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Periodically-cyclic 6-polytopes

Abstract

For each v > k > 8, we introduce a convex 6-polytope with v vertices such that there is a
complete description of each of its facets based upon a labelling (total ordering) of the vertices

so that every subset of k successive vertices generates a cyclic 6-polytope.
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1 INTRODUCTION.

In a series of articles, we have been examining the problem of how to generalize a cyclic d-polytope

C C R. We recall that C has a totally ordered set of vertices (a vertex array) that
a) may be chosen on an oriented d** order curve.
As a consequence, the vertex array

b) satisfies Gale’s Evenness Condition, and

¢) yields a complete description of the facial structure of C.

Thus, any generalization should be a d-polytope in R? with vertices that may be chosen from
an oriented generalized d** order curve. We would label the vertices in the order of appearance
on the oriented curve to obtain a vertex array. Then, based upon this ordering, we would like to
determine a “global” condition and a “local” condition that should be satisfied by the vertices.
We call the “global” condition a Gale property and it is inspired by the fact that the hyperplane
determined by the vertices of a facet of C cuts the d®* order curve at each of those vertices. The
problem is with the “local” condition.

A d™ order curve in R? meets any hyperplane in at most d points (hence, any line in at most two
points) and lies on the boundary of its convex hull. Thus as a paradigm, we would like to consider
a simple ordinary (locally of d** order) curve that lies on the boundary of a strictly convex body in
RY as a generalized d*® order curve. The difficulty is that there is no workable definition of such a

convex ordinary space curve in R for d > 3. Also, it seems that such curves have properties that
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are independent of d as long as the parity of 4 is the same. Thus, there should be one generalization
for odd d, and one for even d.

In [1] and [2], we presented a generalization for odd dimensions. Given that the behaviour of
convex ordinary space curves in R3 is knowrn, we were able to determine a “local” condition for our
“generalized cyclic (2n + 1)-polytopes”.

In (3], we started an examination of a generalization for even dimensions by introducing a
class of Gale 4-polytopes. Given that the behaviour of convex ordinary space curves in R? is
not well understood, we used the idea that there is a vertex away such that for a fixed number
k, all k successive vertices (corresponding to points on d* order subarcs as we trace the curve)
generate a cyclic subpolytope of the “generalized cyclic 2n-polytope”. This idea translated into a
combinatorial “local” condition which in fact yielded a class of 4-polytope P, with v vertices in R%.
The idea was not completely successful because it yielded P, only for v = 3k — 7 and there does
not appear to be a realization of P, with the intended cyclic-subpolytope property.

In the present article, we verify that the preceding idea does yield a 6-polytope in RS with v
vertices which, for each k > 8 and each v > k, has a realization with the intended cyclic-subpolytope
property.

Finally, we remark that Z. Smilansky was the first to consider generalizations of cyclic d-

polytopes. In [8] and [9], he considered the d = 4 case using an algebraic approach.
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2 DEFINITIONS.

Let Y be a set of points in R®. Then conv Y and aff Y denote, respectively, the convex hull and

the affine hull of Y. If Y = {91, ..., ym} is finite, we set

[¥1,---yYm] =convY and (Y1, yym) =aff Y.

Let Q@ C R? be a (convex) d-polytope. For —1 < i < d, let F;(Q) denote the set of i-faces of Q

and f;(Q) = |Fi(Q)]. For convenience, we set

F(Q) = Fi-1(Q), the set of facets of Q.

We recall that the face lattice of Q is the collection of all faces of @ ordered by inclusion, and
that two polytopes are (combinatorially) equivalent if their face lattices are isomorphic. A facet
system of Q is a pair (S, N) where N is a finite set, S C 2V and there is a bijection h : N — Fo(Q)

such that

F(Q) = {conv {h(n) | n€.S}| S € S}.
We cite from [6] and [10], p. 71:

Lemma 1 If (S*,N) and (S,N) are facet systems of convez d-polytopes such that S* C S then

S* = 8§ and the two polytopes are equivalent.

Let F be a facet of Q and y be a point of R? such that y ¢ aff F. Then (cf. [5], p. 78) v is

either beneath F or beyond F with respect to Q. From Griinbaum’s book, we cite also
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Lemma 2 Let Q and Q* be two d-polytopes in R® such that Q* = conv (Q U {y}) for some point

y € RA\Q. Let G be a face of Q. Then

a) G is a face of Q* if, and only if, there is a facet F of Q such that G C F' and y is beneath F,

and

b) G* = conv (GU {y}) is a face of Q* if, and only if, either y € aff G or among the facets of
Q containing G, there is at least one such that y is beneath it and at least one such that y is

beyond it.

