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Abstract
We consider the Newton polytope ¥(m,n) of the product of all minors
of an m x n matrix of indeterminates. Using the fact that this polytope
is the secondary polytope of the product A,,—1 X A,_1 of simplices,
and thus has faces corresponding to coherent polyhedral subdivisions of
Apm—1 xAp_1, we study facets of £(m,n), which correspond to the coars-
est, nontrivial such subdivisions. We make use of the relation between
secondary and fiber polytopes, which in this case gives a representa-
tion of ¥(m,n) as the Minkowski average of all m x n transportation

polytopes.

1. Newton, secondary and fiber polytopes.

Given an m X n matrix A = (a;;) of indeterminates, we consider the polytope
Y(m.n) C R™" defined as the Newton polytope of the product of all minors of A, that

is, the convex hull of all exponent vectors obtained when one expands this product as a

polynomial in the a;;. For example, when m =n =2, A = (le 312 ), the product of
21 22

MIinors is

ayy aiq

2 2 2 2
dgs = 011012021099 — Q110719091022

lai1] - |a12| - |a21| - |age] -

and so ¥(2,2) is the line segment joining (? ;) and (; %) in R%.

We address here the problem of determining the polytope £(m,n) for general m and
n. Determining a polytope can be accomplished in several different ways, for example, by

giving a description of its vertices, or by determining a minimal set of linear inequalities
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which define it. The latter amounts to describing all its faces of codimension 1, that is, its
facets. This is the point of view we adopt in this paper. We begin a description of £(m, n)
by describing sone classes of facets and giving a means to determine the linear inequalities
to which they correspond. Note that the approach by description of vertices was taken
in [1], [13] and [16], where the closely related polytope II,;, », the Newton polytope of the
product of mazimal minors, was considered.

Our approach to ¥(m, n) depends on the fact that it is equal to the secondary polytope
S(A,, -1 x Ap_y) of the product Ap—y x Ap—y [8;83E.3], [7; §7.3.D]. (Here Ay denotes
the standard k-simplex, defined as the convex hull of the k + 1 unit vectors in IRFT!))
Thus, the lattice of faces of ¥£(m,n) is isomorphic to the poset of all coherent polyhedral
subdivisions of A1 X Ap—1 that add no new vertices. A subdivision is coherent if it
supports a strictly convex piecewise linear function, where strictly convex means there is
a different linear function on each maximal cell of the subdivision. See [7], [8], [3] or [5]
for a discussion of secondary polytopes and coherent (or regular) subdivisions. Vertices
of ¥(m,n) correspond to the coherent triangulations of L(A,,—1 x Ap—1), while facets
correspond to the coarsest possible coherent subdivisions (see, e.g., [7; §7.2.B]).

It is known that £(An,—1 x Ap_1) has only coherent triangulations when (m,n) sat-
isfies (m — 2)(n — 2) < 4. In all other cases, there is at least one triangulation that is not
coherent. See [6] and [15].

So to study faces of the secondary polytope L(A,—1 X Ap_1), it is sufficient to study
the structure of the associated coherent subdivisions of A,,_; X A,_;. To do this, we
make use of the fact that secondary polytopes are (up to scalar multiple) equal to fiber
polytopes of projections of simplices, in this case, the projection of the (mn — 1)-simplex
onto N1 X A,

We begin with some definitions. If P ¢ R™ and Q C IR¢ are convex polytopes, and
7:R" - IR? is a linear map with 7(P) = @, then we define the fiber polytope Z(P, Q) to
be the Minkowski average of all fibers 7#71(¢) over q € Q, i.e.,

SPQ) = o [ 70 da

Here the set-valued integral can be defined as the set of integrals of all sections v : @ — P
of 7 (i.e., m o~ 1s the identity on Q). Alternatively, it can be defined as a Riemann-type
limit of Minkowski sums of sets m#~!(q) or as the convex set whose support function is
pointwise the integral, over ¢, of the support functions of the sets 771(q). See [5], where it
is shown that (P, Q) C R™ is a polytope of dimension dim P — dim @), whose face lattice

is 1somorphic to a poset of polyhedral subdivisions of @ (the P-coherent subdivisions).
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In particular, when P is a simplex, say P = A,_1, the fiber polytope Z(P, Q) is (up to
scaling) the secondary polytope L(Q) (or, more precisely, the secondary polytope £(A),
where A is the set of images under 7 of the vertices of P). A brief discussion of fiber
polytopes can also be found in [7; §7.1.E].

In the case of ¥(A,,—1 X A,—1), the corresponding map 7 : A1 = Am—1 X Ap
has as fibers all m xn transportation polytopes, i.e., polytopes of nonnegative m x n matrices
with prescribed row and column sums. Thus the study of the Newton polytope X(m,n)
1s equivalent to the study of the average transportation polytope. From this we conclude,
for example, that £(m,n) has dimension (m — 1)(n — 1).

In general, the fiber polytope is a subset of the fiber 77!(zq) over the centroid of Q.
The exact relationship between secondary and fiber polytopes [5; Thm. 2.5] is given by

2(Q) = (dim Q + 1) vol(Q) E(An-1,Q)-

Thus B(Amn-1, Am—-1 X An,_1) consists of m X n matrices with row sums % and column
sums =. In order to make the identification between the Newton polytope £(m,n) and the

secondary polytope X(A,—1 X Ap—1), we normalize volume so that vol(Ap,—1 X Ap_1) =
Cn+n—2)

A (All simplices in A;—1 X A,—1 have the same volume, which we take to be

1; see §6). Thus. ¥(m,n) consists of matrices with row sums (mt::_l) and column sums
(m+n—1

. ). Thus when m = n = 2, the row and column sums must be 3, as seen above.

In §2. we consider the general case of fiber polytopes and give a concrete description of
the isomorphism between faces and coherent polyhedral subdivisions. This is specialized
in §3 to the case of faces of ¥(m, n) and coherent polyhedral subdivisions of A,,_3 X Ap_1.
In particular, for each ® € R™", we give a description of the subdivision Ilg corresponding
to the face of 3(m,n) having outward normal ©. If © is a 0-1-matrix, the maximal cells
of Ile can be read directly from the minimal line covers of the 1's of © (sets of rows and
columns including all the 1's). In some cases the resulting subdivision can be shown to
be coarsest possible, and so the corresponding © will be normal to a facet of X(m,n). In
other cases we can give an upper bound on the dimension of certain faces of ¥(m,n).

