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ABSTRACT

This paper gives a new decomposition for the ring of polynomial functions on the variety of
(n+ 1) X (n+ 1) complex matrices of rank less than or equal to one. This involves decomposing the
monoid

M= LGk e T N = (k[

into a finite disjoint union of translates of N cones based on certain 2n simplices in R¥*2 Asa
consequence we have a method for writing the normal form of a perturbed n+1 dimensional
harmonic oscillator in a unique way.

1. INTRODUCTION

Let ., be the ring of polynomial functions on the 2z dimensional complex
affine variety M, ., of (n+1)x(n+ 1) complex matrices of rank less than or
equal to one. The main point of this article is to give a new decomposition of
-/, , which we call the Stanley decomposition.

In order to describe this decomposition we need a more explicit repre-
sentation of the ring «,. In § 5 we show that -, is isomorphic to the ring

B, =CIC" ) (€ ¥
of polynomials on € *!x (C"*')* which are invariant under the C* action

(l, (.Xo, e Xy Vs eees yn))'-*(txo, ...,tx,,,[_ lyo, ...,,_lyn).

Partly supported by the U.S. Army Rescarch Office through the Mathematical Sciences Institute
of Cornell University

375



Clearly the monomials n;;=x;y;, 0=i, j<n are invariant under the C* action.
In fact {n;} generate %,. This is shown as follows. Using muiti-index
notation, the monomial M=x'y’/ is invariant under C* iff for all teC*
M=1"1-UIM, that is, iff

1l| =lp+ - +in=lj‘ =jo+ * +Jn-
Writing the factors of an invariant monomial as two lists

iy i iy
Xy eooy X0y Xy erey Xy oeey Xps eery Xp

(1a)

Yoy oens Yos Yis oees Yiseers Vnseees Un
Jo Ji Jn

(1b)

which have the same number of entries since |i|=|/|, and pairing off the
corresponding entries, shows that an invariant M is a product of suitable n;;.
Clearly we have the relations

2 T ey = Ty Ty

for all 0<i, j,k,/=n. In § 5 it is shown that these are the only relations among
the generators of &,.

Now we are in a position to describe the Stanley decomposition of &,.
Consider the N monoid

My={(G, j)eN" N i =]}

which is the exponent monoid of &,. By a theorem of Stanley [13, p. 191],
M, can be written as a finite disjoint union of translates of N commutative
free N monoids K, on 2n+ 1 generators (see Theorem 3, § 3). In symbols,

® = U @K,

From the decomposition of #, follows the Stanley decomposition of &,;
namely,

N

@ B= T OxICn (9 €an)]
=1

where 7,= (o, B) € N"*!x N"*!. And conversely, from the Stanley decompo-

sition of %, one obtains the decomposition of «#,. Unfortunately Stanley’s

proof of the decomposition (3) is nonconstructive. What we do in this paper

is to give an explicit constructive proof of (4).

The precise algebraic-geometric meaning of (4) is unknown to the authors.
Algebraically seen the Stanley decomposition of 48, is, on the one hand,
weaker than the statement that 93, is Cohen-Macaulay (namely, there are
elements zi,..., z,€ B, called polynomial generators and elements #y,...,7;
called separators such that

#,= ¥ ®nClzy,..., 2D
i=1
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because the choice of polynomial generators depends on the summand. On the
other hand, the Stanley decomposition is stronger than Cohen-Macaulay
because the separators are monomials.

We end this introduction by writing down the Stanley decomposition of &,.
Given a monomial M =x"y/ with

Vo=l it =jot 2= 1t
using the relations (2) it can be straightened into a unique monomial
M= (Xllv yj\)(x(:s .yj:) i (‘X,'/, )’,,)

(written also as (iy, S J2) = Ups J1)) where

IIA

&) i< siand j1SHE - =)

(see § 2). Plotting the nodes (1, j) of M as in Figure 1, we see that (5) means
that no node (i, j;) in M lies strictly above and strictly to the right of any

[ i
‘l (i) i 0 i 2 J
lr

(4] .

