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Abstract

Based upon a labelling (total ordering) of vertices, a 4-polytope is Gale if the vertices
satisfy a part of Gale’s Evenness Condition and it is periodically-cyclic if there is an
integer k such that every subset of k successive vertices generates a cyclic 4-polytope.

Among the bi-cyclic 4-polytopes introduced by Z. Smilansky, we determine which
are Gale or periodically-cyclic or both.

1 Introduction

Let V be a set of points (z,y, z,w) in R, Then convY denotes the convex hull of V' and if
V ={v,...,v,} is finite, we set

[v1,v2,...,v,] = conv V.

Let P C R* be a (convex) 4-polytope with the vertex set V = {v1,vs,...,0,}, n > 6.
We set v; < v; if, and only if, 4 < j, and call

V1 <<V < - < Yy

a vertexr array of P.

We say that P is Gale if it has a vertex array, say, v; < vy < --- < v, such that for any
facet F' of P and any v; # v; in V\F, v; and v, are separated in the vertex array by an even
number of vertices of F. Next, P is periodically-cyclic if it has a vertex array, say again,
vy < vy < --- < v, and there is an integer k such that 6 < k < n, [vi41,...,0;1k] i a cyclic
4-polytope for i = 0,...,n — k and [v;y1,..., Uik, Vitr+1) IS DOt a cyclic 4-polytope for any
0<i<n-—k-—1. We call k£ the period of P.

We recall that a cyclic 4-polytope C in R* has a vertex array that may be chosen on an
oriented 4" order curve, say,

I(t) = (t, 12, £%,1%), teR



or
['(t) = (cos 27t, sin 2¢, cos 47t sin 4mt), te[0,1);

(cf. [3]) and as a consequence, the vertex array satisfies Gale’s Evenness Condition and
yields a complete description of the facisl structure of C.

Clearly, a periodically-cyclic Gale 4-polytope P is a generalization of C. As such, the
vertex array of P should also yield a complete description of the facial structure of P. This
is a highly desired property because in general, such a description of a 4-polytope is a very
difficult task and has been accomplished mostly for polytopes with “few” vertices; cf. for
example [1] and [5].

In 2], we introduced a class of 4-polytopes P, = [v1, ..., v,] with “many” vertices based
upon the following construction: assume that [vy, ..., v;] is cyclic with v, < -+ < vy, adjoin
a vertex vp,; so that [vl,...,vk,ka] is Gale, but not cyclic, with v; < -+- < v, < Vk+1
and [v3,...,vkq] is cyclic with vy < -+ < w41, and repeat the process as long as the
resultant polytope is combinatorially convex. This idea yields a realizable P, that is Gale
with v; <.+ < v,, but only for n = 3k — 7, and there does not appear to be a realization
of P, with the intended cyclic-subpolytope property. Thus, in order to find periodically-
cyclic Gale 4-polytopes, it seems reasonable to consider directly the convex hulls of points
on generalizations of 4" order curves and this leads us to the work of Z. Smilansky in (7]
and [8]. We present a short summary of results relevant to our presentation.

Henceforth, let ¢ > p > 2 be relatively prime integers. Let

L'y (t) = (cos 2npt, sin 2mpt, cos 2mqt, sin 27qt), tel=|0,1),

and set I = T’ (I). It is well known that the curve I is closed, finite (any hyperplane of R*
intersects I" in a finite number of points), locally of 4'* order and given any two points of I',
there is an orthogonal transformation of R* which maps I" onto I" and one point onto the
other; cf. [4]. These transformations are generated by

10 00 cos2mps  sin2wps O 0

10 -1 00 | —sin27ps cos2mps 0 0
B=100 10 and Tp(s) = | g 0 cos2mgs  sin2mgs
00 0 -1 0 0 —sin2mgs cos2mqs

We note that I'py(2)R = Tpg(—t), Tpa(t)Tpe(s) = Iyt + s) and that the behaviour of ' at
any one point is the same as at any other point. In fact, it is easy to check that

(1) if {#1,%2, 51,82} € R such that ¢; — s; = t3 — s9 (mod 1) or t; — sy = s — tp (mod 1)
then there is an orthogonal transformation of R* which maps I' onto T, T’ oq(t1) onto
[py(t2) and Tpg(s1) onto Tpy(s2).



