and that the collection
F(A) = {C(A,A) : Ais a triangulation of A }

covers R™. We call this collection the secondary fan of A. This terminology will be justified
in the proof of Theorem 1.3.

In the following we recall some general facts about convex polytopes and polyhedral
fans. By a complez we mean a family of polyhedra, the intersection of any two of which
is a face of each and is itself in the family. A fan in R" is a complex of polyhedral cones
that covers R®. At times, we will specify a fan by giving a subcomplex containing at least
its maximal cells. This is the case, for example, with the collection F(A) defined above.
The normal cone of a polytope @ C R™ at a point p € Q is defined as

N(@,p) = {veR": (v,p) < (v,y) forallyeQ]}
where (-,-) denotes the standard scalar product in R™. The normal fan of Q, denoted
N(Q), is the collection of cones N(Q,p) where p € Q.

LEMMA 1.1. The normal cone N(Q,p) of a polytope Q at p € Q has non-empty interior
if and only if p is a vertex of (). More generally, the codimension of N (Q,p) equals the
dimension of the largest face of Q containing p.

A polyhedral fan F in R™ is said to be strongly polytopal if there exists a polytope
Q C R" such that F = N/(Q). Suppose that Q is an n-polytope containing the origin
of R" in its interior. Then the collection of polyhedral cones which are obtained as
positive hulls of all facets of @ is called the interior point fan of Q. The following
proposition summarizes some known facts about strongly polytopal fans and Minkowski
sums of polytopes (cf. [21],{12]). In (2) the intersection F N F' of two polyhedral fans is
understood as the fan of all intersections of cones from F and F'.
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PROPOSITION 1.2.

(1) A fan F is strongly polytopal if and only if it is the interior point fan of a polytope
Q. In that case F is the normal fan N(Q*) of the polar polytope to Q.

(2) The intersection of strongly polytopal fans corresponds to the Minkowski addition
of polytopes, i.e., N(Q + Q') = N(Q) n N(Q'). .

(3) For two strongly polytopal fans F = N(Q) and F' = N(Q') we have F < F'
(i.e. F' refines F) if and only if @ < Q' (i.e. AQ is a Minkowski summand of Q'
for some XA > 0).

(4) A strongly polytopal fan F = N(Q) determines Q uniquely (up to homothety) if
and only if Q is indecomposable (i.e. P < @ implies P = AQ for some A > 0).

(5) The normal fan of a zonotope is a central hyperplane arrangement. " Toric

voneks
For examples of fans which are not strongly polytopal see [5; p.119,fig.3] and [18, p.85]/Z
Using the language of polyhedral fans, the existence of a secondary polytope can be ex-
pressed as follows.

THEOREM 1.3. (Gel'fand-Kapranov-Zelevinsky)
The secondary fan F(A) of any affine point configuration A is strongly polytopal. That

is, there exists a secondary polytope @ = L(A) in R® whose normal fan N(Q) equals
F(A). :

Proposition 1.2 (d) tells us that we cannot expect the secondary polytope L(A) to be
unique (up to homothety) because it may be decomposable into non-trivial Minkowski
summands (see Corollary 4.4). In particulat, £(A) is highly decomposable when A
consists of n points in convex position in the affine plane (i.e. d = 3). In [15] Lee gave a
geometric construction of the associahedron ¥(A), which is a simple (n — 3)-dimensional

polytope with 2823 facets and —L=(2"7}) vertices (the Catalan number). It follows .

n-1\n-2

from the results in [21] that the associahedron has (";?) non-trivial Minkowski summands,

which means that we have (";2) degrees of freedom in choosing a secondary polytope for
the n-gon. We note that Lee also constructed secondary polytopes in the case n < d + 2
(see [15] and Proposition 2.2).

An interesting application of the associahedron to theoretical computer science has re-
cently been given by Sleator, Tarjan & Thurston [20]. These authors derive a tight upper
bound for the rotation distance between binary trees with n nodes by proving that the
diameter of the associahedron equals 2n — 10, for large n. From Figure 4 in [20] we can
see that the secondary polytope of a hexagon is a simple 3-polytope with 14 vertices, 21
edges, and 9 facets.

2. The analytic construction and the face lattice of the secondary.

The following algebraic description of the secondary polytope is the original one due to
Gel'fand, Kapranov and Zelevinsky. Their research announcement [10] gives the definition
in (2.1) and (2.2) below but does not contain a proof for A(Q) = F(A). A later, as yet
unpublished, paper of theirs [11] gives essentially the following proof. We include it here
for completeness. Let

Q := conv { ¢a : Ais a triangulation of A }, (2.1)
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In this formula e; denotes the i-th standard basis vector of R™, and vol(7) denotes the
volume of the (d — 1)-simplex conv{a,,,a,,,...,ar}.

FIRST PROOF OF THEOREM 1.3: (Gel’fand-Kapranov-Zelevinsky)

Since both collections F(A) = {C(A,A)} and N (Q) = {MN(Q,¢a)} cover R", and
since M(Q) is a fan, it will suffice to prove the inclusion C(A4,A) C N(Q,¢a). Note
that this will also show that the collection F(.A) defines a polyhedral fan.