We study edges of ¥(m,n) in §4, and use this information to give lower bounds on
the dimensions of certain faces. In some cases we can combine these bounds to fix the
dimension of a face. We do this, in particular, for almost all faces of ¥(m,n) admitting a
0-1 normal. In §5, we use homological methods to construct facets that need arbitrarily
large integers for any integral normal; in particular, these admit no 0-1 normal.

In §6, formulas for the support function are derived for fiber and secondary polytopes.

In the case of ¥im,n), the value of the support function h,,, at a 0-1 matrix © can be
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expressed in terms of the minimal line covers of ©®. This calculation is carried out in §7
for some special © and for small values of m and n.

Finally, we give some notational conventions. For P a convex polyhedron in IR" and
# € IR", we denote by P? and Py the faces of P where the linear form (6, -) achieves its
maximum and minimum, respectively. Note that P=% = P,. For a set X C IR", we denote
by cone X (resp. pos X) the set of all nonnegative (resp. positive) linear combinations of
the points in X. We will denote the i** row and the jt* column of a matrix B by B; and
B7, respectively. The set {1,...,n} will be denoted [n].

2. Coherent subdivisions and faces of Z(P, Q).

We consider first the general fiber polytope (P, Q), where P = conv{pi,...,pm} C R",
Q = conv{q,...,qgm} C R and 7 : P — Q a linear map such that n(pi) = ¢;i- By
Theorem 2.1 of [5], each face T(P, Q)% of T(P,Q) corresponds to a certain (coherent)
polyhedral subdivision IIg. We describe this correspondence in this section and specialize
it to obtain the correspondence between faces of the secondary polytope £(Q) and coherent
subdivisions of (). As in [3], [5], [7] and [8], by a polyhedral subdivision of Q) we mean a
collection II of subsets of {q1,...,¢m} whose convex hulls form a polyhedral complex that
covers ) (cf. [7; Definition 7.2.1]). Note this definition requires that if A,B € II and
conv A is a face of conv B, then A = B N conv A.
The fiber 771(q) over a point ¢ € Q can be written as

rH ={ D Api | D Ngi=q, ) Ai=1, A>0}CR" (2.1)
=1

Let (yo.y) = (Y0.¥1,...,ya4) denote a point in IR, For § € R define the polyhedron
S ={ (yo,y) € R | yo + (y,q:) > (6,ps), i=1,...,m }. (2.2)

For y € 5(6), define
oy =1{ ¢ |y + (¥, q) = (6,p:) }. (2.3)

The following gives a concrete description of the lattice isomorphism given by Theorem
2.1 of [5].

Theorem 2.1. In the correspondence between faces of the fiber polytope L(P,Q) and
polvhedral subdivisions of Q, the face ©(P, Q)® corresponds to the coherent subdivision

[My={0o,|yeSH)}
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Proof: By general linear programming duality we can write

maz{ (6,p) | p € 7 (q) } = min{ yo + (v, 9) | (v0,y) € S(6) }. (2.4)

Since max{ (8,p) | p € #~(q) } is finite precisely when ¢ € @, we have that (1,q) is
an element of the relatively open inner normal cone N(S(6),y) to the polyhedron S(8) at
some point y if and only if ¢ € Q. In fact, for y € relint S(6)(1,4), we have

(1,q9) € N(S(0),y) =pos{ (1,2) | z € oy }.

Thus Il := { o, | y € S(0) } is a polyhedral subdivision of Q; it is given by the intersection
of the (sets of generators of the cones in the) normal fan of S(8) with the hyperplane yo =1
in R4+,

By Theorem 2.1 of [5], ¢ € Il if and only if for ¢ € conv o, the maximum value of

/

(6. p) over the fiber 77 1(q) is attained on the face

7Y o) :=conv{p; | g =7(p;) €} (2.5)

of P. That is,
g =77 o) N7 (g). (2.6)

For ¢ € relint conv o, the face 7~1(q)? contains a point p € relint 7~!(0), and so

maz{ (8,p) | p€ 77 (q) }

is attained at a point p = > A;p; for which A; > 0 whenever ¢; € 0. Thus for any (yo,y)

solving

min{ yo + (¥, 9) | (y0,y) € S(8) },

q; € o implies yo + (y,qi) = (0, pi), and so o C oy. Thus Iy refines II.

On the other hand, any p = 3 A;p; solving maz{ (8,p) | p € 77'(g) } must satisfy
Ai = 0 when ¢; Z o and so, by strict complementarity, there is a (yo,y) € S(8)(1,4 Wwith
yo + (¥, qi) > (0, p;) whenever ¢; € 0. Thus oy C o, and we conclude Il = II. «

One way to understand this association 6 — Il is to observe that, for fixed 6, the
maximum in (2.4) varies piecewise-linearly in ¢. The subdivision IIy gives the associated
regions of linearity. A consequence of the proof of Theorem 2.1 is that the lattice of faces of
the subdivision Iy is the lattice of faces of the normal fan to the (necessarily unbounded)
polyhedron S(8).



Corollary 2.2. The lattice of faces of the subdivision Ilg is anti-isomorphic to the lattice
of faces of the polyhedron S(8). In particular, the maximal cells of the subdivision Il

correspond to the minimal faces of S(6). «

In the case of the secondary polytope of @), wehavem = nand P = A,,_, and so (2.1),
(2.2) and (2.3) simplify, respectively, to 771 (¢) = { A e R" | S Xigi=¢, > i =1,A >0},
the set of all convex representations of ¢, S(8) = { (yo,y) € R*™* | yo + (y,¢:) > 6;, i =
1,....m }, the set of all downward pointing halfspaces containing the convex hull of the
points (¢;,0;). and oy = { ¢; | yo + (y,q:) = 0; }, the set of points on some bottom face of

this convex hull.

3. Coherent subdivisions of A,,_; x A,,_; and faces of L(m,n).

We consider here the case of the secondary polytope L(A,,,—1 X Ap—1), which corresponds
to the special case of the situation described in §2 in which P is the (mn—1)-simplex Aypn—1
and ) = A,—1 X Ap—1. As in the general case, we make more explicit the association
between faces and subdivisions of A,,—1 X A, _;. For faces defined by 0-1 normals, this
association leads to consideration of the classical combinatorial notion of a line cover of a
0-1 matrix.

We define the map 7 : IR™" — IR™ x R™ in this case as follows. We consider elements
of R™" to be m x n matrices; unit vectors are then the 0-1 matrices E;; having a single 1

in the ¢** row and j** column. Then
Amn1 = {X € R™ | X = (245) 20, ) zi; =1}
]

= conv{ E;; |1 € [m], j € [n] }.