We consider now points on I'. Let n 2> 5 be an integer, b, = I'p, (1) and
n

B(p> q, Tl) = [b07 bla ceey bn——l]'
Then B(p,q,n) is a bi-cyclic 4-polytope. Next, let n : R? — R* be a function defined by

( ) ( 2 L 27 2@ . 27 )
z = (cos —z,sin —x, —y, sin —
ne,y n T R, Y, m Y),

and set A = 7~ ({by,b1,,b,_1}). Then
A={i(p,q) | i=0,...,n— 1} + nZ?

where, as usual, Z* denotes the plane integer lattice. Now, there is a connection between the
facial structure of B(p, g¢,n) and the structure of the geometric lattice A, and this connection
is the rationale for the name bi-cyclic.

Introducing some notation: two poiats of R? are A-distinct if they are in A and are
distinct modulo nZ?. A line of R? is a A-line if it contains at least two A-distinct points. A
closed parallel strip of R? is a A-strip if it is bounded by two parallel A-lines. A parallelogram
of R* is a A-parallelogram if its vertices are four A-distinct points, its area is n, and it has an
edge with positive (negative) slope. We rafer to a A-strip or a A-parallelogram as a A-region.
Finally, a A-region of R? is empty if it contains no point of A in its interior.

In 8], Smilansky shows that the facial structure of B(p,q,n) can be obtained from A.
Specifically, F is a facet of B(p,q,n) if, and only if,

(2) F=conv{(z,y)|(z,y) € SNA}
where (a) S is an empty A-parallelogram,

)
b) S is an empty horizontal A-strip,

or (
or (¢) S is an empty vertical strip.
In case of (a), F' is a simplex. In case of (b), (¢c), F is an antiprism over a regular g-gon

(p-gom).
Next, it is important to note that because of (1), the vertex figures of B(p,q,n) are
equivalent up to orthogonal transformations. Thus, with b, = b; for ¢ — j € nZ,

(3) [bo, b, by, ..., bg] is a facet of B(p,gq,n)
if, and only if,

(b1, bitr bjty .., by is a facet of B(p, q,n) for l € Z.

We are now ready to determine the values of p, ¢ and n for which B(p, ¢,n) is Gale, and
the range of values of p, ¢ and n for which B(p, g, n) is periodically-cyclic.
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2 The Gale Property

We wish to determine explicitly the set F(B(p,q,n)) of facets of B(p,q,n) C R By (2),
we need to determine empty A-regions in R? for

A={i(p,q)|i=0,...n— 1} +nZ>

By (3), we need to determine only those empty A-regions that contain (0, 0).

With the preceding goal in mind, let L, denote the line of R? defined by y = (¢z+an)p~.
Clearly, if (z,y) € A then (z,y) € L, for some a € Z. Next, for (z,y) € A and 7 € Z, set
Then

u; = (z,y) = («/,y/) implies that (z —z',y —y') € nZ?
and
u; = u; implies that 17— j € nZ.

Finally, let z(v) (y(v)) denote the z-coordinate (y-coordinate) of a point v € R?.

Let N denote the square [—n,n} x [-n,n] in R?. Then uy € N and each u; # u, appears
at most once in the interior of each quadrant N; of N, and we need to search only in IV for
empty A-regions containing ug = (0,0); cf. Figure 1 under the assumption that n > q.

Lemma 1 Letn > pq and B(p,q,n) be Gale with by < by < --- <b, 1. Thenp>2 (¢ >2)
implies that p | n (q | n).

Proof. We suppose that p does not divide n, and seek a contradiction.
Let L, intersect y = 0 (y = n) at v(w), and L, intersect y = n at z. Then

() e () e - (0520).

Since (O, E) € L;\A and the distance from it to v or w is at least (p® + ¢*)/?, there is a
p

u; € Ly M Ns such that Uiyl € LN Ny and (0, E) € (’U,i,ui+1). Then u; = U; + U1 € LonA
b

and @ = [uy, u;, Ui1, u;] is clearly a parallelogram with area n, no point of A in its interior
and a side with positive (negative) slope. Since

2(y) < o) <z(w) =p < (P~ Dp < (b~ 2) = 2(2),

it follows that u; € Lo N (N7 U Ny).



Figure 1




We observe that
up & LyN(NyNNy) for ke{0,1,n—1}andac{l,...,p—1}.

Hence, p > 2 yields that @ is an empty A-parallelogram and {u;, u,—1 }N{uo, uo, ui+1,u;} = 0.
But then F' = [by, b;, b1y, b;] € F(B(p,q,n)), FN{by,b,—1} = @ and, b, and b,,_; are separated
in by < by --- < b,_; by three vertices of F, a contradiction.

