On Periodically-cyclic Gale 4-polytopes

T. Bisztriczky and K. Böröczky Jr.

January 30, 1998

Abstract

Based upon a labelling (total ordering) of vertices, a 4-polytope is Gale if the vertices satisfy a part of Gale's Evenness Condition and it is periodically-cyclic if there is an integer k such that every subset of k successive vertices generates a cyclic 4-polytope.

Among the bi-cyclic 4-polytopes introduced by Z. Smilansky, we determine which are Gale or periodically-cyclic or both.

1 Introduction

Let V be a set of points (x, y, z, w) in \mathbb{R}^4 . Then conv Y denotes the convex hull of V and if $V = \{v_1, \ldots, v_n\}$ is finite, we set

$$[v_1, v_2, \dots, v_n] = \text{conv } V.$$

Let $P \subset \mathbb{R}^4$ be a (convex) 4-polytope with the vertex set $V = \{v_1, v_2, \dots, v_n\}, n \geq 6$. We set $v_i < v_j$ if, and only if, i < j, and call

$$v_1 < v_2 < \cdots < v_n$$

a vertex array of P.

We say that P is Gale if it has a vertex array, say, $v_1 < v_2 < \cdots < v_n$ such that for any facet F of P and any $v_i \neq v_j$ in $V \setminus F$, v_i and v_j are separated in the vertex array by an even number of vertices of F. Next, P is periodically-cyclic if it has a vertex array, say again, $v_1 < v_2 < \cdots < v_n$ and there is an integer k such that $6 \leq k \leq n$, $[v_{i+1}, \ldots, v_{i+k}]$ is a cyclic 4-polytope for $i = 0, \ldots, n-k$ and $[v_{i+1}, \ldots, v_{i+k}, v_{i+k+1}]$ is not a cyclic 4-polytope for any $0 \leq i \leq n-k-1$. We call k the period of P.

We recall that a cyclic 4-polytope C in \mathbb{R}^4 has a vertex array that may be chosen on an oriented 4^{th} order curve, say,

$$\Gamma(t) = (t, t^2, t^3, t^4), \qquad t \in \mathbb{R}$$

or

$$\Gamma(t) = (\cos 2\pi t, \sin 2\pi t, \cos 4\pi t, \sin 4\pi t), \qquad t \in [0, 1);$$

(cf. [3]) and as a consequence, the vertex array satisfies Gale's Evenness Condition and yields a complete description of the facial structure of C.

Clearly, a periodically-cyclic Gale 4-polytope P is a generalization of C. As such, the vertex array of P should also yield a complete description of the facial structure of P. This is a highly desired property because in general, such a description of a 4-polytope is a very difficult task and has been accomplished mostly for polytopes with "few" vertices; cf. for example [1] and [5].

In [2], we introduced a class of 4-polytopes $P_n = [v_1, \ldots, v_n]$ with "many" vertices based upon the following construction: assume that $[v_1, \ldots, v_k]$ is cyclic with $v_1 < \cdots < v_k$, adjoin a vertex v_{k+1} so that $[v_1, \ldots, v_k, v_{k+1}]$ is Gale, but not cyclic, with $v_1 < \cdots < v_k < v_{k+1}$ and $[v_2, \ldots, v_{k+1}]$ is cyclic with $v_2 < \cdots < v_{k+1}$, and repeat the process as long as the resultant polytope is combinatorially convex. This idea yields a realizable P_n that is Gale with $v_1 < \cdots < v_n$, but only for n = 3k - 7, and there does not appear to be a realization of P_n with the intended cyclic-subpolytope property. Thus, in order to find periodically-cyclic Gale 4-polytopes, it seems reasonable to consider directly the convex hulls of points on generalizations of 4^{th} order curves and this leads us to the work of Z. Smilansky in [7] and [8]. We present a short summary of results relevant to our presentation.