1

1

i

1

Figure 1. Nodes of the monomial (xoyo)z(xzyl)(xzyz)Z

other node of M. Thus all nodes of M lie on a maximal monotone path, i.e.
a path beginning at (0,0) and ending at (2, 2) which is made up of moves to the
right or moves down. The maximal monotone paths of Figure 1 are given in
Figure 2 below.
(0,0) (0,0)
| I
(1,0) (1,0)(1,1)

| |
2.0-2, =22 2,D-2,2)

"\ o
(0,0) (0,0)-(0, 1)
g,lg—m,n—u,z) (1]1)

(2,I 2) él_)—(z, 2)
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(0,000, 1) (0,0)-(0, 1)-(0,2)
| I

(1, D~(1,2) (1,2)
| I
(2,2) 2,2)

Os O¢
Figure 2. Maximal monotone paths. Nodes of g, corresponding to corners are underlined.

A corner of a maximal monotone path is a node which is arrived at by a move
downward and left by a move to the right. Corners in Figure 2 are the nodes
which are underlined. The Stanley decomposition of %, is

By = (x290)CIX0 Yo, X1 Yos X2 Y0, X2 V15 X2 V2]
@ (x; )2 ¥1)Clx0 Yo, X1 Yo, X1 V1, X2 Y1 X2 2]
@ (%1 Y0)ClXo Yo X1 Yos X1 Y1 X1 V2, X2.Y2]
@ (2 ¥1)Clxo Y0, Xo Y15 Xy Y15 X2 V15 X2 2]
@ (x; ¥1)CIX0 Yo, X0 Y1 X1 15 X1 Y2 X2.92]
@ Clxg Yo, Xo Y1, XoY2: X1 V2, X2 V2]

The monomials x;y; which are polynomial generators in a given summand
correspond to the nodes (i /) in a maximal monotone path. The separators are
the products of monomials corresponding to the corners of the monotone path.

2. STANDARD MONOMIALS AND THE STRAIGHTENING PROCESS

In this section we give a proof of the Stanley decomposition for the algebra
A, using the technique of straightening. A similar proof is given in [5] for the
Stanley decomposition of the algebra of polynomials on the Grassmannian of
2-planes in # space.

Associate to the monomial 7, the bracket (j, k). We say that (j, K<,k
if k<k’or,if k=k’, j<j’. This gives a complete ordering on the brackets. We
associate to the monomial

M:”iljxni:j:'“ni,jr Oéi/,j[én forI=1,...,r

the bracket monomial
M =iy, ji)a, J2) - Ups Jr)s
which we also write as a 2 column tableau
iy i
©  m- |
i J
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Here we use the following convention on the indices:
(llvjl)é(l;’h/l)é §(1r,./r)

The number r is called the length of M, i.e. {M)=r. The pair (i,, J,) is called
the height of M, i.c. ht(M) =(,, j,)-

Thus the Z algebra of C* invariant polynomials is the bracket algebra B
gsenerated by the brackets (j, k) where 1 =j,k=n. The relations (2) become the
basic syzygy

(7 U, k), my=Gym) L k), 1 shkhmsn

among the brackets. In terms of 2 x 2 tableaux, (7) reads

) <_/ k>:</' k>
A m jom,
DEFINITION. A tableau (6) is called a standard tableau if iy i< - =i,

If we represent (j,k) as nodes in ZiN([1,n}x[1,nl]), then the nodes
{(j,,k,)ll <l!=<r} represent a standard tableau if no (jj, k) lies strictly above
and strictly to the right of a (j, k;). An arbitrary tableau can be straightened
into a standard tableau by applying the basic syzygy (8). This is the content of
the following

LEMMA 1. The Z span of the standard tableau is the bracket algebra B.

PROOF. We prove this by induction on the length of M. The statement is
trivial for /(M) = 1. Suppose we can bring tableaux of length <k into standard
form. Take M with (M) =k + 1. Define M’'=M/ht(M). Since M) <I(M) we
can bring M’ into standard form M. Consider the 2 x 2 tableau consisting of
ht(M’) and ht(M). Let us write this as

o ()

There are two possibilities:
1 Either j'<j, in which case M is standard.
2 Or j'>j in which case using (8) we write (9) as

G +)

Jok

If we do this to M to get M, hi(M)>ht(M).