For X € IR™", let r(X) € R™ and ¢(X) € R" denote the vectors of row sums and
column sums of X. The map n is then defined by 7(X) = (r(X),c(X)). We define
vij »= 7(Ei;) = (e, fj), where e; and f; are the i** and j** unit vectors in R™ and R",

respectively. Thus
Apm_1 X Apoq =conv{v;j |t €[m], j €[n] }.
For (a,b) € Am—3 x An_1, the fiber
T a,b)={XeR™ | X >0, r(X)=a, «(X)=0b}

has been studied in the optimization literature under the name transportation polytope;
see [10] and [17]. Note that in this case, the restriction > i; Tij = 1 in (2.1) is implied by
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r(X) = a. Asin §2, we observe that for © = (6;;) € R™",

maxr{ (0.X) | X € 77 a,b) } =maz{ (0,X) | X >0, r(X)=aqa, «(X)=0b}

(3.1)
= min{ (u,a) + (v,b) | ui +v; > 635 }.
If we let
SO)={(u,v) e R™ xR" | u; +v; > 6;; } (3.2)
and define, for (u,v) € S(0O),
Ouv = { vij | u; +v; = 6;; 1 (3.3)

mterpreting Theorem 2.1 and Corollary 2.2 in this case leads to the following

Theorem 3.1. Forany ® € R™", the face ©(m,n)® of the secondary polytope %.(m,n) =
E(Am—1 X Ap_y) corresponds to the coherent subdivision llg = { 04, | (u,v) € S(O) }.
The lattice of faces of llg is anti-isomorphic to the lattice of faces of the polyhedron S(0O),

so Ile 1s a triangulation precisely when S(©) is simple. «

Note that in this case, S(©) is simple if every 1-face is on precisely m + n — 1 facets.
S(©) has no vertices so a maximal cell of Ilg is of the form oy,, where (u,v) lies on a

1-face.

We consider next subdivisions Ilg where © = (6;;) is a 0-1 matrix. In this case, we
define a line cover of © to be a pair (I,J), with I C [m],J C [n] such that for all (7, )
with 6;; = 1, either ¢ € I or j € J. A line cover (I, J) is said to be minimal if both I
and J are minimal. Note that line covers of O correspond directly to 0-1 vectors in the
polyhedron S(0).

Given 0-1 matrix © and line cover (I,J), we say 6;; is exactly covered by (I,J) if
6i; =1land (4,j) ¢ I x J,or 6;; =0 and (¢,7) € ([m]\ I) x ([n] \ J). Define

org = { vij | 8;j exactly covered by (I,J) }. (3.4)

Note that we always have 0g[,] = 01 6.

To every 0-1 matrix ©, there corresponds a bipartite graph Ge having bipartition [m]
and [n], with (z,)) an edge of Ge if and only if §;; = 1. Note that when Ge is connected,
both ([m],0) and (0, [n]) are minimal covers. In this case 0g[n] = O[m) ¢ has dimension
m +n — 2. On the other hand, if Ge i1s not connected, then this cell has dimension less
than m +n — 2.



Corollary 3.2. For 0-1 matrices ©, the maximal cells of the subdivision Ilg are precisely

the cells o7y, where (I,J) is a minimal line cover of © with I # [m] and, if Ge is not

connected, J # [n].

Proof: We first show for every (u,v) € S(0©) there is a 0-1 vector (ii,v) € S(O©) with
Tuv C 0o, showing the oy to include all maximal cells of Ilg. We can assume that both
u > 0 and v > 0 since, for example, if u; = min{u;,v;} < 0, then u' = u — uje > 0,
v = v+ uje >0 and oy = 0yy. In this case, set 4; = [u; > %] and v; = [vj > —;—] for all
¢ and j. where [12] is 1 or 0 depending on whether the relation R is true or false. Then
u; +v; = 0 implies u; + v; = 0, and u; + v; = 1 implies u; + v; =1, and so 0y C 0.

Next we show that if (I, J) and (I', J') are distinct minimal line covers, with I, I' # [m]
and J # [n], then o7; ¢ o 5, showing o7 to be a maximal cell of IIg. Since both covers
are minimal, one of I'\ I or J'\ J is not empty. Suppose I' \ I # 0. Then if : € I' \ I and
7 € [n]\ J. we have v;; € oy \ op 1.

Finally, if ¢, C 017 for some I # [m] and J # [n], then all the edges of Go are in
Ix([n]\J)or ([n]\I)x J and so Ge is not connected. Thus oy (n] 18 also maximal when

Ge 1s connected. «

1 0
triangles 0y = {v11,v12,v21} and o3 = {v1a,v21,v92}. The cell oy corresponds to the

minimal line cover ({1,2},0) (as well as to (0,{1,2})), while o5 corresponds to ({1}, {1}).

Note that the cell o4 N oy does not correspond to a line cover; however o1 N 0 = 0y, for

w=1(1,1) and v = (1,0). Finally, note that if ®' = (0 1), then Tle = Mer. <

Example 3.3. © = <1 1), m = n = 2. Here Ilg is a triangulation of a square into

00

More generally, we consider

Example 3.4. (cf. [7; Example 7.3.14]) Let m=n and let © be an n x n 0-1 matrix which
is 1 on and above the diagonal, 0 otherwise, i.e., 0;; = 1 if and only if i < j. First, we claim
that the minimal line covers of © are ([i],[n]\ [{]), i =0,...,n, where we take [0] := 0. To
see this, suppose (I,.J) is a minimal line cover with J # [n], and suppose k is the largest
element of [n] not in J. Then [k] C I and so JN[k] = 0. Thus J = [n]\ [k]. Similarly
IN{k+1,....,n} =0 and so I = [k]. If we define Ay := Ok}, [n\[*]» then, by Corollary
3.2. lle = {A1....,A.}. (Note that A, = A,.) It is straightforward to check that the
sets Ay, k = 1,...,n are precisely those specified in the course subdivision of [7; Example
7.3.14]. so we can conclude that the corresponding facet has normal © (or, equivalently,

that S(n,n)® is a facet). We give an independent verification of this in §5. «

Corollary 3.2 can give a simple means to verify that certain 0-1 matrices © are facet
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normals of £(m,n). Note that since £(P,Q) C R™ and generally dim 3(P,Q) = dim P —
dim @) < n, facet normals of fiber polytopes are only determined up to the addition of an
element of K(7, P) := (ker 7)1 + (aff P)L. In the case of Z(m,n) = T(Am-1 X Ap-1),
K(m,P) is the linear span of the m + n 0-1 matrices consisting of a row or column of
1's. This is the same as the space of all additive matrices, that is, matrices of the form
X = (z;;) with z;; = a; + 3; for « € R™ and § € IR". We call matrices © and ©'
equivalent, denoted @ ~ @', if © — ©' is additive. In this case $(m,n)® = S(m,n)®’; that
1s, equivalent matrices yield the same face (see Example 3.3.).