We deal now with the total ordering of V = Fo(Q) = {y1,¥2,---,¥v}, v = d+1. Weset y; < y;
if, and only if, 2 < 7, and call y; < y2 < --- <y, a vertez array of Q. We call y; and y;41 successive
vertices, and say that y; separates y; and y; if y; < y; < yx.

Let Y C V and assume that y; < ya < -+ < y,. We say that Y is an even set if it is the union
of mutually disjoint subsets {y;,y:+1}; otherwise, Y is an odd set. Next, Y is a Gale set if any
two points of V\Y are separated by an even number of points in Y. We extend these concepts in
the obvious way to the facets of @, and note that even facets are Gale and that an odd Gale facet
contains y; or y,. Let F¢(Q) and F°(Q) denote, respe;:tively, the set of even and the set of odd
facets of Q. Then F(Q) = F&(Q) UFY(Q).

We say that Q is a Gale polytope if each facet of Q is Gale with respect to a fixed vertex array of
Q. Ify1 <ya < -+ < yy is the vertex array, we say also that Q is Gale with y; <y <--- < yy. As
examples of Gale polytopes, we cite the cyclic d-polytopes (cf. [4]), the ordinary (2n+ 1)-polytopes

(cf. [1] and [2]) and the 4-polytopes introduced in [3]. We note that for each of these polytopes,

there is a complete description of all the facets.
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We remark that C C R? is a cyclic d-polytope if with respect to a fixed vertex array of C :
Y C Fo(C) determines a facet of C if, and only if, Y is a d element Gale set (Gale’s Evenness
Condition).

From [7], we note the following important and useful property of cyclic 2n-polytopes.
Lemma 3 Let C C R? be a cyclic d-polytope with the vertex arrayy1 <y2 < --- < yp, d =2n>4.
Then each d-subpolytope of C is cyclic with respect to the vertex array induced by y1 < y2 <--- < yYy.

Finally, we say that Q is a periodically-cyclic d-polytope if there is a vertex array, say y1 <
y2 < --- < ¥, and an integer k such that v > k > d + 2, [yit1,.-.,¥i+k] is a cyclic d-polytope

with y;11 < Yiye < <ysyx fori =0,...,v — k and [yit1,- .-, Yitk, Yi+k+1] is Dot cyclic for any

0<i<v—k—1. We call k the period of ¢.

3 THE POLYTOPES.

In this section, we restrict our attention to R® and begin with another useful property of cyclic

6-polytopes.

Theorem 4 Let C C RS be a cyclic 6-polytope with the vertez array y1 <yz < -+ <Yy—1; v > 8.

-~

Let C C RS be a 6-polytope such that @ = conv (C U {y,}), y» ¢ C and

FUC)U {[yr, Yr+1,Ysr Yst1, Yo-1,%0) | T=2,...,v=5; s=7+2,...,v =3} C F(Q).

Then Q is cyclic with y1 < yg < -++ < Yy—1 < Yo.
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Proof. We note that there is a point y* € RE such that C* = conv (CU{y*}) is a cyclic 6-polytope

with y1 < --- < yy-1 < y*. By Gale’s Evenness Condition, F(C*) = F¢(C*) U F°(C*) where

F(C'):-7:6(0)U{[yr,yr+1,ys,ys+1,yv—1,y*]|7‘=2,---,'U—5;3=T+2,v—3}

and

fO(C‘) = {[ylay‘i—hy‘ivyjayj-i-l:y*] I‘L=3,,'U—3,]=2+2,,’U—2}

Thus, if {[y1, ¥i-1, ¥ Y5, ¥j+1, %) | 3 <2 <7 Lv-2} C F(Q) then a facet system of C* is contained
in a facet system of @}, C* and @Q are equivalent by Lemma 1, and the assertion of the theorem

follows.
Let 3 <i < j <wv-—2. Since {¥i-1,¥i,¥;,¥j+1} is an even set, it is an easy consequence of

Gale’s Evenness Condition that

[y, ¥i-1, i Yjs Yj41) = F5 N F

where F{;(F})) is an even (odd) facet of C, moreover, Fis
a) [y1,%i-1, % ¥ Yj+1,Yo1] if j Sv =3,
b) [yl,yi—lvyia yv—3,yj1yj+l] if 4 <v-— 4 and .7 =vU - 27 and

) Y1, Yv-5,Yi—1,¥i, Yjr Yj41] if i=v -3 and j=v —2.