We argue similarly that ¢ | n. B

Theorem 1 Letn > pq. Then B(p,q,n) is Gale with by < by < --+ < b1 if, and only if,
a) p=2 and n = mgq for some m > 3; or

b) n = hpq for some h > 2.

Proof. Let B = B(p,q,n) be Gale with by < by < -+ < b,_1. Then ¢ > 2 and Lemma
1 yield that n = mq > 2q. If p > 2 then Lemma 1 yields also that m = hp, and so
n = hpg > pq.

Assuming a) or b), let F' € F(B). We observe that it is sufficient to show that if b; € F
then either b; | € F or b;;; € F. By (3), we need only to show that if by € F' then either
b,.1 € Forb ¢ F. Let Q C R? be an empty A-region containing uy = (0,0). By (2), we
need to verify that either u,, ; € Q or u; € Q.

Let ) be a horizontal strip. Then @ is bounded by the lines y = 0 and either y = g or
y = —q. In case of the former (latter), @ contains u; = (p,q) (up—1 = (—p, —¢)) and it is
easy to show that if u,, 1(u1) is in @ then n | ¢ or n | 2¢. Since n > 2g, it follows that this
is not possible.

Let @ be a vertical strip. Then @ is bounded by = 0 and either z = p or z = —p.
Since n > 2p, we obtain as above that @ contains u;(u,.1) in case of the former (latter).

It should be noted that if p = 2 then L, intersects z = 0 at (0, %), which is congruent

mod nZ? to (0,0) or (0, g) Thus, @ exists only if n is even.

Let Q be a parallelogram, say, Q = [ug, u;, u;, u; + u;]. We recall that area (Q) = n and
that Q has a side with negative (positive) slope. Thus, referring to Figure 1 and the fact
that n(z,y)R = n(—=z, —y), we may assume that

i) u, € Ny and u; € Ny, or
ii) u; € Ny and u; € N.

We note that n = mq implies that q | y(u) for u € A, and n = hpq implies that p | z(u)
for u € A. Finally, as p and ¢ are relatively prime, there are integers k and [ such that



(4) kp+lg = -1.

Case i) We observe that u; € L, for sorne a < —1, and either p | z(u) forallu € Aorp =2
and n is odd. Also, if u; = u; = (p, ¢) then area (Q) = n and y(u;) < —q imply that

u; € Ly and wu;+ Uj = Ujp1 € L_10 Ny

Since un_1 € L_g N Ny, it follows that u,—; ¢ Q.

We suppose that u; # (p, q), and seek a contradiction.

If p| z(u) for u € A then (p,q) ¢ Q implies that u; € L, for some b < —1, and as a
consequence, g—,O € L_;N'intQ. But p = 2 implies that ¢ is odd, n = mq and

(modulo nZ?)

"L(L;Q(z,q) = (mq+m, (qgl)mq) = (m,0) = (270>’

and n = hpq implies that

—hkp(p, q) = (hp(lg + 1), —hkpq) = (hp,0) = (g 0> ;

n
that is, (—, O) € A and () is not empty; a contradiction.
q

Let p =2 and n be odd. Then (cf. Figure 2), it is easy to check that any vertical line
contains at most one A-distinct point of A and that for each u € A,

uevc:yzg-;—n)x—}—nc for some ceZ
and

uEWd:yzg—q;n)z—{—nd for some de€Z.
. . n+1
Since ¢ and n are odd, we have that forn=——2—




§+n

) (0.n)
’11)

P -

Figure 2

Thus, u; # (2,q) implies that either u;, = (Lq-i—Tn) and (1, 4 ; n) ¢ Qoru; =

(1: géﬁ) and (1, g —g n) ¢ Q. But the former (latter) implies that u; € Wy (u; €
V,) for some d > 1 (¢ < —1), and as a consequence (2, q) € int Q); a contradiction.

Case ii) We observe that u; € L, for some a > 1, y(u;) > ¢ and y(uw;) > q. Also, if
u; = u; = (p, q) then area (Q) = n implies that u; € Ly and u; +u; = u;01 € LiN(NU
N,). Since u,,_; € (L, UL,_,) N (N7U Ny), it follows that u,_1 € Q.