We consider a case in which the 1's in © form the union of two rectangles. We call
a 0-1 matrix © a generalized hook if there are proper nonempty subsets I' C I C [m] and
J' C J C [n] such that 6;; =1 if and only if (7,5) € (I' x J)U (I x J'). Included in this

class are all 0-1 matrices having all 1's only in one row or one column.

Proposition 3.5. Suppose © is a 0-1 matrix which is a generalized hook. Then the face

Y(m,n)® is a facet.

Proof: We consider first the case in which I' = I (and, without loss of generality J' = J).
Then the 1's of © form a rectangle with rows in I and columns in J. There are only two
minimal line covers of O, (I,0) and (0, J), and so by Corollary 3.2 the subdivision Ilg
has only two maximal cells. Thus IIg must be maximal in the refinement order, and the
conclusion follows,

In the case I' # I and J' # J, © has three minimal covers, (I,0), (0, J) and (I', J'),
and so [le has three maximal cells. We show IIg to be maximal in the refinement order
i this case by showing that the union of no two of these cells is convex.

Let 01 = o079, 02 = 0p y and 03 = o v, and choose iy € I', iy € I\ I', i3 € [m]\ I,
j1 €J' j2 € I\ J" and j3 € [n]\ J. It is straightforward to verify that $vi,j, + 3visj, €
conv(oy Uag) \ (71 U0g), 30ij, + 30isj, € conv(oy Uos)\ (02 Uos) and Jv; 5, + 204, €

conv(oy Uos) \ (61 Uoz). <

We note that if we let I = [m] or J = [n] in the definition of generalized hook (but
keep both I" and J' to be proper), then the resulting matrix is equivalent to a 0-1 matrix in
which the 1's form a proper rectangle, and thus defines a facet by Proposition 3.5. These

include all of the facets corresponding to coarse subdivisions of A,,—; X A, into two

cells (cf. [7; §7.2.B(2)]).

Example 3.6. Suppose f is a linear form on IR™*" such that

{{z.y) € Aniyt X An—y | f(z,y) 2 0} and {(z,y) € Am—1 X A1 | f(z,y) < 0}
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are both (m+n—2)-dimensional polytopes all of whose vertices are vertices of Ap—1 XA p—1.
Then if o4 = {vij = (e, f3) | flei, fj) 2 0} and o := {vij = (es, fj) | f(es, f;) < 0}, we
have II := {o4,0_} is a coarsest proper polyhedral subdivision of Apm—1 X A, 1 and so
corresponds to a facet of ¥(m,n). To determine a normal vector for this facet, note that
since

{(z,y) € A1 X Ap—y | f(z,y) =0} = conv(oy No)

1s a codimension 1 cell meeting the interior of Ap,_y X Ap—1 and spanned by vertices (i.e.,
a wall of its chamber complex), the linear form f must be (up to scalar multiple) of the
form f(z.y) = «(I) —y(J) := >;2; — Y. ;zj, with I and J proper nonempty subsets
of [m] and [n], respectively. Let © be the 0-1 matrix defined by 6;; = 1 precisely for
(¢.j) € I x J. The matrix © has two minimal line covers, (I,0) and (0,J). We have
o719 = 0- and 0y ;7 = 04, so Il = llg corresponds to the facet $(m,n)®. Alternatively,
defining ©' by O}; = (f(e;, f;))* (asin [7; §7.2.B(2), (2.3)]), it is straightforward to check
that S(m,n)e == L(m,n)®.

Finally, we can use Theorem 3.1 to give a lower bound on the codimension of certain

faces of ¥(m,n). Suppose O = (13 g
A 0

0 0

), where both A and B are nonnegative nonzero

matrices, and let © = ( ) . A matrix, all of whose entries are the same, will be called

constant.

Lemma 3.7. The subdivision Ilg is a refinement of the subdivision Ilg, and it is a strict

refinement if the matrix B is not constant.

Proof: Given any (u,v) € S(0), write (u,v) = ((u?,u?),(v',v?)), where (u',v!) corre-
spond to the rows and columns of A, and let (@,7) = (((u!,0),(v!,0)). As in the proof of
Corollary 3.2, we can translate (u,v) by a multiple of (1,...,1,—1,...,—1) if necessary to
assure that both u > 0 and v > 0 without changing o,,. In this case, (%,7) € S(©) and
Tur C ous (see (3.2) and (3.3)). Thus the subdivision g is a refinement of Ig.

To see that the refinement is strict when B is not constant, it is enough to show
some maximal cell of Ilg to be a strict subset of some cell in IIg. For this purpose, let
(u.v) = ((u',0),(0,v%)) be defined by setting the entries of u! and v? to be the successive
row maxima of A and column maxima of B, respectively. Then (u,v) € S(0) and so
oue € le. Since the bipartite graph consisting of all edges (¢, 7 ) with v;j € 0y, is connected,
the cell o,, has dimension m +m — 2 and so is maximal. Letting (4, v) = ((u!,0),(0,0)),

as above, then 0,, C 035 with equality only if the matrix B has constant columns. In this
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case, since B cannot also have constant rows, the same argument using a similarly defined
(u.v) of the form ((0,u?),(v!,0)) will yield a strict inclusion of 6, in 6z5. <

We can now prove the following

Theorem 3.8. If © is a block-diagonal matrix

A
Az

Ax

where k > 1 and Ay, A, ..., Ay are nonnegative and nonzero, then codim X(m,n)® > k—1.
If at least one of the A; is not constant, then codim %(m,n)® > k.