Henceforth, let $q > p \ge 2$ be relatively prime integers. Let

$$\Gamma_{pq}(t) = (\cos 2\pi pt, \sin 2\pi pt, \cos 2\pi qt, \sin 2\pi qt), \qquad t \in I = [0, 1),$$

and set $\Gamma = \Gamma_{pq}(I)$. It is well known that the curve Γ is closed, finite (any hyperplane of \mathbb{R}^4 intersects Γ in a finite number of points), locally of 4^{th} order and given any two points of Γ , there is an orthogonal transformation of \mathbb{R}^4 which maps Γ onto Γ and one point onto the other; cf. [4]. These transformations are generated by

$$R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \quad \text{and} \ T_{pq}(s) = \begin{bmatrix} \cos 2\pi ps & \sin 2\pi ps & 0 & 0 \\ -\sin 2\pi ps & \cos 2\pi ps & 0 & 0 \\ 0 & 0 & \cos 2\pi qs & \sin 2\pi qs \\ 0 & 0 & -\sin 2\pi qs & \cos 2\pi qs \end{bmatrix}.$$

We note that $\Gamma_{pq}(t)R = \Gamma_{pq}(-t)$, $\Gamma_{pq}(t)T_{pq}(s) = \Gamma_{pq}(t+s)$ and that the behaviour of Γ at any one point is the same as at any other point. In fact, it is easy to check that

(1) if $\{t_1, t_2, s_1, s_2\} \subseteq \mathbb{R}$ such that $t_1 - s_1 = t_2 - s_2 \pmod{1}$ or $t_1 - s_1 \equiv s_2 - t_2 \pmod{1}$ then there is an orthogonal transformation of \mathbb{R}^4 which maps Γ onto Γ , $\Gamma_{pq}(t_1)$ onto $\Gamma_{pq}(t_2)$ and $\Gamma_{pq}(s_1)$ onto $\Gamma_{pq}(s_2)$.

We consider now points on Γ . Let $n \geq 5$ be an integer, $b_i = \Gamma_{pq}\left(\frac{i}{n}\right)$ and

$$B(p,q,n) = [b_0, b_1, \dots, b_{n-1}].$$

Then B(p,q,n) is a bi-cyclic 4-polytope. Next, let $\eta:\mathbb{R}^2\to\mathbb{R}^4$ be a function defined by

$$\eta(x,y) = \left(\cos\frac{2\pi}{n}x, \sin\frac{2\pi}{n}x, \frac{2\pi}{n}y, \sin\frac{2\pi}{n}y\right),$$

and set $\Lambda = \eta^{-1}(\{b_0, b_1, b_{n-1}\})$. Then

$$\Lambda = \{i(p,q) \mid i = 0, \dots, n-1\} + n\mathbb{Z}^2$$

where, as usual, Z^2 denotes the plane integer lattice. Now, there is a connection between the facial structure of B(p,q,n) and the structure of the geometric lattice Λ , and this connection is the rationale for the name bi-cyclic.

Introducing some notation: two points of \mathbb{R}^2 are Λ -distinct if they are in Λ and are distinct modulo $n\mathbb{Z}^2$. A line of \mathbb{R}^2 is a Λ -line if it contains at least two Λ -distinct points. A closed parallel strip of \mathbb{R}^2 is a Λ -strip if it is bounded by two parallel Λ -lines. A parallelogram of \mathbb{R}^2 is a Λ -parallelogram if its vertices are four Λ -distinct points, its area is n, and it has an edge with positive (negative) slope. We refer to a Λ -strip or a Λ -parallelogram as a Λ -region. Finally, a Λ -region of \mathbb{R}^2 is empty if it contains no point of Λ in its interior.

In [8]. Smilansky shows that the facial structure of B(p,q,n) can be obtained from Λ . Specifically, F is a facet of B(p,q,n) if, and only if,

- (2) $F = \operatorname{conv} \{(x, y) \mid (x, y) \in S \cap \Lambda\}$
 - where (a) S is an empty Λ -parallelogram,
 - or (b) S is an empty horizontal Λ -strip,
 - or (c) S is an empty vertical strip.

In case of (a), F is a simplex. In case of (b), (c), F is an antiprism over a regular q-gon (p-gon).

Next, it is important to note that because of (1), the vertex figures of B(p,q,n) are equivalent up to orthogonal transformations. Thus, with $b_i = b_j$ for $i - j \in n\mathbb{Z}$,

(3) $[b_0, b_i, b_j, \dots, b_k]$ is a facet of B(p, q, n)if, and only if, $[b_l, b_{i+l}, b_{j+l}, \dots, b_{k+l}]$ is a facet of B(p, q, n) for $l \in \mathbb{Z}$.