Let G;; denote the 4-face of C such that

Fg = conv ({y1} U Gj;).
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We note that

Fj = conv (Gi; U {yv}) C F(Q)
by the hypothesis, and that

Gij = F N E;

where Fi; € F¢(C). In the case of a), Fy; is

(Wi-1, Y5, Vi Yj+1, Yo—2.Yu—1] if 7 < v—4,
Wic1, ¥is Yo-0, Y5, Yj+1,Yo—1] if ¢ < v—5andj=v-3,

and [Wv—-6,Yi-1,¥i1 Y5, Yj+1:Yv—1] if ¢ = v—Bandj=v-3.

In the case of b), F}; is

i1, Vis Yo—a,Yo-3, ¥, yj41] if i < v-5

and [Yv—6,Vi-1,¥i, Yo—3, Y5, ¥541] if i = v—4

In the case of c),

~

-Fij = [yv—ﬁayv—5)yi-—17yi’yj,yj—l—l]' -

In summary, Gj; is contained in two facets of @ with the property that neither of them contains

Yi.
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Since Ff € F(Q), it follows that there is a F;; € F(Q) such that

[y1, ¥i-1, i Y5, Y1) = F5 N Fy.

Clearly, either Fg C Fjj or

Fi = [yl,yi—l,yi,yj7yj+layv]
and we are done. Since G;; C Fg and F; # Fi; # F;, we have that Fg ¢ Fij. u

We are ready now to introduce periodically-cyclic 6-polytopes.

Let v >k > 8 and V = {z1,Z9,...,Zy} be a set of v points in RS. By way of notation, let

z;=xp fori < 1,
Pg = [IL‘,',:E,;+1, ces ,illj] for i < j,
Xi = {[z1, i1, Ti, Tit1, Tit2s Titk—-3, Titk—2) Tith—1, Titk]}
U{[:El, Tit1,Zi4+2,Tsy Ts41, $s+1;$i+k—1>$i+k] | s=1+4,...,1+k~— 4},
Y = {[Zr, Tri1, Tsy Tor 1, Tty Teg1) [ T =i+ 1,oenyit k—6; s=17+2,...,i+k—4 t=5+2,5i+k—2},
Zi = {[Z1, Ti, Tit 1) Tit 2, Tit3) Titke2s Titke 1y Titk)y [B1) Tit1y Tik2s Tit3, Tird, Tidtk—1: itk }
U{[1, Tit2, Ti13, To, Tot1, Tivk) | s =1 +4,...,i+k—3} and

W; = {[#1, Zr, Tr 41, Toy Ty 1, Tigr) | T=1+3,...,i+k—4 s=r+2,...,i+k -2}

Theorem 5 Forv=k+m, k > 8 and m > 0, there is a 6-polytope P} = [z1,z2,...,Ty] in RS

such that

F(P) = (CJ X,-) U (mol Y,) U Zm U Wy,

i=0 i=0
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Proof. Let Pf be a cyclic 6-polytope in R® with the vertex array x; < 2 < --- < zx. Then

F(PF) = Fe(PF) U FO(PF) with

]—“e(Pl’“) F(PFYY U Fe(PF) U {[z1, T2, Zs, Tot1, Th—1,2k] | s =3,...,k =3}

= YoUY;UXoU {[z1,z2, 3, 24, Tx—1, T] }

and
FOUPF) = {lz1,Zr1Tr41,Ts,Ts41,Zk) | T=2,..., bk —4; s=7+2,...,k—2}
= WoU{[r1,72,%3,Ts,Ts41,2x] | s=14,...,k—2}.
Since
Zo = {l&1,22, %3, Tp—2,Tk—1, 2k}, (21,22, 23, T4, Th-1,Tx]}
U{[z1,Z2, 23, Ts, Ts41,Zk] | s=4,...,k =3},

it follows that

F(PF) = XoUYoUY; U ZoUW,.
Specifically, we remark that Yo = F¢(PF1), Y1 = Fe(P¥) and
ao) Go = [z1, %2, 73,7k € F3(PF),
bo) XoU ZoU Wy = {F € F(Ff) | [z1,z¢] C F},
co) Zo={F € F(Pf)|Go C F},
do) M(F) = (aff F) N (aff G) is a plane through (z1, ;) for each F' € XoU Wp, and