Let v € C(A,A). Then gy a isa piecewise linear convex function whose graph contains
or lies below the point (a;,%;) € R%*! for i = 1,...,n. This implies that

WY

gp.alz) < gya(z) N g Gow ! e Q(/(A""?? (23)

l’ L
for all z € P = conv(A) and for all other triangulations A’ of A. Consequently,

/ gy a(z)dz < / gy,ar(z)dz (2.4)
z€EP z€P _

for all triangulations A’ of A. We evaluate the integral on the left hand side as follows:

/ze,,%,A(x)dx _ Z/

rca v?®

= Z vol(7) - (“barycenter of the simplex 7”) <
T€EA

d
= Z vol(r) - % z gy,alar)

reA

d
= %Zzp; Z vol(7)

=1 i€ETEA

. ) 17
z)dz Dni | CCp e !
, 9wale) ity o]

]

(¢7 ¢A)‘

-

Since the same formula holds for A’, equation (2.4) implies (,éa) < (¥,¢a+) for all
triangulations A’ of A. But this is precisely the condition that 1 is containedin N (Q,da),
which is the normal fan at ¢ of the convex hull of the ¢a:’s. I

A triangulation A of A is said to be if there exists a function on P that
is piecewise linear and strictly convex with respect to A. (A convex piecewise linear
function over a triangulation A is said to be strictly convez if it is given by a different
linear function on each maximal cell of A.) This condition is equivalent to C(A,A) having
non-empty interior. Distinct regulajr triangulations must have distinct cones, since a point
in the interior of one cone (coming from a strictly convex function over the corresponding
triangulation) cannot belong to ani other cone. Thus, we get the following corollary from
Theorem 1.3.

/
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COROLLARY 2.1. The vertices of the secondary polytope @ = X(A) are in one-to-one
correspondence with the regular triangulations of A. : :

Suppose one knows all the vectors ¢4 , but not the actual triangulations A. Then any
regular triangulation A of A is uniquely determined by the vector ¢ 5. To reconstruct A
from the set of vectors @ar, first note that

C(AL) = [ lpos{éa — gar})*

A'#A

where I'* denotes the cone polar to K. A d-tuple 7 = (71,...,74) defines a facet of A if
and only if there is a ¢ € C(A,A) with ¢; =0 for j € 7 and ; > 1 for j € 7. One may
determine the existence of such a 9 by linear programming. We will see in Example 2.4
that a triangulation A may not be determined by its vector ¢ if it is not regular.

Let us first summarize a few positive results concerning the regularity of triangulations.
The lezicographic triangulations of A constructed in [2] are easily seen to be regular.
These triangulations have the important property that they depend only on the oriented
matroid (3] of A and not its specific realization. It is shown in [2] that all triangulations
of a convex n-gon are lexicographic, and consequently all triangulations are regular if A
is a planar affine point configuration in convex position. If A is not in convex position,
then there exist non-regular triangulations (cf. Figure 1). Using Gale diagram techniques,
it has recently been proved by Lee [16] that all triangulations of point sets with small
“codimension” are regular.

PROPOSITION 2.2. (Lee) If n < d+ 2, then all triangulations of A are regular.

A polyhedral subdivision II of A is a collection of subsets of A, called faces of II,
such that the set of polytopes {conv(r)|r € I1} is a polyhedral complex that covers
P = conv(A). As with triangulations, we call II regular if there is a function on P that is
strictly convex and piecewise linear with respect to II. Given two polyhedral subdivisions
II, and II; of A, wesay II; refines II,, written II, < II,, if every face of II; is a subset
of some face of II;. Consider the poset P(A) of all regular polyhedral subdivisions of A,
ordered by refinement. '

THEOREM 2.3. Forany configuration A, the poset P(A) is a lattice which is anti-isomorphic
to the face lattice of the secondary polytope L(.A).

ProoF: If we define

C(A,II) := {¢ € R": there is a piecewise linear convex function g overIl
with g(a;) = ¢; fora; € II, g(a;) < ¥; otherwise},

then the proof of Theorem 1.3 given above also shows that C(A,II) is the normal cone
to a face of the secondary polytope Q@ = T(A). This defines a map II — C(A4,1I) from
P(A) to N(Q) (considered as its lattice of faces).

To construct the inverse, let F be a face of Q and define T(F) to be the set of all regular
triangulations A of A such that ¢o € F. Let II(F) be the finest regular subdivision
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of A refined by each A € T(F). We claim that C(A,TI(F)) = N(Q,F). The inclusion
C(AII(F)) € N(Q,F) is straightforward. To see that C(A,TI(F)) 2 N(Q,F), take
¥ € relint A(Q,F). Then % induces a convex function g over P, piecewise linear with
respect to a regular subdivision I’ of P. Now for A € T(F) we have that gy a =g because
gy.a has the same integral as g and gv,a 2 ¢. This equality is equivalent to II' < A. On
the other hand, if A ¢ T(F), gy,o must have a larger integral than g, implying that
I" £ A. So II' < II(F) showing ¥ € C(A,II(F)).

Note that for regular II and II', we have C(A,1I) C C(A,II') if and only if IT < IT’,
and so the map II = C(A,II) and its inverse are both order preserving. §

The poset of all polyhedral subdivisions of A is in general not polytopal. In fact, it may
have maximal chains of unequal length. See [15] for an example. A 2-dimensional example
can be made using the configuration in the following example.

EXAMPLE 2.4. Let A = {a;,...,a6} C R*® where a; = (4,0,0), a2 = (0,4,0), a3 =
(0,0,4), ay = (2,1,1), a5 = (1,2,1), as = (1,1,2). We will describe two distinct
triangulations A; and Aj; of A such that

(1) ¢A1 = ¢Az’ and

(2) both A; and A; are not regular.

First note that assertion (1) implies assertion (2). For, suppose (1) holds and A is
regular. Then ¢4, = ¢4, isa vertex of £(A), and A, is also regular. But then Corollary
2.1 implies A; = A,. Consider the two triangulations

A = {125,134, 145, 236, 256, 346, 456}  and
A, = {124,136, 146, 235, 245, 356, 456 }

of A which are depicted in Figure 1.

Figure 1. Two non-regular triangulations A; and A; with ¢a, = ¢a,.