We suppose again that u; # (p,q). Since (p,q) ¢ @, it follows from y(u;) > ¢ and

y(u;) > q that u; € L, for some b > 1 and w = (0, E) € Li Nint (). Since n = hpq
p

yields that

h(kp+ 1)(p,q) = h(—lq)p, hkpg + hq) = (0, hq) = (0, g) ,



we may assume that p = 2 and n is odd. Then @ = (0, g) and uq is the only point u
of A such that z(u) = 0. Next, w € [ug, u;, u;] implies that

g = area ([ug, u;, u;]) > area ([up W, w;]) + area ([ug, @, u;]).

Since z(u;) < —1, z(u;) > 1 and area ([ug, 0, 2]) = % for ug = (0,0) and any z € R?
with |z(2)] = 1, it follows that

q+bn® —q+an
U; = (1, 5 ) and U; = <—1, ‘———2—‘— .

/

b
But then v; + u; = (0, @) and u; + u; = uo; a contradiction. B
Let B = B(p,q,n) be Gale with by < by < --- < b,_;. It is now clear that in order

to completely describe F(B(p,q,n)), we need only to determine all the empty A-regions
() C R? that contain uy = (0,0) and u; == (p, q).

Let () be a horizontal strip. Recalling that n = mgq for some m > 3, it is easy to check
that uo, U, Usm, - . . , U(g—1)m are the only points of A on the z-axis. Thus,

(5) Q = [u()a Uy, Um, Um415 -+ - 5 U(g—1)m,; U(q—l)m+l]'

We note that if p > 2 then m = hp for some h > 2.
Let Q be a vertical strip. If p =2 then (cf. the proof of Theorem 1) n is even and ug

and un = (0, g) are the points of A on the y-axis. Thus,

(6) Q - [’IL(), Uy, U% ) U%+1].
If p > 2 then n = (hq)p, Ug, Ung, - - - , U(p—1)hq aT€ the points of A on the y-axis and

(7) Q - [u07 U, Upg, Upg41s -« + ) U(p—1)hgs u(p—l)thrl]-

Let ) be a parallelogram. Then @ = [ug,u1,u;,u;41] and either u; € L; N Ny or
uj € Ly N Ny (cf. the proof of Theorem 1). Referring to Figure 1, we note that if p = 2
then
2

(0,%) (o g) — (-m,0) + 7 (2,9).

Thus, u; € L, N N yields that (with [a], the integer part of a > 0)

no ) _
v = (—5,0) = (—-m,O) :“<9:l>m

and
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-1 —1
(8) Q _ ['U,O,U}‘ujpuj—kl] for ]: <—q—-§———) m+17-.-, (q 2 .) m—|— [m+1} — 1

We note that 2 -+

and

(¢—1)m [mgl

(0, g) = (0, hq) == (—hp, 0) + h(p, q) = uhkp+h.

Thus, u; € Ly N N, yields that

(9) @ = [up,u1,7;,uj41) for j =hkp+1,... ,hkp+h —1.

Since (3) implies that [bg, by, b;,b;11] € F(B) if, and only if, [by_j, by_j11, bo, b1] € F(B),
we have shown also that Q = [ug, U1, Uy, Up—;1+1] for the values of j noted in (8) and (9).
It is easy to check that we obtain these ) when u; € L_; N N, and thus, we may consider
(8) and (9) as the complete list of parallelograms.

We are now ready to describe F(B). For convenience of notation, we denote the vertices
of a facet only by their subscripts.

B = B(2,q,n); gqodd, n=mg, m > 3 and odd.

{ii+li+mi+m+1,.. i+ (g—1)m,i+(¢g—1)m+1]|i=0,...,m -1}

n—1

n—m n—1
u il ii+ri+1]]i= 1,...,
g{[z/z—k g4 +1]] g 5 +1 5 }

B(2,q,n);q odd,n = mgq, m > 3 and even.

{li,i+1li+m,i+m+1,...,i+(q—1)m,i+(¢g—1)m+1]|i=0,...,m—1}

. .omo.on . n—2
Usli,i+1l,i+—,i+—-+1|]|i=0,..., }

2 2 2

i’ N
i
S ——

. S . n—m n — 2
U {[Z,z+1,z+],z+]+]_]|z=—2——+1,..., }

B(p,q,n);n=hpg; h>2, kp=—1(mod q), 1 <k<n-1.
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F(B) = {[ii+1,i+hpi+hp+1,. .. i+ (q—Dhpi+(g—1)hp+1]]i=0,...,hp—1}
U{ls,i+1,i+hg,i+hg+1,...,i+(p—1)hqg, i+ (p—1)hg+1]|i=0,...,hg— 1}

n-—1

Ui+ i+ i+5+ 10 [ j=hkp+1,... ,hkp+h—1},

i=0

As an example, we present B = B(3,4,24). We note that h =2, k =5 and hkp = 30 =
6(mod 24).