€o) M(ﬁ‘) = (z1, 9, x) for each F € X,.
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Let u=v—1=k+m—1 2>k and assume that P} = [z1,22,...,Zy] is a 6-polytope in RS such

that

F(P) = ('UX;-) U (L"J Y) U Zm1 U Win_1.

i=0 i=0

It is easy to check that

am-1) Gm-1 = [T1, Tmi1, Tm+2, Tu] € F3(PY),

bm-1) Xm-1U Zm-1UWp_y ={F € F(P}) | [z1,z4) C F},

¢m-1) Zm-1={F € F(P}') | Gm-1 C F},

dm_1) M(F) = (aff F)N (aff G) is a plane through (z1,z,) for each F € X1 U Wy, and

€m—1) M(F’) = (1, Tm+1, Tu) for each FeXnm.

Xm+l x
m+2
Gy . .
L] eSS M)

. ‘

v
/xl

M(F)

Figure 1
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Referring to Figure 1, it is clear that there is a point z € aff Gy,—1 such that with respect to
Gm_1 , T is beneath M(F) and beyond M(F) for each F € W,,,_1. Let z be arbitrarily close to say,
the mid-point of [x1, 7}, and label it z,. Then, as Gp_1 is a 3-face of P}', we readily obtain that
z, € aff F for each F € Z,,_1 and that with respect to P, z, is beyond F for each F € Wm-1
and beneath the remaining facets of Py'.

Let P} = conv (P#U{z,}) = [z1,...,Tv-1,Ty) and recall that each F € F(P)\F(P;') contains
Ty.

m—1 m
First, it is clear that F(P}) contains |J X;, U Y;: and
=0 i=0

A = {conv(FU{zy}) | F € Zm-1}
- {[xla Tm—1,Zmy Tm+1y Tm+2y Tv—3, Ty—2, Ty—1, xv]’ [xlv Tmy Tm+1s Tm+2y Tm43; Tv-2,Tyu-1, SL'v]}
U{[zl,mm+1,$m+27ms,xs+l,zv—laxv] |s=m+3,.... m+k—-4=v— 4}

= XmU{[xl,mm,$m+1,$m+2,$m+3,1‘v—2,$u—1,$v], [$1,$m+1,ﬂ’f‘m+2,$m+3,-’Bm+4,$v—1,$v]}-

Next, it is an easy exercise to determine the 4-faces of F e Wpo1 = {21, Zr, Tr+1,Tsy Ts41, Tu-1] |
r=m+2,...,v—5; s=7+2,...,v— 3} that are contained in a facet in F(P*)\(Zm-1UWpn_1).

Then by Lemma 2, the remaining facets of P{ are the elements of

B = {[z,-,m,.+1,:c3,a;3+1,:cv_1,x,,]|r=m_+2,...,v—5;s=r+2,..~.,v—3}

= Yy I\Ym,
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and
C = {[z1,Tr,Tr41,Ts,Ts41,T0) [T=m+2,...,v—5; s=r+2,...,v—3}
U{[xl,xr,xr+1,xv_2,xu_1,:1:,,] IT = m+37°' v '—4}
= WmU{[$1,$m+2,$m+3,$5,$3+1,$u]|8"—'m+4,...,'v—'3}-

Since Yini1 = (Ym41\Ym) U Yy, and Zp, = (A\Xp,) U (C\W,,), we obtain that

m—1 A m

FPY) = (U X,-)u(UY,-)uAuBuc
=0 , 1=0
i =0

— (z[_rjoxi) U (mﬂln> UZnUWm W

We show now that any 6-polytope that is equivalent to Pj in Theorem 5 may be constructed

in the same manner.

Theorem 6 Let P} = [z1,Z,...,1,] be a 6-polytope in R® such that

m m+1
F(P) = (UXi)U<U ‘Yi)UZmUWm, v=k+m>k>8.
=0 i=0

Then for each subpolytope P{ = [x1,To,..., Ty}, v >u=k+1>k,

1+1

F(P) = (LIJ X,-)u(UY,-)UZ,UW,. X

=0

Proof. Clearly, it is sufficient to verify the assertion for u = v — 1 =k +m — 1. Since there is a

6-polytope in R® with u vertices and the desired set of facets, it is sufficient by Lemma 1 to show
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that

(’U Xi) u (0 y;-) U Zpn1 U Win_1 € F(PY).