Writing [ijk] for the absolute value of the determinant det(ai,aj, ax), we compute

¢a, = ([125]+[i34] +[145))e; + ([125]+ [236] + [256]) e +
([134] + [236] + [346]) es + ([134] + [145] + [346] + [456]) eq +
([125] + [145] + [256] + [456]) es + ([236] + [256] + [346] + [456]) €6
= 36e; + 36e2 + 36e3 + 28e4 + 28es5 + 28¢5 =
$a, = ([124]+[136] +[146])ex + ([124] + [235] + [245]) €2 +
([136] + [235] + [356]) es + ([124] + [146] + [245] + [456]) e4 +
([235] + [245] + [356] + [456]) es + ([136] + [146] + [356] + [456]) 6.

In this example the secondary Z(.A) is a 3-dimensional polytope, and the point ¢, =
¢4, is contained in the relative interior of a facet of £(A).

3. The universal polytope. A

Here we construct the secondary polytope @ = £(A) as a projection of a certain higher-
dimensional polytope. The universal polytope U(A) of the point configuration A will be
defined as the convex hull in A4R™ of a set of d-vectors associated with triangulations of
P = convA. The universal polytope 1/(A) depends only on the oriented matroid [3] of

the point configuration 4, and not on the specific embedding. «— Lk an bre ek [J; bk

. N
Let A be the n x d matrix whose 7! row contains the homogeneous coordinates of a;.

Without loss of generality we may assume

't an -+ aja-1
1 an -+ az4-1

A= 1. (3.1)
1 apny +++ @Gna-1

We denote by 7 the exterior product of the columns of A, so 5 is a simple (or decompos-
able) d-vector in AjR™. If {e;,--- ,e,} is the standard basis of R™, then the d-vectors

ex=ex A---Aey, , /\GA(n,d) = {(Al,---,Ad) I 1<\ <---</\d§n} ’ (3.2)

form an orthonormal basis of A 4R™. We associate to any triangulation A of A the d-vector

et
e —

YA = E sign(n, ey) - ex, (3.3)
A€A

which is called the projection form of A. The factor sign(n, e,) is just the orientation of the
simplex conv{ay,, - ,as,]. Note that this orientation can also be defined intrinsically:
The simplicial complex A is an orientable manifold with boundary, and hence each of its
facets A has a unique orientation signa(A) in A (up to a global sign change). We have
signa(A) = sign(n,es) which shows that (3.3) depends only on the triangulation A and
not on the specific coordinates n = A4A.
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The projection forms in (3.3) have been used to solve various isoperimetric problems,

including maximizing the volume of projections of the regular simplex [9]. We define the
universal polytope U(A) of A as

Yy

U(A) := conv{pa € AqR" | Ais a triangulation of A}. (3.4) 4
H /X (/“"/""wf,{ﬂ:
(a) The oriented matroid of A determines the universal polytope 2(.A), and conversely. '
(b) Every triangulation of A (including the non-regular ones) corresponds to a unique [
vertex of U(A). Ly ( E
(¢) If the points of A are in general position, then the dimension of #/(.A) equals ("7h). \ 2

Some basic properties of U(.A) are:

A
Property (a) follows directly from the definitions. This contrasts with the secondary }
polytope £(.A) which may depend on the embedding of A. Property (b) can be proved b

s - ¢
noting that if A and A’ are distinct triangulations of A, then ‘ dee‘ ¢, s
5s
. ) ’ ~ O
(parpar) = D sign(nen)? = JANA| < Al = (pa,pa)- (3:5) (/gr
AEANA! <n)'\()A> 25 un Qinete

: ‘Lu.«.&,cv\o‘l ﬂ'—h'\“
The proof of (c) will be postponed until we discuss bistellar operations. As an application - ¢

of (c), consider the case where A is the vertex set of a convex pentagon. Then (b) implies mo\x’m.zﬂJ
U(A) has 5 vertices, and by (c) its dimension is (;) = 4. Hence the universal polytope a+ \() A&
U(A) of a convex pentagon is a 4-simplex. Note that the secondary polytope T(A) of a
convex pentagon is again a convex pentagon.

For the purpose of this paper the most important property of the universal polytope is
the existence of a canonical projection onto the secondary polytope. Consider the linear

N

map O a
¢ /\an - R" (, ; Q 2
n s /
o v (3.6)
o Y ((ei)e) Aei,n) e,
i=1

where “J” denotes left interior multiplication, the adjoint to the linear operator given by
“A”, defined by the relation (a A b,¢) = (a,b|c) for a,b,c € ALR™ of appropriate degree. A
d-vector 7 € AgR™ is said to be simple if it can be written as a wedge product of vectors in
R",ie. n =23 A--- Az4. The set of d-vectors obtained from all possible bases of a fixed
d-subspace of R™ form a line through the origin in A4R™. This correspondence between
d-subspaces and simple d-vectors is the classical Pliicker embedding of the Grassmannian.
Using this, we can give a geometric interpretation of the map in (3.6).

If n and ¢ are simple, and the corresponding subspaces L and M satisfy LN M = 0,
then n A ¢ represents the subspace L @ M. Alsoif L+ + M = R", then 5]y corresponds
to L+ N M [8, Chapter 0).

Now suppose ¢ = ex. If i € X, then (eilex) A e; = ea, and ¢(ey) = (ea,n) is a
Pliicker coordinate of 7. If ¢ ¢ ), then e;]ex = 0 and é;(ex) = 0. For a vertex ¢a of the
universal polytope, (e;]¢oa)Ae; thus eliminates all terms in 5 except those corresponding

8
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to the link of a; in A. The inner product ((e;Jpa) A e;, ) gives the’volume of this link
in the realization of A since {ex,n) = detA,, the maximal minor of A with rows in A.

Consequently, ¢(¢a) = ¢a. This discussion proves the following result.