Since we can increase the height of M only a finite number of times, at a

certain moment after repeating the whole procedure a number of times we must
end up with case 1. Then we are done. W

LEMMA 2. The standard tableaux are linearly independent.
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PROOF. Among all the nontrivial linear dependence relations among the
standard tableaux {M,}¥., choose one

N
(10) L M=0
k=1

with nonzero scaiars ¢, such that

(a) the number of distinct variables in the M, is as small as possible;

(b) subject to (a) the maximum length of the tableaux M, is as small as
possible.

Let (j, k) be the maximal bracket (with respect to the height ordering)
appearing in (10). By (b) (j,k) is not a common factor of all the M,. Put
(j,k)=0 in (10). Since the height of (j, k) is maximal, the standard tableaux
M, will remain standard. Thus we obtain a nontrivial relation with fewer
variables. This contradicts (a). W

A Stanley decomposition of the space of tableaux B is a sequence of m free
abelian submonoids B, ..., B,, of the multiplicative monoid B, each of rank &,
and m elements 7y, ..., 7,, € B such that

B- ¥ ®nZB,l.
i=1

Here @ is the direct sum of additive abelian groups and Z[B,] is the free
additive abelian group generated by B;.

The goal of this paragraph is to make the Stanley decomposition of B
explicit. Consider the figure

1 2 3 n
1 LD | 4,2 |3y 1,n)
2 en | ey | el @.n
n (n1) | n,2) | (n3) (n,n)
Figure 3.

where each node represents a bracket in B. For each monotone path p; from
(1, 1) to (n, n), that is, a path which consists of moves downward or to the right,
define B, to be the free abelian multiplicative monoid generated by the
brackets in p;. There are

Ne (2(;1— 1)>
n—1
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monotone paths. A corner of a monotone path is a node which is at the end
of a move down and at the start of a move to the right. Thinking of the product
of the nodes of a monotone path as a tableau, we order the monotone paths
by its inverted lexicographic order: M<M’ if ht(M)<ht(M') or, M/ht(M)<
<M'/ht(M").

We now prove

THEOREM 1.

N
B, kilsjksmp= T n,Z[(r,s)|(r,s) is a node of p;]

(=1

where

n= 11 {(,v)|(1,v) is a corner of p;}.

PROOF. By the straightening algorithm, every tableau is a unique linear
combination of standard tableaux. Recall that a standard tableau does not
have two nodes one of which lies strictly above and to the right of the other.
Thus a monotone path p, corresponds to a standard tableau. Since standard
tableaux are linearly independent, it follows that the multiplicative monoid B,
generated by the nodes of p,, is free. Since #,€Z[B,], as an additive group
m,Z[B,] is generated by standard tableaux.

Because B is generated as an additive group by the standard tableaux, to
prove the theorem it suffices to show that every standard tableau is in a unique
n,Z[B,]. Let M be a standard tableau. Since M is standard, its factors lie on a
monotone path. Let p be the largest monotone path containing the factors of
M. Suppose (r,s) is a corner of p which is not a factor of M. Then (r—1,s) and
(r,s+1) are nodes of p. Let g be the monotone path created by taking p and
replacing (r,s) by (r— 1,5+ 1). Then g still contains the factors of M, and ¢>p,
since (r — 1, s+ 1)>(r, s) and all other brackets are equal, thus contradicting the
maximality of p. This proves that to each standard M there is a unique (because
it is maximal in the complete ordering) monotone path all of whose corners are
factors of M. We denote the path by p; and the product of the corners by n;,
and we have shown that Men,Z{B,}. R

3. THE STANLEY DECOMPOSITION OF . 4,

Here we give another proof of the Stanley decomposition of the monoid
. This proof is more in the spirit of Stanley’s original argument [13,
p. 191].

We begin with some combinatorial preliminaries.