We are now ready to determine the values of p, q and n for which B(p,q,n) is Gale, and the range of values of p, q and n for which B(p,q,n) is periodically-cyclic.

2 The Gale Property

We wish to determine explicitly the set $\mathcal{F}(B(p,q,n))$ of facets of $B(p,q,n) \subset \mathbb{R}^4$. By (2), we need to determine empty Λ -regions in \mathbb{R}^2 for

$$\Lambda = \{ i(p,q) \mid i = 0, \dots n-1 \} + nZ^2.$$

By (3), we need to determine only those empty Λ -regions that contain (0,0).

With the preceding goal in mind, let L_a denote the line of \mathbb{R}^2 defined by $y = (qx+an)p^{-1}$. Clearly, if $(x,y) \in \Lambda$ then $(x,y) \in L_a$ for some $a \in Z$. Next, for $(x,y) \in \Lambda$ and $i \in \mathbb{Z}$, set

$$u_i = (x, y)$$
 if $\eta(x, y) = b_i$.

Then

$$u_i = (x, y) = (x', y')$$
 implies that $(x - x', y - y') \in n\mathbb{Z}^2$

and

$$u_i = u_j$$
 implies that $i - j \in n\mathbb{Z}$.

Finally, let x(v) (y(v)) denote the x-coordinate (y-coordinate) of a point $v \in \mathbb{R}^2$.

Let N denote the square $[-n, n] \times [-n, n]$ in \mathbb{R}^2 . Then $u_0 \in N$ and each $u_i \neq u_0$ appears at most once in the interior of each quadrant N_j of N, and we need to search only in N for empty Λ -regions containing $u_0 = (0, 0)$; cf. Figure 1 under the assumption that n > q.

Lemma 1 Let $n \ge pq$ and B(p,q,n) be Gale with $b_0 < b_1 < \cdots < b_{n-1}$. Then p > 2 (q > 2) implies that $p \mid n$ $(q \mid n)$.

Proof. We suppose that p does not divide n, and seek a contradiction.

Let L_1 intersect y = 0 (y = n) at v(w), and L_2 intersect y = n at z. Then

$$v = \left(\frac{-n}{q}, 0\right), \quad w = \left(\frac{(p-1)n}{q}, n\right) \quad \text{and} \quad z = \left(\frac{(p-2)n}{q}, n\right).$$

Since $\left(0, \frac{n}{p}\right) \in L_1 \setminus \Lambda$ and the distance from it to v or w is at least $(p^2 + q^2)^{1/2}$, there is a $u_i \in L_1 \cap N_2$ such that $u_{i+1} \in L_1 \cap N_2$ and $\left(0, \frac{n}{p}\right) \in (u_i, u_{i+1})$. Then $u_j = u_i + u_{i+1} \in L_2 \cap \Lambda$ and $Q = [u_0, u_i, u_{i+1}, u_j]$ is clearly a parallelogram with area n, no point of Λ in its interior and a side with positive (negative) slope. Since

$$x(u_j) < x(u_{i+1}) < x(u_1) = p < (p-2)p \le (p-2)\frac{n}{q} = x(z),$$

it follows that $u_i \in L_2 \cap (N_1 \cup N_2)$.

Figure 1

We observe that

$$u_k \notin L_a \cap (N_1 \cap N_2)$$
 for $k \in \{0, 1, n-1\}$ and $a \in \{1, \dots, p-1\}$.

Hence, p > 2 yields that Q is an empty Λ -parallelogram and $\{u_1, u_{n-1}\} \cap \{u_0, u_0, u_{i+1}, u_j\} = \emptyset$. But then $F = [b_0, b_i, b_{i+1}, b_j] \in \mathcal{F}(B(p, q, n)), F \cap \{b_1, b_{n-1}\} = \emptyset$ and, b_1 and b_{n-1} are separated in $b_0 < b_1 \cdots < b_{n-1}$ by three vertices of F, a contradiction.

We argue similarly that $q \mid n$.