THEOREM 3.1. The secondary polytope Z(A) CR" is the image of the universal polytope
U(A) C AgR™ under the projection ¢.

We next prove a key property of the map in (3.6).

PROPOSITION 3.2. The following diagram of linear maps commutes

Ag+1R" -e—J—) AqR®

(D™ 14
-

Rn

wheree =e; + -+- + e,.

PROOF: It is enough to check the result on a basis vector ey € Ng41R". By (3.6), we
obtain

N

win A ,/ / $(elen) = Z(e_le;n (eijn) Aeidei . wd v e rach
o i€u “\* VQ'}‘
For i € p, the coefficient of ¢; is = “ Y
| ! V = ""r‘ 7 F__ ‘
clew () Ae) = T (elews (c)hes). ~ @)

{i€uli#i) TR Neo T

CD [l

bl

Since 7 € p\j in (3.7), this reduces to

S oo = o=l
{ienli#i} i e
However (eJe,, n) = 0 since e is a column of n, and (‘?iJ eusn) = (~1)4(n|e,, &). Hence

S N : : B
#lelen) = (1) Y (nley, eiei = (=) ge,
- o =1

which proves the theorem. J

This theorem can be interpreted as showing that ¢ takes d-boundaries to the circuit
space of the oriented matroid of 7.

Next we will prove that the affine hull of £(A) is orthogonal to the column space of A.
We first need a description of bistellar operations in terms of exterior algebra.

9



LEMMA 3.3. If A and A' differ by a bistellar operation on p = conv{a,,, -+ ,au,,, }, then
a —par = tele,

PROOF: The bistellar operation on g consists in replacing « - 88 with da - 8, where {a, 8}
is the unique partition of (the vertex set of) u such that

linka = 88 and link3 = da (3.8)

~(see [19, Defn. (2.2)]). In the forms ¢ and @ar, the join operation “” of complexes is
represented by “A”, and the boundary operation by “e]”. Thus

pa—par= ) sign(n,eq A(ejles)) ea A (ej]ep)
— ) " sign(n, (esJea) A eg) (eifea) A cp.

t€a
Since a permutation of the indices in u will not change the signs of the terms in (3.9),
we may assume ¢ < j, for all # € a and for all § € 8. In this case
eley = eaA(e|eg) + (_1)|ﬂ|(eJea) Aeg
=D _eaAlesleg) + (=11 Y (eiJea) Aep. (3.10)
JEB o i€a

Comparing (3.9) with (3.10), we see it suffices to show that

sign(n, ea A (ej]ep)) = —sign(n,(—1)"¥!(ei]eq) A eg), (3.11)

for all 7 € a and for all j € B. But this follows from Cramer’s rule, since {a, 3} is the
unique Radon partition of u. §

If A is in general position, then e]e, is parallel to aff(i(A)) for any u € A(n,d + 1).
Since the image of ¢|- spans Aget, we have

dimU(A) = dim(Acet) = (";1)

which proves statement (c) earlier in this section.
COROLLARY 3.4. For any point configuration A, the space af{id(.A)) is parallel to A jet.

PROOF: It follows from [19, Theorem 5.5 that we may transform any two triangulations
of A into one another by a sequence of (abstract) simplicial d-balls differing by bistellar
operations. (These need not all be triangulations of .A.) This fact, together with Lemma
3.3, gives the result. |
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COROLLARY 3.5. The space aff{£(A)) is orthogonal to the column space of A, the coor-
dinate matrix of A.

PROOF: Since the map ¢ which takes U(A) to T(A) is linear, aff(Z(A4)) is parallel to
span{(efe,) | € A(n,d + 1)} C spanfnfe, | p€ A(m,d+1}  (3.12)

by Proposition 3.2. It was shown in [22] that the vector njeu in (3.12) is an elementary
vector of the linear subspace nt ¢ R", and that all elementary vectors of n+ have this
form (up to scaling). In order to complete the proof, it suffices to observe that nle, is
orthogonal to 5, which follows immediately from the geometric interpretation of “|”. J

The conclusion of Corollary 3.5 also follows directly from the convex function point of
view of Section 2 by observing that each of the cones C(A, A) contains all ¥ induced by
affine functions on P. These are precisely the elements of the column space of A. That

this is the largest subspace contained in these cones follows from the fact that if a function -

and its negative are both convex, then it must be affine. Corollary 3.5 will also be a direct
conclusion of the construction in the next section.
The lexicographic triangulations considered in [2] have the property that they will be
vertices of the image of ¢ for any embedding of the set 4 having the same oriented matroid.
‘The set of all such “intrinsic” triangulations may be worth further study; <
Finally, it is shown in [10] that the edges of the secondary correspond to triangulations
which differ by an operation they call a perestrotka. We note that these are precisely the

“stellar exchange” operations of Pachner (19].

0 o I
“(oide) N, | B }}
4. The construction using Gale transforms. :'P(QQMW’ h VL

This section gives a self-contained geometric construction of the secondary polytope.
We identify (R)* = RY with the space of affine functions on the set A. The linear
transformation R? — R"™ defined by the n x d matrix A, having rows aj,a,,... ,a, y
takes affine functions to their values on 4. The image of A is a d-dimensional linear
subspace which is clearly contained in the cone C(A,A) for each triangulation A of A.

Pick an (n - d) x Hmatrix B, with columns by, b,,... ,b,, such that A [ Bl

0 — R & Rt B, pnd _, g (4.1)

is an exact sequence of R-linear maps. The vector configuration B = {b1,b2,...,b,} is
called a Gale transform of A (cf. (13],{17),[23]). Note that the oriented matroid of B is
dual to the oriented matroid of A.

LEMMA 4.1. The convex hull of B contains the origin 0 € R"~? in its interior.