A 0
0 O

face of codimension at least 1 and, by Lemma 3.7, £(m,n)® is a subface of this, which is

Proof: The proof is by induction on k. For k£ = 2, it follows since ( > defines a

proper when A, is not constant. The inductive step is completed by defining

Ay
Ar—1

observing that codim ¥(m,n)® > k — 1 by induction ((A’B_l 8) is not constant) and

applying Lemma 3.7. «

4. Edges of Z(mn,n).

To discuss edges of ¥(m,n), it is helpful to decompose it as a Minkowski sum in a
canonical way. Define ¥; = Xj(m,n) to be the Newton polytope of the product of all
k x k minors of an m x n matrix A = (a;;). (We will usually suppress the dependence on

m and n.) Then

S(m,n) =T + g+ + Zman, (4.1)

where m A n = min{m,n}. The polytope 2 is just a point (the matrix of all 1’s) and so
has no effect on the face structure of £(m,n). The polytope Lan was studied in [1] and
[16] (where it was called IL,; ).

Each of the polytopes ¥i(m,n) has a further decomposition as a Minkowski sum
of Birkhoff polytopes as follows. For I C [m], J C [n] with |I| = |J|, let By ; denote
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the Newton polytope of the I, J-minor of A. The polytope By := Biiy ik 1s the Birkhoff
polytope of all doubly stochastic k£ x k matrices (see [4], [17]), and when |I| = |J| = &,
By j 1s hinearly isomorphic to B. Further

Se(m,m)= Y Bry (4.2)

\I1=1J|=k

1s a Minkowski sum of all of these.
We note that the Birkhoff polytope By has dimension (k — 1)? and so B; is a line

segment. More directly, By = conv{ (é (1)) ) ((1) (1)> } Thus ¥ is a Minkowski sum

of line segments. that is, a zonotope. We will see that a great deal of the combinatorial

structure of ¥(m,n) is carried by the zonotope X.

Let A\, ,, denote the complete bipartite graph with bipartition [m] and [n], with every
edge directed from [m] to [n]. For each cycle in K, , with 2k edges (which thus involves
k vertices in [m] and k vertices in [n]) we associate an m x n oriented incidence matrix
(' = (c;j) obtained by orienting the cycle and setting c¢; ; = %1 for (4,7) in the cycle
(depending on whether or not it agrees with the orientation) and ¢; ; = 0 otherwise. The
resulting k-cycle matriz C is unique up to change of sign and has the property that it is 0

except for some k x k minor that can be put into the form
1 -1
1 -1
(4.3)
-1 1
by permuting rows and columns.

The following shows that all the edge directions in £(m,n) are given by the k-cycle

matrices for & < m,n. Its proof is essentially that of Proposition 1.9 of [16].

Proposition 4.1. If X and X, are vertices of ¥(m,n) such that [X;, X5} is an edge of
S(m,n), then X1 — Xy = €(X1,Xs) - C, where C is a k-cycle matrix for some k < m,n

and €(X,,X3) is a positive integer.

Proof: By (4.1) and (4.2), £(m,n) is a Minkowski sum of polytopes linearly isomorphic
to Birkhoff polytopes By for k < m,n. For By, edge directions are precisely the k'-cycle
matrices for k' < k (see [17; Theorem 5.1.3] or [4]). Any face F of ¥(m,n) has a Minkowski
decomposition F' = ZIII=|JISm,n Fr. 7, where Fr y is a face of By ;. When F' = [X1, X;]
is an edge, all the FT ; are either vertices or are edges parallel to F'; £(X;, X2) > 0 is the

number of edges. <
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Remark 4.2. We note that the number ¢(X;, X3) has an interpretation in terms of the
coherent triangulations II; and II; representing the vertices X; and X,. Edges of secondary
polytopes correspond to embedded bistellar operations on triangulations. These amount
to modifications (perestroikas) along minimal dependent sets of, say, p+1 vertices in which
half the boundary of a p-simplex is replaced by the other half. (See [7; Definition 2.9].) If
p—1 is less than the dimension of the polytope being triangulated (in our case, m +n —2),
then this dependent set will have the same link in the triangulations II; and IT;. This link

will have £( X7, X7) maximal simplices.

We note further that parallel edges appear in the sum F = ZII|=|JI<m,n Fr ; when

the same k-cycle matrix appears as an edge for different By y with |I| = |J| > k. For

the zonotope ¥3(m,n), edges correspond only to 2-cycle matrices, its zones, the m x n
. . . . 1 -1

matrices with maximal nonzero minor 1 1)

We can use knowledge of edges of £(m, n) to determine which normals support facets.
For example. © will support a face of dimension at least k if © is orthogonal to at least &
independent edge directions of ¥,. We use this to compute a lower bound on the dimension
of faces supported by 0-1 © containing a line of zeros.

Assume O is a nonzero m x n 0-1 matrix having a zero row and no row of ones. We
assume all zero rows are on the bottom. We define a graph I'e on the nonzero rows of ©

as follows. A pair of rows (7, 7) will be an edge of I'g if and only if there are columns s
and t with 6;, = 60;, =1 and ;; = §;; = 0.

Theorem 4.3. If the graph I'g has k components, then
codim %(m,n)® < k.

Proof: It will suffice to exhibit at least (m — 1)(n — 1) — k independent edge directions in
¥ orthogonal to ©. To insure independence, we list these edge directions in an “upper
triangular” order defined using the graph I'e.

We start by ordering the rows of © according the components of I'g. Within each
component we choose a spanning tree and extend the order given by distance from a root in
this spanning tree. Each edge direction in ¥y corresponds to four entries of ©. Taking each
row in order (except the last), we identify, again in order, n — 1 edge directions orthogonal
to © (n — 2 in the case of the first row of any component), each labeled by one of its four
entries that has not appeared as an entry of a previously labeled direction. The resulting

(m —1)(n —1) — k edge directions are clearly independent.
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The choice of edge directions and labelings proceeds as follows. When we first en-
counter row ¢, choose an element 6;; = 0. Then for every 6;; = 0, t # 7, choose direction
Bin ;e and label 1t by (z,¢). If row ¢ has no 1's, we go to the next row.

If row 7 has a 1 and if it is not the first row in its component, let (7,7') be the unique
edge of its spanning tree with ¢/ < 7, and choose columns k and k' with 6;; = 0,1 = 1 and
Oix = bi1pr = 0 guaranteed by the definition of the graph I'g. Take direction Bjjr ki and
label 1t by (2, k). If row ¢ has a 1 and is the first row of its component, arbitrarily choose
an entry #; = 1.

In either case, having an entry 6;;, = 1, we proceed as follows. For every 6;; = 1,
t # k, choose direction B;, x; and label it by (i,t). <

Recall, for a 01 matrix ©, the bipartite graph Ge having vertex set [m] U [n] and
edges (1, )) whenever ©;; = 1. Continuing to assume that © has a zero row and no row
of ones, note that if Ge has k > 2 nontrivial components (that is, components having

more than one vertex), then I'g also has k& components, so we get the following corollary
of Theorem 3.8 and Theorem 4.3.