Theorem 1 Let n > pq. Then B(p,q,n) is Gale with $b_0 < b_1 < \cdots < b_{n-1}$ if, and only if,

- a) p=2 and n=mq for some $m \geq 3$; or
- b) $n = hpq \text{ for some } h \geq 2.$

Proof. Let B = B(p, q, n) be Gale with $b_0 < b_1 < \cdots < b_{n-1}$. Then q > 2 and Lemma 1 yield that n = mq > 2q. If p > 2 then Lemma 1 yields also that m = hp, and so n = hpq > pq.

Assuming a) or b), let $F \in \mathcal{F}(B)$. We observe that it is sufficient to show that if $b_i \in F$ then either $b_{i-1} \in F$ or $b_{i+1} \in F$. By (3), we need only to show that if $b_0 \in F$ then either $b_{n-1} \in F$ or $b_1 \in F$. Let $Q \subset \mathbb{R}^2$ be an empty Λ -region containing $u_0 = (0,0)$. By (2), we need to verify that either $u_{n-1} \in Q$ or $u_1 \in Q$.

Let Q be a horizontal strip. Then Q is bounded by the lines y = 0 and either y = q or y = -q. In case of the former (latter), Q contains $u_1 = (p,q)$ ($u_{n-1} = (-p,-q)$) and it is easy to show that if $u_{n-1}(u_1)$ is in Q then $n \mid q$ or $n \mid 2q$. Since n > 2q, it follows that this is not possible.

Let Q be a vertical strip. Then Q is bounded by x=0 and either x=p or x=-p. Since n>2p, we obtain as above that Q contains $u_1(u_{n-1})$ in case of the former (latter). It should be noted that if p=2 then L_a intersects x=0 at $\left(0,\frac{an}{2}\right)$, which is congruent mod $n\mathbb{Z}^2$ to (0,0) or $\left(0,\frac{n}{2}\right)$. Thus, Q exists only if n is even.

Let Q be a parallelogram, say, $Q = [u_0, u_i, u_j, u_i + u_j]$. We recall that area (Q) = n and that Q has a side with negative (positive) slope. Thus, referring to Figure 1 and the fact that $\eta(x,y)R = \eta(-x,-y)$, we may assume that

- i) $u_i \in N_1$ and $u_i \in N_4$, or
- ii) $u_i \in N_1$ and $u_j \in N_2$.

We note that n = mq implies that $q \mid y(u)$ for $u \in \Lambda$, and n = hpq implies that $p \mid x(u)$ for $u \in \Lambda$. Finally, as p and q are relatively prime, there are integers k and l such that

(4) kp + lq = -1.

Case i) We observe that $u_j \in L_a$ for some $a \le -1$, and either $p \mid x(u)$ for all $u \in \Lambda$ or p = 2 and n is odd. Also, if $u_i = u_1 = (p, q)$ then area (Q) = n and $y(u_j) \le -q$ imply that

$$u_j \in L_{-1}$$
 and $u_i + u_j = u_{j+1} \in L_{-1} \cap N_4$.

Since $u_{n-1} \in L_{-q} \cap N_4$, it follows that $u_{n-1} \notin Q$.

We suppose that $u_i \neq (p, q)$, and seek a contradiction.

If $p \mid x(u)$ for $u \in \Lambda$ then $(p,q) \notin Q$ implies that $u_i \in L_b$ for some $b \leq -1$, and as a consequence, $\left(\frac{n}{q},0\right) \in L_{-1} \cap \operatorname{int} Q$. But p=2 implies that q is odd, n=mq and $(\operatorname{modulo} n\mathbb{Z}^2)$

$$\frac{m(q+1)}{2}(2,q) = \left(mq+m, \frac{(q+1)}{2}mq\right) \equiv (m,0) = \left(\frac{n}{q},0\right),$$

and n = hpq implies that

$$-hkp(p,q) = (hp(lq+1), -hkpq) \equiv (hp,0) = \left(\frac{n}{q}, 0\right);$$

that is, $\left(\frac{n}{q},0\right) \in \Lambda$ and Q is not empty; a contradiction.

Let p=2 and n be odd. Then (cf. Figure 2), it is easy to check that any vertical line contains at most one Λ -distinct point of Λ and that for each $u \in \Lambda$,

$$u \in V_c : y = \frac{(q+n)}{2}x + nc$$
 for some $c \in \mathbb{Z}$

and

$$u \in W_d: y = \frac{(q-n)}{2}x + nd$$
 for some $d \in \mathbb{Z}$.