PROOF: There exists a linear function on R4 which is strictly positive on A. Let \ =
(A1,...,25) with A\; > 0 be the corresponding element of Im(A) = Ker(B). Then
A1 + ...+ Anb, is a positive combination of the bi’s giving the zero vector in R*—¢, §

Fix a triangulation A of A, and consider the closed convex polyhedral cone

C'(A4,4) := n pos{bs;, brs,... ybre L1 4.2)
T€EA
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where “pos” stands for the positive hull and 7* is the complementary index set to the
facet T = (71,72,...,74) of A,ie, T U 7* = {1,2,... ,n}.

LEMMA 4.2. The map B induces the decomposition Y= 7w (\V "2)

; I -k bt
C(A,A) = Ken(B) @ C'(A, A) -y 'Z> o “ “t
. o o : A
into a d-dimensional linear subspace and an (n — d)-dimensional pointed cone%” Poivred / } {
PROOF: It follows directly from the definition that the cone C'(A,A) is pointed, which

means it contains no non-trivial linear subspace. We need to show that a vector Y €R™
is contained in C(A4,A) if and only if its image By € R™~? is contained in C'(A,A).

First observe that AN wm\ s 'H\TS @ﬂ.\,\;r\jh"/ 7/

———

n
By = > ¢l € Pos{brs,bray.. ,bre ) (4.3)
i=1

n

if and only if

v

LS rzz"'=¢;-d=0 and '(/):-l' _>-07 ¢;-2‘ 20,’-',¢;:_‘ 20 (44)
for some vector ¥’ € i + Ker(B). The piecewise linear function 9y,a induced by ¥ is
convex if and only if for each 7 € A there exists a global affine function, with value vector

Ar € Im(A) = Ker(B), such that y' = ¥ — A, satisfies (4.4). Therefore, 3 € C(A,A) is
equivalent to (4.3) holding for all 7 € A, and hence equivalent to By € C' (A,A).
|

We define the pointed secondary fan F'(A) to be the collection of cones C’ (A,A) in
R"~4 where A ranges over all triangulations of 4. By Lemma 4.2, F '(A) is strongly
polytopal if and only if the secondary fan F(.A) is strongly polytopal. More precisely,
if @ CR" 4 is a polytope with N(@Q') = F'(A), then 086 Q' C R™ is polytope with
NOs Q') = F (A). This means that the secondary polytopes of A are exactly the
polytopes in R"=?¢ with normal fan F'(A).

For each basis u of B we define the cone

Cu = pos {bm,b,‘,,... 1Oun_a}

LEMMA 4.3. Let z € R"=? be such that z is not contained in the boundary of any of the
Cu. Then the set of d-tuples Q, := {u*|z € Cy} is a regular triangulation of A.

PROOF: Pick a preimage 1 € R" of z under B, and let A be any regular triangulation
of A such that 3 € C(4,A). It suffices to show that A = Q.

Consider any index tuple r = (T1,725... ,7a). Then 7 is contained in the triangulation
A if and only if (4.4) holds. But (4.4) is equivalent to {4.3) and therefore to z € C,..
Hence 7 € A if and only if 7* € 2z, which completes the proof.

Lemma 4.3 implies that each full dimensional polyhedral cone of the form N uen.Cy isa
maximal cell of F'(.A), and conversely. In other words, F'(A) is the multi-intersection in

12



R"=¢ of all cones C, where pu ranges over all bases of B. Note that, by matroid duality,
the bases of B are precisely the complements of bases of A.

SECOND PROOF OF THEOREM 1.3: Let p be any basis of B, u* the complementary basis
of A, and € > 0 a sufficiently small real number. Define the convex polytope

Py = conv(by, buyy... by, € bug € bug,eni € by).

We define 7, to be the interior point fan of P, with respect to the origin, which is
contained in the interior of P, by Lemma 4.1. By Proposition 1.2 (1), F, is the normal
fan of the polar polytope P;.

All facets of F, have the form C, for some basis u' of B, which means, by Lemma 4.3,
that F'(A) is a refinement of the fan Fu. By the choice of ¢, conv {b,,,b,,,... v Oun_al
is a facet of P,, and hence C, is a maximal cone in F u - The pointed secondary fan can
therefore be written as the intersection

Fl(4) = N Fu

4 basis of B

Proposition 1.2 (2) now implies that

FI(A) = N NMPH = N( P (4.5)

# basis of B 4 basis of B

We have proved that the Minkowski sum 3 » Pp is a secondary polytope. §

Actually, Proposition 1.2 implies that the Pp’s in (4.5) can be replaced by arbitrary
homothetic images ¢ »P;. This describes the degrees of freedom in choosing a secondary
polytope.

COROLLARY 4.4. A polytope is a secondary polytope of A if and only if it is a translate
of Eu cuP; € R"=? for some choice of positive numbers Cp-

We close this section by describing the secondary of the cyclic 4-polytope P with 8
vertices A = {(1,7,i2,3%,i*) € R® : i = 1,2,... ,8}. By Gale’s evenness criterion
([13],[24]), the facets of P = conv(.A) are the following:

1234 1238 1245 1256 1267 1278 1348 1458 1568 1678
2345 2356 2367 2378 3456 3467 3478 4567 4578 5678S.