F(B) = {[0.1.6,7,12,13,18,19],[1,2,7,8,13,14, 19,20}, [2, 3,8,9, 14,15, 20, 21],
3,4,9,10,15,16,21,22], [4,5,10,11,16, 17,22, 23], [0,5,6, 11, 12,17, 18, 23]}
U{[0,1,8,9,16,17],[1,2,9, 10,17, 18, [2, 3, 10,11, 18,19], [3, 4, 11, 12, 19, 20],
[4,5,12,13,20,21), 5,6, 13, 14,21,22], 6,7, 14,15, 22,23, [0,7,8, 15, 16, 23]}
u{[0.1,7,8],[1,2,8,9],[2,3,9,10], 3,4, 10,11][4, 5,11, 12}, [5, 6,12, 13],
[6,7,13,14],[7,8, 14,15, [8,9, 15, 16}, [9, 10, 16,17, [10, 11,17, 18], [11, 12, 18, 19],
12,13, 19, 20], [13, 14, 20, 21], [14, 15,21, 22], [15, 16, 22, 23], [0, 16, 17, 23],
0,1,17,18], [1,2,18,19], [2,3,19,20], [3,4, 20,21}, 4, 5,21, 22], 5, 6,22, 23], [0, 6,7, 23]}

3 The Periodically-cyclic Property
We recall that
[(t) = py(t) = (cos 2mpt, sin 2mpt, cos 2mgt, sin 2mqt), t €I =10,1),

I' =T(I) is closed, finite, locally of order 4 and that the behaviour of I at any one point is
the same as at any other point. Next, the vertices of B(p,q,n) aren evenly spaced points
on I', and £ successive vertices determine a cyclic 4-polytope only if they are on a 4" order
subarc of I'. Thus, we need to determine the size of the maximal subarc of order 4.

Let t € I. Since I’ is locally of order 4, the vectors I"(¢),I/(t) and I'”(t) are linearly
independent and it is well known that the osculating i-space I';(t) of I' at ¢ exists for
i=0.1.2,3. We note that I',(t) = I'(t) and that for i = 1,2, 3,

I';(t) is the affine space of dimention 4 that contains I'(¢) and is

spanned by the first ¢ derivatives of ['(¢).
Let J C R be an open segment. Then (cf. [6]) I'(J) is of order 4 if, and only if, it

satisfies Sauter’s Condition:
Pg_f‘;(S) N F,L(t) = 0
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for every s #t in J andi=0,1,2,3.
In order to simplify our arguments, we identify segments of R, modulo 1, with (—_51-, -;—} .

Let —_51- <s#t< % We note by (1) that
D3(s)NT(t) =0 T3(0)rTt—s)=0T30)NT(s—t)=0

and

Ty(s) NTy(t) = 0 < Ty <Sgt)mrl (tgs) =PeT, (tgs)nr‘l (s;t> = 0.

Thus, we need to determine the least positive t*(f) such that
T(t*) € T3(0) and Ty(—%) NTy(E) # 0.

Then, with ¢, as the minimum of ¢* and 2¢, I'(0, tpg) := I'((0,%5)) is a maximal subarc of
order 4. 5
Before determining the range of values for ¢* and ¢, we wish to examine the graph of

y =tanz in R2

y /

/"r
i E 3z V4 .4
0 y /7[ i ; -2— b ; b bx +E
a z ) B x
2
Figure 3
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Lemma 2 Let a > 0 be an integer and o > 0 be an angle such that ar < o < am + g— or

t
ar -~ < a < ar. Let B > a be an angle such that an = é Then B > 6 = 1.42m,
2 tana  «

o . s ™ . .

3 1s a function of @« and as a ranges from am to am + 3 (am — 5 to am), E is strictly
o

monotonic.