Since q and n are odd, we have that for $\bar{n} = \frac{n+1}{2}$

$$u_{\bar{n}} = \bar{n}(2,q) \equiv (1,\bar{n}q) - n\left(0,\frac{q-1}{2}\right) = \left(1,\frac{q+n}{2}\right) \equiv \left(1,\frac{q-n}{2}\right).$$

Figure 2

Thus, $u_i \neq (2,q)$ implies that either $u_i = \left(1, \frac{q+n}{2}\right)$ and $\left(1, \frac{q-n}{2}\right) \notin Q$ or $u_j = \left(1, \frac{q-n}{2}\right)$ and $\left(1, \frac{q+n}{2}\right) \notin Q$. But the former (latter) implies that $u_j \in W_d$ ($u_i \in V_c$) for some $d \geq 1$ ($c \leq -1$), and as a consequence $(2,q) \in \operatorname{int} Q$; a contradiction.

Case ii) We observe that $u_j \in L_a$ for some $a \geq 1$, $y(u_j) \geq q$ and $y(u_i) \geq q$. Also, if $u_i = u_1 = (p,q)$ then area (Q) = n implies that $u_j \in L_1$ and $u_i + u_j = u_{j+1} \in L_1 \cap (N_1 \cup N_2)$. Since $u_{n-1} \in (L_p \cup L_{p-q}) \cap (N_1 \cup N_2)$, it follows that $u_{n-1} \notin Q$.

We suppose again that $u_i \neq (p,q)$. Since $(p,q) \notin Q$, it follows from $y(u_i) \geq q$ and $y(u_j) \geq q$ that $u_i \in L_b$ for some $b \geq 1$ and $\bar{w} = \left(0, \frac{n}{p}\right) \in L_1 \cap \text{int } Q$. Since n = hpq yields that

$$h(kp+1)(p,q)=h(-lq)p, hkpq+hq)\equiv (0,hq)=\left(0,rac{n}{p}
ight),$$

we may assume that p=2 and n is odd. Then $\bar{w}=\left(0,\frac{n}{2}\right)$ and u_0 is the only point u of Λ such that x(u)=0. Next, $\bar{w}\in [u_0,u_i,u_j]$ implies that

$$\frac{n}{2} = \operatorname{area}\left([u_0, u_i, u_j]\right) \geq \operatorname{area}\left([u_0, \bar{w}, u_i]\right) + \operatorname{area}\left([u_0, \bar{w}, u_j]\right).$$

Since $x(u_j) \leq -1$, $x(u_i) \geq 1$ and area $([u_0, \bar{w}, z]) = \frac{n}{4}$ for $u_0 = (0, 0)$ and any $z \in \mathbb{R}^2$ with |x(z)| = 1, it follows that

$$u_i = \left(1, \frac{q+bn}{2}\right)$$
 and $u_j = \left(-1, \frac{-q+an}{2}\right)$.

But then $u_i + u_j = \left(0, \frac{(a+b)n}{2}\right)$ and $u_i + u_j \equiv u_0$; a contradiction.

Let B = B(p,q,n) be Gale with $b_0 < b_1 < \cdots < b_{n-1}$. It is now clear that in order to completely describe $\mathcal{F}(B(p,q,n))$, we need only to determine all the empty Λ -regions $Q \subset \mathbb{R}^2$ that contain $u_0 = (0,0)$ and $u_1 = (p,q)$.

Let Q be a horizontal strip. Recalling that n=mq for some $m \geq 3$, it is easy to check that $u_0, u_m, u_{2m}, \ldots, u_{(q-1)m}$ are the only points of Λ on the x-axis. Thus,

(5)
$$Q = [u_0, u_1, u_m, u_{m+1}, \dots, u_{(q-1)m}, u_{(q-1)m+1}].$$

We note that if p > 2 then m = hp for some $h \ge 2$.