Let B = {by,bs,...,b3} C R® be a Gale transform of A. We will represent B by an
affine Gale diagram as in [23]. The resulting planar diagram is given in [23, Figure 1] and
in Figure 2 below. We think of Figure 2 as the northern hemisphere of a configuration
on the 2-sphere. The points 1,3,5,7 are contained in the northern hemisphere, while the
points 2,4,6,8 are contained in the southern hemisphere. However these four southern
points are represented on the northern hemisphere by their antipodal points 2, 4,6,8.
Now consider the pointed secondary fan F' (A) in R3, which is the multi-intersection
of all cones pos{b;,b;,br} where 1 <i < j < k < 8. The resulting cell decomposition of
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the northern hemisphere is depicted in Figure 2, while the cell decomposition of the south-
ern hemisphere is obtained by symmetry. Altogether we get a polyhedral subdivision of
of the 2-sphere with 40 faces, 64 edges, and 26 vertices. Nine of the vertices (denoted
1,3,5,7,a,b,c,d,e) are contained in the northern hemisphere, nine vertices (including
2,4,6,8) are in the southern hemisphere, and eight vertices (denoted f,g,h,1, 7, k,l,m)
are on the equator, which is the line at infinity for the affine diagram in Figure 2. Eight
vertices are 7-valent, and 18 vertices are 4-valent.

Ah h &
] c
g
1
d 7 50
j
-8-0 :
b
O3 3 > f
m
k
e
m
\
k 1 1

Figure 2. Affine diagram of the secondary fan of the cyclic 4-polytope with 8 vertices.




These 40 faces are the maximal cells of the pointed secondary fan F'(A) and hence
they correspond to the regular triangulations of the cyclic polytope P. Note that there
are 32 triangular faces and 8 quadrilateral faces. We can use (4.2) to read off the regular
triangulations A of P corresponding to the regions in Figure 2. Here are two examples.
Consider the triangular region with vertices 3,5,b. This region is the intersection of the
positive bases

567 378 358 356 237 235 178 158 156 123
on the sphere. The corresponding triangulation A3 54 of P consists of all 4-simplices with
complementary index sets, i.e.,

Aasp = {12348, 12456, 12467, 12478, 14568, 14678, 23456, 23467, 23478, 45678 ).

Aszsp is the vertez triangulation of P which is obtained by joining vertex 4 with all facets
in its antistar. This can also been seen from the fact that 4 is contained in the region in
question. :

Let us now move to the adjacent region with vertices a,3,5. Crossing the line 35
corresponds to performing the bistellar operation supported on the complementary index
set 124678. The resulting regular triangulation of the cyclic polytope P equals

Azsae = {12348, 12456, 12468, 12678, 14568, 23456, 23467, 23478, 24678, 45678 }.

The index sets involved in this bistellar operation are underlined in each case. In this
manner we can easily construct all 40 regular triangulations of P.

The cell decomposition F'(A) is polar to the secondary polytope £(A) of the cyclic 4-
polytope with 8 vertices. This shows that I(A) is a 3-polytope with 40 vertices, 64 edges
and 26 facets. Eight of the facets are heptagons and 18 of the facets are quadrilaterals; 32
of the 40 vertices are 3-valent (corresponding to regular triangulations which admit three
bistellar switches), while eight vertices are 4-valent (corresponding to regular triangulations
with four possible bistellar switches). A Schlegel diagram of ¥(A) is shown in Figure 3.

5. On the complexity of secondary polytopes.

In this section we determine upper and lower bounds for the number of faces of the
secondary polytope E(A), and we discuss an optimal algorithm for computing its vertices
and face lattice from the input data 4 C R4. Qur complexity bounds are sharp when A
is the vertex set of a generic Lawrence polytope [1].

Here the main idea is a reduction to the well-understood case of hyperplane arrange-
ments. As is customary, any (finite) arrangement of hyperplanes H in RP is naturally
identified with its polyhedral cell complex whose D-cells are the connected components of
RD \ (UH). An arrangement H is said to be centralif all hyperplanes pass through the
origin in RP. In this case it is convenient to identify antipodal regions and to think of
H as an arrangement in projective (D — 1)-space. A hyperplane arrangement in affine or
projective D-space is called simple if every vertex is incident to precisely D hyperplanes.
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Figure 3. Secondary polytope of the cyclic 4-polytope with 8 vertices.

For a comprehensive study of hyperplane arrangements from an enumerative point of
view we refer to the monograph [25]. The following formulas due to Buck (4] follows as a
special case from Zaslavsky’s results (see [25, Section 5E]).

PROPOSITION 5.1. (Buck)

(1) The number of K-cells in a simple arrangement H of N hyperplanes in projective

D-space equals fx(H) = T2 (,Y,)(8=%) = 0(DP-K+ixD)

(2) The number of bounded K-cells in a simple arrangement H of N hyperplanes in
affine D-space equals fY4(H) = TVTDK%E(}Z\)) (D)i]).

As in the previous section, let B = {b;,bs,...,b,} C R"=? be a Gale transform of the
given affine point set 4 = {a1,a,...,a,} C R?. The k-faces of the secondary polytope
Z(A) are in one-to-one correspondence with the (n — d — k)-cells of its normal fan, the
pointed secondary fan F(.A) in R"~¢ (in this section we omit the “prime”). In Lemma
4.3 we saw that F(A) can be obtained as the multi-intersection of all simplicial cones
Cu = pos{by,,bu,,... ,bu,..} where u ranges over all bases of B.
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Now let Hp denote the central arrangement in R™—4 consisting of all hyperplanes
which are spanned by subsets of B of rank n —d —~ 1. If .4 and hence B are in general
vosition, then the number N of hyperplanesin Hg is N = (n_':,_l); otherwise we have
N < (,.5_,). Let Zg denote the zonotope which is the Minkowski sum of the N unit
line segments perpendicular to the N hyperplanes in H g.

LEMMA 5.2,

(1) The arrangement Hy refines the pointed secondary fan F(A), i.e., F(A) < Hg.

(2) The secondary polytope L(A) is a Minkowski summand of the zonotope Z B, l.e,
L(A) < Zp.

(3) If B = —B, then equality holds in both (1) and (2).