Proof. Referring to Figure 3, we note that y = z is the tangent line to y =tanz at z =0

and that 6 = 1.427 is the smallest positive angle such that 6 = tané. Since 8 > « > 0, and
tan3 0O

no — implies that (0,0), (o, tan«) and (8, tan3) are collinear, it follows that 8 > 6.
ana  «

Next, we may assume that tana > 0. Then tan3 > 0 and there is a b > a such that
s

2

br < 8 < b + g Let v, (v,) denote the graph of y = tanz for ar < z < arw +
(b7r§1‘<b7r+g).

Let ¢ > 1. Clearly, it is sufficient to show that there is at most one o such that
s tan
ar <« < ar+ - and g =c¢. Sincec = —@ = b implies that
2 o a tana

c(a,tan @) = (ca, ctan o) = (G, tan 3)

is a common point of ¢y, and +y,, we need to show that there is at most one such common
point.

We remark that -y, and 7, are translates and that v, and cy, are homothets. Let
(z.y) € (¢y,) Nv,. We note that the tangent of ¢y, at (x,y) is parallel to the tangent of vy,

C7 C ’
and ~, are convex curves and the graphs of strictly increasing functions. Thus, it follows
that the slope of the tangent to ¢y, at (2,y) is strictly less than the slope of the tangent to

v, at (z,y), and as a consequence, the two curves have at most one common point. B

at (f- g) which in turn is a parallel to the tangent of v, at (% + (b — a)m, %) Next, ¢,

1 1 .
Lemma 3 Let t* > 0 be the smallest solution to I'(t) € T'3(0). Then 2P < tr < ’ and in

addition,

3
3.1 —p <t for2< 9 ond
4 p

2
325 <t for2<? <3
q b
Proof. From I'(t) = (cos 2mpt, sin 2mpt, cos 2mgt, sin 2mqt), we readily obtain that I';(0) is
the 3-space defined by
2 2., .2 2
qgqr—-pz=q —p.
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Let H denote the plane y = w = 0 (reczll (z,y,z,w) € RY). Then I';(0) is perpendicular
to H and L = HNT3(0) is a line. Let I' denote the orthogonal projection of I' on H.
Then

T'(t) = (cos 2pt, cos 2nqt)
and R
I'(t) € I'3(0), if, and only if, I'() € L.
_~ ~ -~ 1

We wish to analyze I'. Since I'(—t) = I'(t), we may assume that 0 < ¢ < 5 We note that
~ 1 -~ ~(1 ~(1
r [O, 5] is contained in the square S = [—1,1] x [-1,1], and that I'(0), T’ (2_(1) , I (—2;> ,
(1 ~/1 2
r <—> and T’ <—) are points on the side of S; cf. Figure 4. Since slope(L) = % >0, we

p

q
have that L Nint S # .

~ ~ 1
Let T'(t) denote the tangent line of I' at {. We show that L = T(0) and that I’ (O, -éa)
is locally convex. Then, referring to Figure 4 and the fact that x = cos2@pt is strictly

1 ~f, 1 tlo L
decreasing as ¢ ranges from 0 to 50 it follows that T" |0, 2_(]] is convex, LNT (0’ 5&} =0
p

and L strictly separates I" <—> and T’ (—) Thus, LNT (-—-—, —) ) and — < t* < -.
R P 2p p 2p'p # 2p p
Since I''(t) = (—27psin 27pt, —2mgsin 2mqt) implies that

in 2wqt 1
gsth °mg for O<t< —

1 T(t)) =
slope (T'(2)) psin 27pt 2p

and
slope (T'(0)) = %ing slope (T'(t)) = % = slope (L),

1
it follows that L = T'(0). Next, we recall that T ( 2—) is locally convex if the curvature

3

I'(t) x f”(t)‘ /|T'(t)| is not zero for 0 < t < 5(—1 It is easy to check that

I () x I (t)‘ =0 < psin2aptcos2mqt = g sin 27qt cos 2mpt

tan 2mqt 1
kauill LR 0<t<_—.
tan27pt p 2q
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(-L1) 9 ° (1,) =T(0)

(-1,-1) ° o (1,-1)
L
29
Figure 4
t
Let o = 27pt and 8 = 2wqt. Since 0 < o < S, tanﬂ = é and Lemma 2 imply that
ana o
) 1 =~ =~ ~ 1
3 > 7, it follows from 8 < 7 for 0 <t < 5 that |IV(¢) x I’”(t)‘ #0 and I (0, 2—) is
q q

locally convex.
q ' q°
3.1 Let = > 2. Since L intersects x =0 at (0, 1-— —2) and 1 — 5 < -1, it follows
p p p

that z > 0 for (z,y) € LN S. Thus f(t*) € LN S implies that cos27pt* > 0, and
1

— < t* < — implies that t* > —.