Let =, be an n dimensional simplex with vertices {uq,...,u,}. Then the
product X, x 3, has vertices {(u,-,u},)‘i,je {0, ...,n}}. Consider the vertices of
this product as entries in the (#+ 1) X (n+ 1) dimensional array A, 2, X2, 18
a 2n dimensional polytope [8]. Therefore a triangulation of &, X2, consists of
maximal simplices of dimension 2n, each having 27+ 1 vertices.
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A triangulation 4, of %, x X, is given in [7, p. 67, def. 8.8]. We will now
give another more combinatorial description of this triangulation, due, essen-
tially, to [4]. A monotone path in A4, is a sequence of entries of A4, beginning
with (ug, 4p) and ending with (u,, u,) such that the entry following (u;, ;) is
either (u;,u;, ) or (u;,,4;). In other words a monotone path is composed of
moves either one step to the right or one step down. Each monotone path in
A, consists of 2n+ | entries. The triangulation 4, of 2, x 2, has maximal 2n
dimensional simplices ¢ consisting of the convex hull of the vertices corre-
sponding to the entries of the monotone path p, in A4,. An elementary
counting argument shows that there are

2n
()
n
monotone paths in A,. A corner of a monotone path is a move down followed

by a move to the right. A classical argument, which can be found in [9], shows
that the number of monotone paths in 4, which have exactly i corners is

()

This completes the description of the triangulation of 4,,.
Here we give another description of 4,. Let w be the ordering on the
vertices (u;, u;) of 2, x X, defined by

(uju;) S uy) if i<k and j=1.

Denote the vertex (u;, u;) by the node (i, j). The collection of all d, 0=d=2n,
faces of 2, x X, is the set of all d+1 vertices corresponding to d+ 1 distinct
nodes in some monotone path. If F, is a d-face of 2, x %, let o(F;) be the
smallest vertex in Fj; in the ordering w. Thus Jd(F;) is the upper left most
node of the nodes corresponding to F;. We say that the collection of faces
& =(Fy, F,..., Fy,) of 2, x 2, is a full flag if 6(F;) is not a vertex of F;_, for all
i=1,...,2n. If @ is a full flag then the 2n+ 1 vertices (3(Fp), 6(F)), -.., 0(F,))
form a 2n simplex A(@®). Clearly the nodes corresponding to 8(Fy), ...,0(F3,)
form a maximal monotone path. Hence /', = {A(¢)| D is a full flag of 2, X X,}
form a triangulation of 2, X2, which is exactly 4,,.

In order to construct a shelling of the triangulation 4, we must order the
maximal 27 dimensional simplices ¢ in 4,,. This we do as follows. Encode the
monotone path p, corresponding to ¢ by a binary string a,: a 0 in the string
indicates a move to the right and a 1 a move down. Order the binary strings
a, via the lexicographic order with the string

0---01---1

first and
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last. Let A4 be a pure simplicial complex, that is, all the maximal simplices of
A have d + 1 vertices. Then a shelling of A is an ordering oy, ..., 0, of all its
maximal simplices such that for each j, 2=j<k,

anCy o)
is a subcomplex 4’ of - determined by some number, say #n;, of (d— 1)-faces
of ;. When j=1, we put n, =0. Having a shelling of 4 is equivalent to saying
that there is a unique minimal face 7; of o; which
1. is not in

Joa

and

2. has n; vertices, each of which is the vertex of g; omitted from one of the
(d — 1)-faces determining 4"

Given a shelling of 4, define

hi(d)=#{jln;=1}.

The numbers h;(A) depend only on 4 and not on the particular shelling (see
e.g. [3]). In particular

m= £ ()5 @, osisd

y=0
where f;(4) is the number of j faces of 4.

THEOREM 2. The lexicographic order on the 2n dimensional simplices of 4,
gives a shelling of 4, such that

/1,(A):h,-:</?>2.

In fact for each maximal simplex o of 4, the minimal face of ¢ not in the union
of earlier maximal simplices has vertices corresponding to the corners of the
monotone path p, associated to g.

PROOF. Consider the binary string a, associated to ¢. Each 10 substring
corresponds to a corner of p,. Replacing a 10 substring in a, by a 01 substring
results in a binary string a,- where g’< ¢ in the lexicographic order. But 6Na’
is a face of ¢ of codimension 1. Since any a,- for ¢” <o is obtained from a,
by a sequence of 10 substring replacements, the vertex set of ¢MNg” must lie in
aNo’ where ¢’ is obtained from o by a single 10 substring replacement. The
number of such possible replacements in a, is just the number of corners of a.
Thus it is the number of codimension 1 faces of ¢ in
an( U o),
7

I3
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which in turn is the number of vertices of the unique minimal face t of o not in

U g’

g <a
In fact, the unique minimal face t has vertices corresponding to the corners of
the monotone path p,. W

In the next paragraphs we construct the Stanley decomposition of .
Consider the N monoid #, defined by the set of all (j,k)eN""TxN"*!
which satisfy

(l]) j0+j1+"‘ +jn:k0+k1+"'+kn.