=0 i-0

We recall that z, € F € F(P}) only if F € X U (Yim41\Ym) U Zn U W), and so,

m—1 m
(Ux)o(0x)crem.
=0 =0
Next, we observe that

{[zlamm—-hxm,$m+1,$m+2axu-—2;mu~1ymu1$v]}
U{[$1,$m+1, mm+2,$s’$s+11$us$u:| l s=m+ 4) ey U — 4}

U{[ZJ], Tmy Tm4+1l, Tm4+2y Tm43, Tu—-1,Tu, mv], [xly Tm+1; Tm+2; Tm+3; Tm+4y Tu, xv]}

is the set of non-simplicial facets in X;, U Zp,. For such a facet F', we have that
F = conv (GU {z,})

where z, ¢ G, {21,Z,_1} C G and either G € F(P¥) and z, € aff G or G € F4(Py}') and there
exist {F, F'} ¢ F(P}) such that

G=FnF,
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T, is beneath F' and z, is beyond F'. We note that if F' exists then FerF (FP7), and in particular

F € Xm_1. It is now easy to check that F' cloes not exist for any G and so, F(P}) contains

{[231, a’.fn.-lr Ty Tm+1y Tm+2y Tu—2, zu-—l,mu]}
U{[z1, Zm41, Tm+2, Tay Tog1.Tu)} | s=m 4+ 4,...,u — 3}

U{[Z1, Zm, Tm+1, Tm+2s Tm+3, Tu—1, Tu)y [T1, Tmt1y Tmt2, Tma3, Em4d, Tul},

which is Zm_1.

Next, we observe that

Ym+1\Y = {[-'Eryxr+l,x87$s+1’$u7$u] l r= m+2,...,'v —-3= u_4; s = T+2)"' y U _2}
and that for each r and s,

Grs = [xr,$r+1,$s,$s+l,xu] € f4(P1U) n]:tl(P]u)-

Since Wy,_1 = {conv ({1} UGrs) | r=m+2,...,u—4; s =r+2,...,u — 2}, we need only to
show that each conv ({z1} U G,s) € F(P}). For simplicity, let G = G,.

Since G € F4(Py) N Fa(P}), we obtain as above that there is a F € F(P}) such that

GCF and z, isbeyond F.
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We wish to show that F' = conv ({1} UQ), that is,
z; ¢ F whenever «; ¢ {T1,Zr,Tri1,Zs, Tot1) Tu -

let 2< 7 Svm. We note that there is at most two facets of P} that contain {z;,z,}, and thus
[xj,zy] is not an edge of Py. Since there is a Fj € F(Py) such that F; N {z;,x,} = {z;}, it follows
that F; € F(P}) and z, is beneath F;. Hence, Lemma 2 implies that z, is beneath each facet of
P} that contains z;. Thus, z; ¢ F.

Let j > m and assume that z; ¢ {Z1,Zr, Tr41,Zs, To4+1,Tu}. Then
*
G* = conv {Tj, Tr,Tr41,Ts, Tst+1}

is a 4-polytope. We claim that there is {F}, F2} C Yim—1 such that G* C F; N F, and x, ¢ F1 U Fo.

Then F, # F # F, yields that «; ¢ F.

Case I: T=u—-4ands=u—2.
Then G = [a:u——47zu—3yzu—2yxu——l,$u] and v > 7 imply that G = Fﬂ[xu—S,zu—‘t, xu—Saxu—%mu-—laxui

and z, 5 ¢ F. Form+1<j <u— 6 we have -
Fi = [Zj_1,Tj, Tu—t, Tu-3, Tu—2,Tu—1] and Fp = [Tj,Zj11, Tu—a, Tu-3, Tu-2, Tu-1].