2p P 4

. ' 2 1 ~ (2 _
32 Let2< 2 <3 ThenZ < - ardT (—) is a point on the upper side of S. Also,
p q p q

11 ~ (1 ~ /(3
— < — and the z-coordinate of I' (——\l is positive. Finally, I (——) is on the line z = 0.
29 4p 2q) 4p
~ 1 ~ (2 ~(3
Altogether, these imply that I" [0, 2—] separates in S the points, T’ (—) and T’ (4—),
q q P
from LN S.
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8 2 3 8
Since ¢ > § implies that — < . < t*, we may assume that 2 < Ko 3 Then by the
p D
2
preceding, if T [0 ——} { 5 g} =@ then t* > —.
4p’ q q
Suppose that there exist 0 < t; < — and . <ty < - such that f(tl) = f(tg). Then
q D q

cos pty = cos 2mpt, with
3
ogzmmgw3<g and -ggzwhgm£<2w
q q

yield that 27pt, + 2npto =27 and t; + 1y = Next, cos 2wqt; = cos 2mqt, with

’ti‘lr—-

0<2mqgt, <7 and 3n < 2mqty < 4m

1 1
yield that 2mgt; + 2mqgty = 4w and t; + 1o = % = —; a contradiction. H
q P

Lemma 4 Lett >0 be the smallest solution to I'a(—t) NT'1(t) # 0.

: 071 . 3
4.1 Ifg—>3 then — <t < —.
p q 4q

3 1
<3 then4—<t<—

q p

4.2 If2 <

419 If1 <

TR QB

- 1 -
< 2 andt exists then — < t.
Y4

Proof. We observe that [';(—t) N T'1(t) # @ implies that I'y(—t) and I'1(t) span a
3-space, the vectors I'(t) — I'(—t), I'(t), I'(—t) and I"’(—t) are linearly dependent, and as
a consequence,

psin 27pt cos 2wqt = g sin 2wqt cos 2mpt.

Since p and g are relatively prime, it fcllows readily that

sin 27pt # 0 £ sin 27pt

-1 1
and that if cos 2npt = 0 = cos2mwqt then p and q are both odd and ¢t = 1 > —.
q
Let cos 2mpt # 0 # cos 2apt. Then with o = 27pt < § = 2wqt and n tan 5 = é, we need
ana  «
to solve for the smallest « and 8 such that —'6—) =1
a p
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Let £ > 3. With0 < & < g— and T < 8 < §27—E, we refer to Figure 3 and Lemma
p

2. We note that § > 1.427 and that as « ranges from g to 0, —g ranges monotonically

tanfBy _ ¢ As

from 3 to co. Hence there are o and 3, in the given domains such that .
tanag p

~ 3
1.427 < By = 2mqt < %r’ 4.1 follows.

Let 2 < 4 < 3. With g <a<7m and 3_2_7r < B < 2w, we have that as o ranges from 7

P
s 3 ~
to 5 s ranges monotonically from 2 to 3. Thus g < 2mqt < 2w and 4.2 follows.
e
. ~ ~ 1
Let 1 < < 2. Nowif i exists, then by the preceding cases, 2wgt > 2w and t > E [ |
P
) 1 1
Since t* < — < —, we set
p =2
. min{t*, 2t} i t exists
L A ! t doesn’t exist.

Then I'(0, tpg) is of order 4 and by (1), I'(s, s + t,4) is of order 4 for each s € I.
Theorem 2 B(p,q,n) is periocially-cyclic with the period k = [tpyn] > 6 and
ot LNy
lpg = { Lk if

= <2
p

Proof. Let 2 > 3. Then by 4.1 and 3.1,
p

Let 2 < 2 < 3. Then by 4.2 and 3.2,
p
~ 2
2 < - <t
q
Finally, if 4 < 2 andt exists then by Lemma 3 and 4.1,
p
12 ~
< -<-<2t. N
p q
17



As a final remark, we note that either f‘(tpq) €L or f(tpq) is the first inflection point

~T 1 ,

of I’ {0. =1
12

In regard to specific values, we know that to3 & 0.419569, to5 =~ 0.31, to; =~ 0.2110 and

t29 &~ 0.1618. Thus, for example, B(2,3,30) is Gale and periodically-cyclic with the period
k‘ - [tg;gg()] = 12.
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