PROOF: Every linearly independent (n — d — 1)-element subset {b,,,...,b,,_, ,} of B
defines a linear form ¢,(z) = det(b,,,... ybun_q_yy ) on R"=4, By definition, Mg is the
arrangement consisting of the hyperplanes {€,(z) = 0}.

Given any basis u of B, then the cone C, is the intersection of n — d supporting half-
spaces of the form {¢,(z) > 0}. Each maximal cell of the pointed secondary fan F(A)
is an intersections of C,’s and can therefore be written as the intersection of half-spaces
{€.(z) > 0}. This proves claim (1). A

Statement (2) follows directly from Proposition 1.2. To see statement (3), note that
each cell of Hg is of the form

(Wzl 26(z)20} = ) {z] £det(buy--.,by_y_,,2z) > 0}

u vCp

= ﬂ pos{ibl‘nib#v"":tbl‘"-‘}
»

for suitable choice of the signs of the b,,. Thusif B = —B, then every maximal region
of Hg can be written as an intersection of the positive hulls Cy of bases A of B, which
proves (3). §

We remark that the converse of (3) does not hold. By adding one suitable vector to
the centrally symmetric set B in Example 5.6, we can obtain a Gale transform B of a
5-polytope P = conv(.A) with 9 vertices such that P is not a Lawrence polytope (defined
below) but its secondary polytope equals the zonotope Zz = Zp = L(A).

By combining Proposition 5.1 with Lemma, 5.2 we shall obtain the desired upper bounds
for the face numbers of secondary polytopes. We abbreviate K :=n—-d—-1-F%, N :=
(n—:;—x)v and D := n—d-1. The number of k-faces of Z(A) equals the number of ()X +1)-
cells of F(A), and, by Lemma 5.2 (1), this number is bounded above by the number of
(K + 1)-cells of Hp. Since Hg is a central arrangement of at most N hyperplanes in
RDP+1, the number of its (X + 1)-cells is bounded above by twice the number of K-cells
of a simple arrangement of N hyperplanes in projective D-space. This number is given in
Proposition 5.1, and we conclude the following.
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THEOREM 5.3. The number of k-dimensional faces of the secondary polytope L(A) C
R"=¢ of an affine point set A = {ay,ay,... yan} C R? satisfies the inequality

l(n-d-1)/2] n .
fk(E(A)) < 2. Z (n —(g-f—il-)— 2]) (n -d ; 1- 2]) — O(n(n_d_])z).

J=0
If we regard the input dimension d as a constant, then we get a singly-exponential lower
bound already in the case d = 3. If A is the vertex set of a convex n-gon, then by [15]

the number of vertices of the associahedron L£(A) equals (") = Q(n"-?). Here

our singly-exponential upper bound O(n("=2)*) is only off by the square in the exponent.

We will next describe a construction which gives a tight lower bound when the dimension
r := n —d of the secondary polytope is considered fixed. Let 4 = {a1,a2,... ,a44,} C
R? be an affine (d — 1)-dimensional point set, and suppose that r is a constant. Now

Theorem 5.3 can be rephrased as a polynomial upper bound in d for the size of the face
lattice of T(A).

COROLLARY 5.4. The number of faces of the secondary polytope £(A) C R" is bounded
above by ¢(r) - d(™=1)’  where ¢(r) is a constant which depends on r.

A (d ~ 1)-polytope P = conv(.A) with d + r vertices is called a Lawrence polytope if
1t has a centrally symmetric Gale transform B C R7,ie,if d4+r = 25 iseven (s > r)
and B = {by,by,... ,bs,~by,—by,..., —b,} for some vector configuration {b1,b2,... ,bs}.
(See [1] for details). We call P a generic Lawrence polytope if, in addition, the configuration
{b1,b2,...,b,} is in generic position in R™. Here we mean by “generic” that the coordi-
nates of these s vectors are algebraically independent over the rational numbers. N otice,
conversely, that a generic spanning vector configuration {by,b,, ..., by} € R™ defines a.
generic Lawrence polytope of dimension 2s —r — 1 with 2s vertices. Hence there exist
(d — 1)-dimensional generic Lawrence polytopes with d + r vertices, whenever d + r is
even and r < d.

LEMMA 5.5. Let A = {a,ay,... »@a+r} C R? be the vertex set of a generic Lawrence

polytope, and let 2s = r + d. Then the secondary polytope £(A) C R" is a zonotope
with

) = 2 5 (7)) >o = (10 (55

=0 r-2

k-dimensional faces for k =0,1,... ,r — 2. The number of facets of Z(A) equal

femi(S(4) = 2-“%/2]( ) (257) 2 1(F) -

= r—1-2j r—1 r—1
PROOF: The Gale transform of A is a centrally symmetric vector configuration B =
{b1,b2,... by, =by,—by,... y—bs} C RT in generic position. By Lemma 5.2 (3), the sec-
ondary fan F(A) equals the hyperplane arrangement Mg, and the secondary polytope
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Z(A) equals the zonotope Zg. We need to compute the number fi(Zg) which is equal to
the number of (r — k)-cells of the central r-dimensional arrangement H g. Let Hp denote
the induced arrangement in projective (r — 1)- -space. In this projective (r — 1)-space we
select a hyperplane not containing any vertex of Hg to be “at infinity”.

Let Ui(r,s) be the number of i-cells in a simple arrangement of (r_l) hyperplanes in
projective (r — 1)-dimensional space. If the arrangement Hp were simple, then fx(2B) =
2-Us—i-1(r,s). However, Hp is not simple unless r = s, which is a trivial case.