Let K, be the cone of nonnegative rational solutions of (11). Slicing K, with
the hyperplane

Jotjit o Fiat Kotk + k=2

gives the polytope X, x X,. The triangulation 4, of X, x X, described in this
section gives a decomposition of K, into 2n+ 1 dimensional simplicial cones,
that is, cones having 2»n + 1 linearly independent extreme rays. Let K, be the
simplicial cone corresponding to the maximal simplex o€ A4,,.

We now explicitly carry out the decomposition of «#,, into a disjoint union
of translates of simplicial cones described by Stanley [13]. More concretely
we prove

THEOREM 3.

.
(12) ”{{n: U ('7/+Ko,)’

=1
where 1?,,1 is the free commutative N monoid generated by the vertices of o;
Gl< o <GN”

Ne <2n>
n
is the shelling of A,,; #, is the sum of the vectors associated to the vertices of
a; which correspond to the corners of the path p, .

On our way toward proving (12) we will need to understand the structure of
the integral points of K, and K,. For this we need the notion of an extreme
ray. Corresponding to the entry (u,,u,) of p,, ¢ a (maximal) 2n simplex in
2. xZ,, let e R?**2 be the vector with 1 in the (r+ 1)* and (n+1+s+ 1)*
components and 0 elsewhere. The extreme rays of K, are the vectors v\}" where
(u,,uy) is an entry in the monotone path p, associated to g. We have the

LEMMA 3.

1. Any integral point of K|, lies in some K,,.

2. Any integral point of K, is a unique nonnegative integral combination of
the extreme rays of K.

384




PROOF. Part (1) has already been proved (see the argument after formula
(In.

To prove part (2) first we note that any such representation is necessarily
unique, since the extreme rays of K, are linearly independent. Next, suppose
;e K, NI * We show that any representation

J= E /}L,\\U,,J

To see this, note that there is a linear order on the v, ; induced by the order of
the entries (i,, u,) in the path p,. Further, note that each (u,,u,) in p, is either
the last entry in row r or the last entry in column s. If some A &2, let (7,3)
be the first such in this order. Then either entry 7+ 1 or entry n+145+1 of
the vector 3 is not integral, since for that row or column, 4, ; is both the first
noninteger weight and the last nonzero weight. Since z is all integer, this is
impossible. 1

We remark that a consequence of this lemma is that w is a compressed
ordering [12]. To see that w is compressed it suffices to show that for any
rational point « in the interior of a face F; of X, x2,, if ¢ is the unique
rational number such that

|
— (&= cd(F))
l-¢

lies in the boundary of F, then /(a)c is an integer. Here /(a) is the least
common multiple of the denominators of «. Write

where v, are vertices of F,; and 0<4i,<1, A,e€@. Then l(a)x is an integral
linear combination of extreme rays belonging to some K,. Hence by the
lemma, all /(a)A, are integers. Suppose that §(F;)=v, for some s, 0=s=d.
Then « ~ A.8(F};) belongs to the boundary of F,;. Hence ¢=A,. Therefore l(a)c
is an integer.

We now prove theorem 3. Because the geometric nature of I?[,/ has been
given by the lemma, we need only show that the N monoid

. /{n — K’" m ZZ-H + 2

is a disjoint union given by the statement of the theorem.

We proceed by induction on N, the number of maximal simplices in the
shelling of 4,. Let

A= o andK'= JK,.
We have 4, =4" and .#, =K, =K". The result is true for N=1 since 5, =0.
Suppose that

Rot= || (7]},+1\_"Uﬁ)v

p<d
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We know that
ki:l?i‘]UKa,.