Corollary 4.4. If © is a 01 matrix having a zero row and no row of ones such that the

bipartite graph Ge has k > 2 nontrivial components, then

codim £(m,n)® = k.

5. The cohomology of faces of %,.

By means of an associated complex of squares, and norms on its first homology and
cohomology, resectively, we produce in this section examples of facets of ¥(m,n) needing
arbitrarily large integers for any integral normal.

Recall from (4.1) that ©(m,n) = &y + Xz + -+ + Zinan, and further that ¥, is a
zonotope in C; := R™" = IR® ® R™. Since facet normals of X, are necessarily facet
normals of ¥, we will restrict our attention to the former for the remainder of this section.

The space C; has the standard basis {E;; = ¢; ® f;}, and the zonotope ¥ is the
image of the unit cube in Cy := /\2 R" ® /\2 IR™ with standard basis {e; A e; ® fr A fi},
with 2 < j and k < [, under the linear map defined by 9, with

O(eiNe; @ frNfi)=(ei —e;)@(fk — fi) = Eix — Ea+ Eji — Eji.

Note that the range of 9, is the linear span of ¥; as well as that of ¥(m,n). It is also
the kernel of 0; = 7 : Cy — Cy := IR x R™. Note that the exact sequence Cy — Cy — Cj
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is also the cellular chain complex C,(K;R) over IR, where K is the 2-dimensional cubical
complex having 1-skeleton the complete bipartite graph Ky = K, » and having one square
for length 4 1-cycle in the graph Kj.

If © € C} then

dim(E3) = dim(span{(e; — e;) ® (fr — 1) | (O, (ei — ¢;) ® (fx = f1)) = O}).

Thus
codim £9 = dim H (Ke) = p1(Ko),

where Kg is the subcomplex of K with the same 1-skeleton, but only the 2-cells corre-

sponding to basis elements e; A e; @ frx A fi of Cy with
(©,0:(ei Ne; @ fu A 1)) = 0.

Thus opposite pairs of facets of 5 are in bijection with maximal subcomplexes of K with
the same one skeleton as K and with 8; = 1. Dualizing, C5 « C} « Cf is also exact,
and O € C} is seen to represent a nonzero element in H1(Ke¢) =~ RR.

The task of identifying facets of ¥ now take on a distinctly topological flavor. To
construct a facet which lacks a 0-1 normal it will suffice to construct a square complex
K' with bipartite 1-skeleton, one dimensional 1-homology, and two nonbounding length
4 1l-cycles, one representing more than twice the other in Hy(K') ~ IR. This can then
be extended to a complex with the same homotopy type, but with a complete bipartite
I-skeleton (generally in several ways), and finally uniquely extended to a maximal such
complex. (The several ways of doing the first extension will yield several different facets).

To make this more precise, we define norms || - ||oo and || - ||1 on HY(K;) and Hy(K}),
respectively. With the standard dual basis, C} has a natural infinity norm which is ex-
tended to the quotient H!(K;) by taking the norm of a class to be the infimum of the
infinity norms of all representatives of that class. Similarly, one can extend the usual 1-
norm: on C; to Hi(K;). We note that the norm || ||; on H;(K) is the dual norm to || - ||sc
on H'(K), sofor 7 € Hy(K,) and © € H'(K}), we have ||O| /7|1 < |{©,7)]. We define
E,. = Z] E,, Eyj:=>,FE;jand J = Zij E;;.

Theorem 5.1. A facet F of ¥5 has a 0-1 normal if and only if in its associated complex
K' every nonzero cycle T has ||7|l1 > 2.

Proof: Since Fis afacet, §1(K') = 1(K') = 1. We define maps H,(K',Z) — H;(K',IR) =
H(K')and HY(K',Z) - HY(K',R) = H'(K') by 7 — 7®1 and © — O ®1, respectively.
That the images H,(K',Z) ® 1 and H1(K’',Z) ® 1 are nonzero dual lattices follows from
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the universal coefficient theorem, which yield isomorphisms Hy(K',Z) ® R — H;(K') and
HY(K',Z) — Hom(H,(K',Z),Z).

Since these lattices are dual, there is a © € H'(K',Z) @ 1 with ||0]|oc < 1 if and
only if for each nonzero v € Hi(K',Z)® 1, ||7||s > 2. It will suffice to show that a class
© € HYK',Z) 21 with |9 < % is equivalent to a 0-1 matrix. To do this, choose a
representative of © in C'! with ||0]|e < % We can assume the maximum entry in O is
3¢ this can be arranged by adding an appropriate multiple of the matrix of all 1's. For

simplicity we assume that 6y, = % Now take

1
0 =0+ 2(5 — 01 + I_eilJ)Ei*

1>1

1 1
+Z<——§ —91]' -+ |_91j-|>E*j -+ §J.

i>1

(5.1)

The matrix ©' ~ © is 0-1 in the first row and first column. Since pairing ©' with any

length 4 1-cycle 7 yields only integer values, all other entries of ©' must be integral. Now

11

the coeflicients in the first summation of (5.1) lie in (-3, 5], while those in the second lie

in [—3.3). so entries in ©' differ from those in © by amounts in (—1, %), showing ©' to be
01. «
When min{m,n} < 2 or m = n = 3, all facets are known to have 0-1 normals.

When m or n is 2, £(m,n) is a permutohedron. The case m = n = 3 can be verified by
exact computation. (The case (m,n) = (3,5) seems to have only 0-1 normals as well.)
The minimal known examples of such non 0-1 supported facets correspond to the minimal
examples of complexes having cycles of norm less than 2 and can be given by the following

normals ©.

Example 5.2. The matrices

g (1) i 8 2 01100
and 0 1.0 00 O
1100 1 11 0 10
0 0 0O
give facets of ©(Ajz x Az) and £(Ay x As), respectively, that do not have a 0-1 normals.