Suppose for the moment that r < s. Then the vectors b,,...,b, do not correspond to
simple vertices of Hp. However, since B was chosen to be generic all other vertices of Hg

are simple. If we perturb the arrangement 'HB slightly, so that it becomes simple, then
we create additional bounded regions around each vertex b;. The number of hyperplanes
passing through each b; equals (22}). Let Vi(r,s) denote the number of bounded i-cells

in an arrangement of ({Z1) hyperplanes in affine (r — 1)-dimensional space. The process of

perturbing Hg toa simple arrangement creates V;(r, s) new i-dimensional regions around
each vertex b; for : =1,2,...,r — 1. This implies that

fi(Zs) = 2-Urig_a(r,s) = 2-8-Veg_1(r,s) for k=0,1,...,r=2.

For ¢ = 0 we have to discount the vertex b; (which 1tself is a bounded 0-dimensional
region), and we get

fr=1(Z5) = 2.Up(r,s) = 2-5- [Vo(r,s) —1].

Since Vi(s,s) = 0, these two formulas are also valid in the special case r = s. ;From
Proposition 5.1 we find that

(-21)

W(r-1)/2] r—1-2;
Z (r-—l—2j)(r—1—i>

J=0

Hne) = (::§)+:+1—r(r:1)<(:§))

This completes the proof of Lemma 5.5. §}

U,'(T,s) =

and

To illustrate the formula in Lemma 5.5, we consider the smallest non-trivial example of
a 4-dimensional Lawrence polytope.

EXAMPLE 5.6. Let A = {a;,az,...,a3} C R® be the set of vertices of a prism over a
tetrahedron, conv(A4) = A;xA;. This 4-polytope is a generic Lawrence polytope because
its Gale transform equals B = {b;, b2, b3,b4,~by, ~b2,~b3,—bs } C R3, where the vectors
b1,by,b3,bs are in general position (see [23, Figure 4]). (In this easy example there is no
difference between “general position” and “generic position”.) The secondary polytope is
a 3-dimensional zonotope with 6 zones. We can write

T(A1xA3) = Zsg = {Xj-bixb €R®:0<);<1,1<i<j<4},
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where b; x b; denotes the ordinary cross product of vectors in 3-space. We compute the
face numbers of ¥(A, x A3) by specializing r = 3 and s = 4 in Lemma 5.5. The secondary
polytope L(A; x Aj) has 24 vertices, 36 edges, and 14 facets. In particular, there are 24
regular triangulations of the prism over the tetrahedron.

With the same argument we can easily compute the f-vector of the secondary polytope
of Ay x Ay (the prism over the d-simplex) for any d. It is an important open problem to
determine the secondary polytopes of general products of simplices [10; Section 7, Remark

(d)]-
In Example 5.6 we can see that the face numbers of £(A; xA3) are smaller than the face
numbers of the secondary polytope of the cyclic 4-polytope with 8 vertices (determined in

Section 4). However, when is r fixed and d — oo then the secondary polytopes of generic
Lawrence polytopes have the maximum number of faces.

THEOREM 5.7. Let F,(d) denote the maximum number of faces of a secondary polytope
Z(A) C R™ as A ranges over all (d+r)-element sets in R%. There exist constants ¢;(r) and
c2(r) (depending on the dimension) such that ¢;(r)-d("=1* < Fu(d) < ep(r)-d0=07,

PROOF: The upper bound was proved in Corollary 5.4. The lower bound is clear for r = 1
and r = 2; for r > 3, we use Lemma 5.5. First observe that there exist generic Lawrence
polytopes for fixed r and d — oo whenever d+r is even. Consider the term corresponding
to j = 0 in the sums of Lemma 5.5. This term equals

(((;ffii 2)) (T - 1)’

and hence it is bounded below by ¢(r, k)-d("=1?, All other terms in this sum are of lower
order in d. The negative correction term can easily be bounded above by ¢'(r, k). d(r=2)",
Hence the number of k-faces is bounded below by ¢”(r, k) - d("=1*, Here ¢,c’,c" are
constants depending on r and k. |

From this analysis we also get an optimal algorithm for computing the face lattice of the
secondary polytope £(.A) (when its dimension r is regarded as a constant). We refer to the
book of Edelsbrunner [6] for a precise notion of geometric algorithms and their complexity.
In particular, in [6, Chapter 7] we find the following result due to Edelsbrunner, O‘Rourke
& Seidel [7].

PROPOSITION 5.8. (Edelsbrunner, O‘Rourke & Seidel)
The face lattice of an affine arrangement ‘H of N hyperplanes in RP can be computed in
O(NPD) time.

As a result we get that the face lattice of a central arrangement H of N hyperplanes in
R" can be computed in O(NT=!) time. As can be seen from [6, Chapter 7], this algorithm
also generates a test point in the relative interior of each cell of H at the same cost.

In order to compute the face lattice of the secondary polytope L(.A), we proceed as
follows. We first compute a Gale transform B for A. This can be done in O(c(r)-d?) time.

Then we compute the arrangement Mg, which requires O( (:tf r_l) = O(c'(r)- d(r=%)
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time. Finally, we need to identify k-cells of Hp which correspond to the same k-cell of
F(A). We now sketch a method for performing this identification in time O(c"(r)-d("=D?),
All details (e.g. efficient data structures, etc...) will be omitted here.

For every (r — 1)-cell (or subfacet) F of Hp we need to decide whether F should be re-
moved. To do so, consider all linearly independent (r —1)-element subsets {b,,,... ,b,,_,}
of B. If F is not contained in any pos{b,,,...,b,,_,}, then we remove F, otherwise we

keep it. The time required for each of the O(d("”?) containment tests depends only on
the dimension r. We conclude this section by stating our main computational result.

COROLLARY 5.9. The face lattice of the secondary polytope £(A) C R™ of an affine point
set A = {aj,ay,...,a44,} C R? can be computed in optimal O(d("")?) time, when r
is regarded as a constant.
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