Moreover points in
Ki-ana,

are exactly those lying on the n; codimension 1 subcones of I?a, spanned by
the n; codimension 1 faces of g; which lie in 4°~!. Therefore points K~ &'~ !
are just those points which do not lie on any of those codimension 1 faces
of g;. Therefore ze K'~ K'~" is a point whose expression in the monoid &
involves positive integer coefficients of each of the corners of Po,- Thus
zen;+K, . Hence

K'=R"'U(n+&K,).
No point in 7;+ K, can lie in K~! since the corner entries of Do, Span the
unique face 7; of g; which does not lie in 4°~!. Thus the union is disjoint. W
We note that everything done in the past section extends to the case 2, X2
corresponding to the monoid M, ¢ determined by
Jotit i =ko+ ki + - + k.

The only changes that we have to make are

()
()

We end this section by showing that the A-vector (ho, Ay, ey hyy) Of Z, X2,

where
i

for O0<i=<n and A;=0 for i>n does not depend on the triangulation A4, of
2,xZ,.
Consider the generating function

and

JE,xZ, 1) =1+ ¥ #{aeZ,x3,C R mae 722y 2,
mz 1
Since 4, =T,,, where w is the ordering on the vertices of 2, x 2, defined above
and since w is compressed, by a theorem of Stanley {12, p. 336] it follows that
i hl_t21
HE X Z,, 1%) = u—jﬁ
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¢ h; is the ith component of the h vector of the triangulation 4, of

consider the Poincaré series for the algebra &, of C* invariant
ials; namely
LB (= T (dim, B

mzh

(mYy 2
n )[ ’

C * invariant polynomials of

4™ is the vectorspace of homogeneous

1. Then
‘\,\j\+\k\:2m}t2m

| PAB= L #{(j,k)e{N”“xl»\l"*lHj\:\k

‘ mz o

j m+n\*
| - Z < >[2m’

% mz{ n

the last equality follows from the fact that

#{jeh\‘””\\j:m}:cn:n)

lly #4, is a rational function in ¢ [11
\ial coefficient identity

E ()00
150 N 2n / J> ;n'“j n

of summation gives

]. To find it we substitute the

(13) (see [10]). Changing the variable

ena & (5 (5
PRI E AN 2n j/\n—J
-t S LIOF
(‘__12)_!l+l o n'—j ]

1 n n .
- 5 ()
(- S \J

=JZ, X 2 ).
15 the h vector of X, x 2, is independent of the triangulation 4,.

\ ©* ACTION AND THE HARMONIC OSCILLATOR
tween the normal form of a per-

in this section we explain the relation be
d the algebra &, of C * invariant

‘bed n dimensional harmonic oscillator an

nctions.

Consider the Hamiltonian function

HEM =+ ¥ (ni+&h
(-0
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V=4{0} x(C"*"y*. Since U and V are invariant under the C* action, y& U or
y& V. Therefore Fyp)SFUUWV)SFe 10)) = { f(0)}, that is, F is constant on
the C* orbit y. Now suppose that y is a C* orbit which does not intersect
UUV. Then yS(C"*'—{0})x(C"" y*—{0}). Since y=¢ '(A) for some
AeM, ,—1{0}, F(y)zF(d)“(A)):{f(A)}. Therefore F is constant on all
 * orbits. In other words Fisa C* invariant polynomial, i.e. F'€ B,. To show
that ¢ * maps %, onto B, we recall from § 1 that the quadratic polynomials
n,=xy; 0=ij=non €+l C"* 1 * generate B,. Since

(@ WED 1) =(6,® e)*(9(x, )
=(e®e)(x®Yy)
=¢*(0)¥(e))
=x;y;=m;(% ),

¢ * is surjective. Thus is isomorphic to #,. R

An important consequence of this isomorphism is the fact that
0=0*()
(20) = p*(EFES ~ EJEL)

=TT T Ty

are the only relations among the generators {n;} of #,. For suppose that
F=0is a polynomial relation among the generators of #,. Then F=¢*(f) for
some f in «,. Hence f=0. This is a polynomial relation in &, . Therefore fe I,
since ¥, = €,. Consequently there are a;j € 4, such that

=3 au(EJES —EJER)-
Hence

F=¢*f)=Y ¢ ¥a)(mu— MMk
Thus F=0 follows from (20).
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