Proof: In each case, we can check that they give facets by finding enough orthogonal
edge directions in Y. To verify that neither facet has a 0-1 normal, we note that in
cach case we have for 7 = Ey; — Ei9 — E9y + Eop = Byi2} {12}, (©,7)| = 3 while for
7' = FEgy — Eo3 -~ E33 + E33 = B33} {23}, (©,7')| = 1. Thus 7' = 37 and so

I = 19 <

<2«

LI
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A similar argument leads to facets having only normals with large integer entries.
Example 5.3. The 3 x 2k matrix
3 3 ... k=1 k-1 %k O
1 0 ... 1 0 10
0 0 0 0 0 0

gives a facet of £(Aq X Agk_1) not representable by an integer normal having all entries

less than f in absolute value. «

6. The support function.
The support function hp : IR" — IR of a polytope P C R" is defined by

hp(8) :== maz{ (z,0) |z € P }
for 8 € IR"; thus
Pl={zecP|(z,0) =hp6) }. (6.1)
Support functions are always positively homogeneous (hp(t8) = thp(8), for t > 0) and
subadditive (hp(0 + 6') < hp(8) + hp(8')), and we have
P={zeR"|(z,0) <hp(f), foral §cR" }.
See, for example, [12] for a general discussion of support functions. We note that if

P={xz]Ax <b},then hp(0) = min{ (41,0),...,(Am,6) }.

We first consider the support function of a general (P, Q). Let § € IR" and for each
o € Iy, let A(o) be any fixed triangulation of the polytope o. For 7 € A(o), denote by
xr the centroid of the subset 771(7) of P (see (2.5)).

Proposition 6.1. For 8 € R",

hep)(8) = vollQ Y. > (volr) (6,z). (6.2)

o€lly r€A(0)

Proof: By definition of fiber polytopes and properties of the Minkowski integral, we have
for each § € R"

: 1 1
hg(p(Q)(e) = m/Qhﬂ.—l(q)(e) dq = volQ z /hn-l(q)(e) dq. (63)
UEHg o
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The function A,-1¢4)(8) is given by (2.4) and, for fixed 6, is a linear function of ¢ € ¢ € I,.
By (2.6) and (6.1), for a simplex 7 € A(c) and ¢ € 7 we have hr-1(4(0) = (6, p), where p
15 the unique point of #~1(7) such that m(p) = ¢. Thus by (6.3) we get

1 1
/I,E(p’Q)(e) = 'E_Q Z Z hﬂ.-i(q)(e) dq = ’UOlQ Z Z (VOIT) <9,.’E,—>.<1

o€lly TeA(0) VT o€lly, r€A(0)

Note that vol7 = 0 if 7 is not a maximal simplex of A(c). For a triangulation A
refining I, Proposition 6.1 follows directly from [5; Cor. 2.6]. There is a slight advantage
to the more general formulation here in that it allows one to use arbitrary triangulations
of each cell of Il.

To give the support function for secondary polytopes, we must be a bit more careful
about the scaling involved in passing from fiber polytopes. Recall that if Q is a polytope
with n vertices then the secondary polytope X(Q) is homothetic to the fiber polytope
S(A_1.Q), ie..

2(Q) = (dim @ + 1) vol(Q) S(An-1,Q)
{5; Thm. 2.5]. Again, letting IIs be any coherent subdivision of @ and for each o € g,

A{o) a triangulation of o, define e, := ) e; = (dim Q + 1)z, for each 7 € A(0).

g €T
Corollary 6.2. For 6 € IR,

hyo)(8) = Z Z (volT) (,e.). < (6.4)

o€lly r€A(0)

Denote by hpmy the support function of the Newton polytope X(m,n). This is a
subadditive function on the space of m X n matrices ©. Determining hy,,(0©) for all
integral matrices © is equivalent to determining a complete set of inequalities determining
Y(m,n). Restricted to 0-1 matrices, h.,, can be viewed as giving a monotone, subadditive
function on subsets of [m] x [r] (or shapes fitting in an m x n array); i.e., for S, T C [m] x[n],
if $ CT. then hpp(S) < hpn(T), and if SNT =0, then App(SUT) < Amn(S) + hmn(T).
It would be of interest to determine h.,,(S) for all S C [m] x [n]. We give below a formula
for hmn(S) 1n terms of line covers of S and describe how to evaluate it for certain simple
shapes.

By (6.4), we can relate the evaluation of hp,,»(0) to the subdivision Ilg. Since each
simplex in Ap, .y X Ap_; has the same volume by the unimodularity of its coordinates (see,
e.g.. [9; Lemma 2]), the support function h,, is obtained from (6.4) by setting vol T = 1
for each maximal simplex 7. In particular, when © is a 0-1 matrix, the indicator function
of some shape S. we can view this shape as a subset of the vertex set of A1 x Ap_1. In

this case. the inner product in (6.4) counts the number of vertices in the set S N .
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Corollary 6.3. For any shape S C [m] x [n],

hmn(S)= > Y SN, (6.5)
(1,J) r€A(I,J)
where the first sum is over minimal line covers (I,J) of S (with J # [n]) and the second

sum 1s over maximal simplices of any triangulation A(I,J) of the cell oy in (3.4). <

The primary difficulty in evaluating (6.5) for any particular 0-1 matrix © is deter-
mining a triangulation of the cell ;s for minimal line covers of S. In certain cases this
presents no problem. Recall the standard triangulation of A,,—1 X A,_1 whose maximal
simplices have vertex sets determined by all monotone paths in an m x n array, i.e., paths
from the upper left entry to the lower right entry that only move down or to the right.
In [2], it is shown that lexicographically ordering these paths gives a shelling of this tri-
angulation. From this it follows that if one takes an initial segment of this triangulation,
in the lexicographic order favoring moves down (so the initial path in this order moves
down the first column and across the last row), stopping just prior to the addition of a
new vertex. then the simplices so defined form a triangulation of the convex hull of the
vertices involved. Thus if, after reordering rows and columns, the vertices of a cell o are
arranged in a block triangular form

E O ... O

E E ... O

SR (©9)
where the E's and O's represent rectangular arrays of 1's and 0's, then a triangulation of
o1 1s formed by taking all monotone paths among the 1’s in this array. For example, if S
is a generalized hook, then it is easy to check that the two or three cells o7 in IIs can be
put in the form (6.6).

There is a determinantal formula giving the number of monotone paths in the array
(6.6) (see [14; Exer. 3.63]). Note that if (6.6) consists only of 1's, then the number of

m:;fl_Q) (which is the number of simplices in any

monotone paths is easily shown to be (
triangulation of Ap—1 X Ap_1). All of the cells of the coarse subdivision given in Example
3.4 correspond to square lower triangular matrices of the form (6.6). Here the number of
monotone paths is Z%H (**+1) (see, e.g., [11; Theorem 1.3A]).