Case 2: m+2<r<u-—-dands=u—2.
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Then G = [xfywr-{-lamu—?axu—l)zu] = FfT[:z:r,xr+1,xu_3,mu_2,xu_1,xu] and z,-3 ¢ F. Now,

Fy and F; are as follows:

m+1<j<r—-2: [»’Cj—l,-’Bj,xr,mr+1,$u—2,$u—1] and [il‘j,xj+1,$r,-’Br+1,$u—2,$u—1],

j=r—1: [x:i—la$jaxr1xr+11xu—-2;xu—1] and [$j,1:,-,$r+1,$r+2,$u_2,$u_1],

J=r+ 2;: [mr—lymn$r+1,xj,$u—2yxu—1] and [zraxr+1,xj,$j+l,xu—21$u—1]’

§>7r4+3: [Zr,Tri1,Tj-1,Tj) Tu-2, Tu-1] a0d [Tr, Try1, Tjy Tjt1, Tu-2, Tu-1].

Case & m+2<r<u—5bandr+2<s<u-3.

Then G = [Ty, Tr41, Tsy Tst1s Tu—1,Tu| N, Ty_1 ¢ F and Fy and F; are as follows:

s+2<j3<Lu~—2:

r+2<j<s—1:

j=r—1:

m+1<3<r—2:

[€r, Tri1, Tsy Tot1, Tj, Tip1) and one of [Ty, Try1, Tsy Tsr1,Zi-1,%5] (F# 5 +2)
OF [Tr,Tp41,Ts—1,Ts,Ts41,%5] (J=8+2F#7T+4)

Or [Ty 1,Tr,Try1,Ts,Ts+1,Z5] (F=8+2=1+4),

one of [Tr, Tri1,Tj,Ts, Te+1,Zs+2] (G=8—1)

Or [Ty, Tr41,Tj, Tj+1,%s, Ts+1] (J #s—1), and

one of [Tr, Tri1,Tj-1,Tj, Ts,Tot1] (G F#T+2)

OF [Tr—1,Tr)Tri1,Tj, Tsy Tsti) (_7 =r+2),

[%;-1,Zj, Zr, Tri1) Ts, To41) and one of [z;, Ty, Trpl, Tri2,Ts, Tot1] (8 FT+2)

or [$j7$r7$r+l,xsyxs-}-1, $8+2] (8 =r+ 2)1

[wj—lv T, LyyTr41,Tay $s+l] and [xjy Zj41yTryTr41,Tsy m8+l]' n
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Theorem 7 Let P} = [z1,%3,...,T,] be a 6-polytope in RE such that

m m+1
F(FY) = (UX,-)U(U Y,) UZnUW,, v=k+m>k>8.
1=0 =0

Then P} is periodically-cyclic with the vertez array 1 < 3 < -+ < Ty and the period k.

Proof. Let v > u=k +1 > k. Then by Theorem 6,

) +1
F(PY) = (U x;) U (U y) CZUWL

i=0 1=0

Since F(PF) = XoU Yo U Y; U Zg U W), we obtain from the proof of Theorem 5 that PF is a cyclic

6-polytope with £1 < z9 < --- < zg and Y; = fe(P,-’;H) forj=i¢+k—1and:=0,1. Since
[1111,1'2,$3,$4,$5,1L‘k,$k+1] € Zl C f(P1,c+l)’

P{‘“ is not simplicial and hence, it is not cyclic.

Let v > u and assume that P} is periodically-cyclic with z; < 23 < --- < =y and the period k.
Then P:+l is cyclic with ;41 < zj49 < --- <zjfor j=i+k—1andi=0,1,...,1+1 by Lemma
3, and we note that Y; = Fe(FY, ).

We recall that X;.q U Z;41 C f(P}‘"H), N

X1 = {1,710, Ti41, Ti42, TigSBs Tu—2y Tu—1, Tu, Tut1}}

U{[z1, Z142) T143, Ts, Tst1, Tuy Tug1) | S =14+ 5,...,u— 3}
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and (21, T149 143, T144, Ti45) Tu, Tur1] € Zpyy. Since

{[zi12, T143) Tsy Ts41, Tu—1,Zu) | s =1+4+4,...,u =3} C Y1 C F(PEH,

we have that each element of

{[ml+2,$l+3,ms,xs+la$u] l s=1l+4,...,u— 2}

is a 4-face of P{‘“, and hence of Pl”+';1 Thus it follows from the indicated facets in Xj11 U Zj4q

that

Y = {[z112, T143, Ts, Ss41, Tuy Tut1] | s =1+4,...,u -2} C f(P;fél .

In summary, F(P34') contains

Y1 UYi2UY
= Y41 U (Yig2\Yia) UY
=Y U{[Tr, Trt1,Ts, Ts41; Ty Tut1] | =14+ 3 u—4 s=7+2,...,u— 2luY

= fe(F’,'iLZ,)U{[a:r,xr+1,xs,xs+1,xu,xu+1] |r=1+42,...,u—4; s=r+2,...,u—2}

and P}, is cyclic with zj49 < 7133 < -+ < Zu. Hence by Theorem 4, P,'?;l

is cyclic with
Tipo < Tpy3 < -+ < Ty < Tyti-

. . u+-1 . .
Finally, as [i41, Ti42, T143, Tu—2, Tu—1, Tu, Tu+1] is a facet of Py, the latter is not a cyclic

subpolytope of P{”’l. |
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In order to highlight the importance of the period k, we let P} (k) denote the periodically-cyclic

6-polytope in Theorem 7.

4 REMARKS.

We observe that forv > k > 8,

v—k v—k+1
F(P}(k)) = (U X,-) UYgu ( U (n\y_l)) U Zy_x UW,_g
i=1

=0

and the sets on the right are mutually disjoint. From this decomposition and the fact that

n—m
is the number of paired subsets of 2m elements of a totally ordered set of n elements,

m

we obtain readily that

(v—k)(k—6)(k=3) k | k=3
2 k—3

fs(P{(k)) =

Next, as examples, we present P)(8) and P}%(8). For convenience, we use only subscripts of
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the z; in the lists of facets.

P(8)
XoU X1 = {[1,2,5,6,7,8), [1,2,4,5,7,8], [1,2,3,6,7,8,9], [1,2,3,5,6,8,9]},
YoUYiUYs = {[1,2,3,4,5,6], [1,2,3,4,6,7], [1,2,4,5,6,7], [2,3,4,5,6,7),
[2,3,4,5,7,8], [2,3,5,6,7,8], [3,4,5,6,7,8], [3,4,5,6,8,9],
3,4,6,7,8,9], [4,5,6,7,8,9]},
Z1 ={[1,2,3,4,7,8,9], [1,2,3,4,5,8,9], [1,3,4,5,6,9], [1,3,4,6,7,9]},

Wl = {[1’47 57 67 77917 [1141 57 7787 g]1 [1151 67 7) 8,9]}.

P(8)
XoU X3 UXe = XoU X1 U{[1,2,3,4,7,8,9,10], [1,3,4,6,7,9,10]},
YoUYiUY,UYs = YoUYiUYsU{[4,5,6,7,9,10], [4,5,7,8,9,10], [5,6,7,8,9,10]},
Zs={[1,2,3,4,5,8,9,10], [1,3,4,5,6,9,10], [1,4,5,6,7,10], [1,4,5,7,8,10]},

w, = {[1,5,6,7,8,10}, [1,5,6,8,9,10], [1,6,7,8,9,10]}.

Finally, we observe that Py (k) =[z1,Z2....,Ty) is Gale with 77 < T2 < --- < &y, and that the
subpolytopes [z;, Tit+1,.--,Zj,2<i<j<vandj — > k, are periodically-cyclic with z; < T;41 <

-+- < z; and the period k. This raises the question: Is [zi, Tit1, ..., x;] necessarily equivalent to

P¥(k) for u = j ~ i + 17 The answer is no. From below, we see that P}9(8) = [za,...,z10] is not
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equivalent to Pl9 (8). It is an easy exercise to determine that
f(P210(8)) = {[2,3,4,5,6,7], [2,3,4,5, 7,8, 2,3,4,5,8,9, 10}, [2,3,4,7,8,9,10],
2,3,5,6,7,8], (2,3, 5,6,8,9], [2,3,5,6,9, 10}, [2,3,6,7,9, 10],
[2,3,6,7,9, 10], [2,3,4, 5, 6, 10], [2,3,4,6,7, 10], [2,4, 5,6,7, 10],
(2,4,5,7,8,10], [2,5,6,7,8, 10], [2,5,6,8,9, 10], [2,6, 7,8,9,10],
(3,4, 5, 6,7,8], [3,4, 5,6,8,9], [3,4, 5,6,9,10], [3,4,6,7,8, 9],

3,4,6,7,9,10], [4,5,6,7,8,9], [4,5,6,7,9,10], [4,5,7,8,9,10],

[5,6,7,8,9,10]}.
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