It appears to be a considerably more difficult problem to count the number of meet-
ings of these paths with a prescribed fixed set of cells, which is necessary for a complete
evaluation of (6.5). In certain cases, this can be done, as is illustrated by the examples

below
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Proposition 6.4. If O, is a 0-1 m x n matrix with k 1's, all contained in a single line
(row or column). then

hmn(Ory) = zk: (m tn-g- 1). (6.7)

. m—1
=1

Proof: By Proposition 3.5, such matrices correspond to facets of ¥(m,n). We can assume
that © ) has 1's as the first k£ entries in the first row. In this case the subdivision H@(k)
consists of two cells o7 and o3, corresponding, respectively, to the minimal line covers
({1}.0) and (0,{1,...,k}). By (3.4), these cells have vertices indicated by the 1's in the

m X n arrays

and E2 5
Ey 0
where E; is an (m — 1) X n array of 1's and E; is an m x (n — k) array of 1's. By the above

discussion, one sees that volo; = (m+""2) — (m+"*k_2) (which is the number of paths

m—1 m—1
m+n—k—2)

in an m X n array minus the number in an m x (n — k) array) and vol o, = ( 1

Counting the incidence of these paths with the first k entries in row 1, we get

m+n—j3—1 m+n—Fk—2 m+4+n—Fk—2
- +k
m—1 m—1 m—1

(6.8)

Remark 6.5. £(2,n) is congruent to the permutohedron P,. (See [16; Prop. 1.12] where
this is proved for the Newton polytope of the product of mazimal minors of a 2 x n matrix,
from which one obtains $(2,n) by translation by the 2 x n matrix of 1's.) In this case, the

2" — 2 facets of ©(2,n) have normals given by all matrices © 4 consisting of k 1's in the

first row, 1 < k < n, and (6.7) reduces to hyn(O(x)) = (") — (kgl) (c.f., [17; §5.3.1)).
Example 6.6. The case m = n = 3.

From (6.7) we get h33(0(1)) = 6 and h33(O(2)) = 9. The only other 0-1 matrix corre-
sponding to a connected subgraph of K3, and thus to a facet of ¥(3,3), which is not

equivalent to one of these two, is (up to row and column permutation)

e =

O
o O
[en i e N el

We show h3 3(0) = 14.
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Corresponding to line covers ({1,2},0), (0, {1,2}) and ({1}, {1}), we have cells 01, o,

and o3, having vertices indicated by

1 10 1 11 010
1 00),[1 0 1)and|1 1 1]},
1 1 1 0 01 0 1 1

respectively. These make contributions 5, 5 and 4 to the sum (6.5).

One can check by direct calculation that all row and column permutations of © ),
©4) and O give all the facet normals of £(3,3). Thus 3(3,3) consists of all 3 x 3 matrices
having row and column sums 10, such that each entry is at most 6, any two entries in the
same row or column sum to at most 9, and any 3 entries, two in the same row and the
third in one of their columns, sum to at most 14. This polytope has 108 vertices and so

Ag x Ay has 108 (coherent) triangulations. <

Example 6.7. The case m = n = 4. We tabulate in Table 1 the values of h4 4(©) for
those 0-1 O corresponding to facets by Theorem 4.3, as well as one example of a facet

normal with no zero row or columan.

We have omitted row and column permutations of ©'s in the table (which have the
same values of hy 4). We also omit ©'s which are equivalent to those on the table, and
which thus yield the same facet, although usually different, but easily derivable, values of
hy 4 (using the fact that elements of £(4,4) have row and column sums equal to 35). Note,

for example that

1110 00 0 0
1 110 0000
©1=10 00 0]~92=|0 0 0 1|
000 0 00 0 1

where ~ denotes equivalence (see §3). Here, hy 4(01) = h4 4(O2) + 35 = 65, since the row
and column sums equal 35 in this case. Note also the monotonicity and subadditivity of
ha4a, as llustrated, for example, by the first, second and fourth values in the left table.

A complete list of the normals of facets of £(4, 4) has not been conjectured. The table
accounts for all the 0-1 facet normals having a zero row. There appear to be many others.
For example, the last entry in the table can be shown to be normal to a facet by analyzing
its edges as in §4. (However, it does not give a facet of ¥5.) «

The values in the table were all obtained by application of (6.5). In some cases, the
resulting cells o7 ; could only be partially triangulated by initial segments of the standard

triangulation. In these cases, a full triangulation was obtained by “placing” the remaining
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o) hy4(©) 0 ha.4(O)
/1.0 0 0 1110
o o0 0 0 1000
1o o o0 o0 20 100 0 62
- \0 0 0 0 \o 0 0 0/
}1100 1110
o 0 0 0 1 000
1o o o o 30 0100 1
@\0000 \o 0 0 0/
/111 0 01 1 0
o o0 0 o0 1100
o oo o 34 100 0 4
- \0 0 0 0 \o 0 0 0/
1 100 1110
10 00 1100
00 0 0 46 1000 76
0000/ 0000/
1100 1100
1100 1010
00 0 0 52 01 1 0 84
000 0/ \0000
1110 1110
1000 1100
00 0 0 53 1010 86
00 0 0 \o 0 0 0/
01 1 0 1100
110 0 01 1 0
00 0 0 56 00 1 1 116
00 0 0 \1 0 0 1/

Table 1

vertices outside the partial triangulation, forming further simplices by joining to exposed
facets on the boundary. In this regard, the following observations are useful.

Full-dimensional simplices on the vertices of Ay, —1 X Ap—; (which thus involve m+n—1
vertices) correspond to spanning trees in the graph K, ,. A simplex 7 of codimension 1
corresponds to an acyclic subgraph G, having 2 components. (Edges of G, correspond
to vertices of 7.) To form a full-dimensional simplex containing 7, one must add an edge
which joins the components of G,. To tell whether two such simplices lie on the same or on
opposite sides of the hyperplane spanned by 7, we orient each edge according to whether
it meets the left or right side of the first component of G,. It is straightforward to verify
the following.
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Proposition 6.8, Vertices of A,,_1 X A,_1 are on the same or opposite side of the hy-

perplane generated by T depending on whether they have the same or opposite orientation

in the graph G,. «

This makes it fairly easy to determine, when placing a new vertex over a partial

triangulation. to which of the current facets it is to be joined.

Looking at the Table 1, one is led to ask whether, on 0-1 matrices, the function

hmn can be viewed as giving the energy, in some unspecified sense, of the corresponding

configuration of 1's.
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