Let Q be a vertical strip. If p=2 then (cf. the proof of Theorem 1) n is even and u_0 and $u_{\frac{n}{2}} \equiv \left(0, \frac{n}{2}\right)$ are the points of Λ on the y-axis. Thus,

(6)
$$Q = [u_0, u_1, u_{\frac{n}{2}}, u_{\frac{n}{2}+1}].$$

If p>2 then $n=(hq)p,\,u_0,u_{hq},\ldots,u_{(p-1)hq}$ are the points of Λ on the y-axis and

(7)
$$Q = [u_0, u_1, u_{ha}, u_{ha+1}, \dots, u_{(p-1)ha}, u_{(p-1)ha+1}].$$

Let Q be a parallelogram. Then $Q = [u_0, u_1, u_j, u_{j+1}]$ and either $u_j \in L_1 \cap N_2$ or $u_j \in L_{-1} \cap N_4$ (cf. the proof of Theorem 1). Referring to Figure 1, we note that if p = 2 then

$$v = \left(-\frac{n}{q}, 0\right) = (-m, 0) \equiv u_{\left(\frac{q-1}{2}\right)m}$$

and

$$\left(0, \frac{n}{p}\right) = \left(0, \frac{n}{2}\right) = (-m, 0) + \frac{m}{2}(2, q).$$

Thus, $u_i \in L_1 \cap N_2$ yields that (with [a], the integer part of a > 0)

(8)
$$Q = [u_0, u_1, u_j, u_{j+1}]$$
 for $j = \left(\frac{q-1}{2}\right)m + 1, \dots, \left(\frac{q-1}{2}\right)m + \left[\frac{m+1}{2}\right] - 1.$ We note that $\frac{(q-1)m}{2} + \left[\frac{m+1}{2}\right] - 1 = \left[\frac{n+1}{2}\right] - 1.$ If $p > 2$ then $v = \left(\frac{-n}{q}, 0\right) = (-hp, 0) = u_{hkp}$

and

$$\left(0, \frac{n}{p}\right) = (0, hq) = (-hp, 0) + h(p, q) \equiv u_{hkp+h}.$$

Thus, $u_j \in L_1 \cap N_2$ yields that

(9)
$$Q = [u_0, u_1, j_j, u_{j+1}]$$
 for $j = hkp + 1, \dots, hkp + h - 1$.

Since (3) implies that $[b_0, b_1, b_j, b_{j+1}] \in \mathcal{F}(B)$ if, and only if, $[b_{n-j}, b_{n-j+1}, b_0, b_1] \in \mathcal{F}(B)$, we have shown also that $Q = [u_0, u_1, u_{n-j}, u_{n-j+1}]$ for the values of j noted in (8) and (9). It is easy to check that we obtain these Q when $u_j \in L_{-1} \cap N_4$ and thus, we may consider (8) and (9) as the complete list of parallelograms.

We are now ready to describe $\mathcal{F}(B)$. For convenience of notation, we denote the vertices of a facet only by their subscripts.

$$B = B(2,q,n); \quad q \text{ odd}, \ n = mq, \ m \ge 3 \text{ and odd}.$$

$$\mathcal{F}(B) = \left\{ [i, i+1, i+m, i+m+1, \dots, i+(q-1)m, i+(q-1)m+1] \mid i=0, \dots, m-1 \right\}$$

$$\cup \bigcup_{i=0}^{n-1} \left\{ [i, i+1, i+j, i+j+1] \mid j=\frac{n-m}{2}+1, \dots, \frac{n-1}{2} \right\}$$

$$B = B(2, q, n); q \text{ odd}, n = mq, \ m \geq 3 \text{ and even}.$$

$$\begin{split} \mathcal{F}(B) &= \{[i,i+1,i+m,i+m+1,\dots,i+(q-1)m,i+(q-1)m+1] \mid i=0,\dots,m-1\} \\ & \cup \left\{ \left[i,i+1,i+\frac{n}{2},i+\frac{n}{2}+1\right] \mid i=0,\dots,\frac{n-2}{2} \right\} \\ & \cup \bigcup_{i=0}^{n-1} \left\{ [i,i+1,i+j,i+j+1] \mid i=\frac{n-m}{2}+1,\dots,\frac{n-2}{2} \right\}. \\ B &= B(p,q,n); \ n=hpq; \ h>2, \ kp\equiv -1 (\text{mod } q), \ 1\leq k\leq n-1. \end{split}$$

$$egin{array}{ll} \mathcal{F}(B) &=& \{[i,i+1,i+hp,i+hp+1,\ldots,i+(q-1)hp,i+(q-1)hp+1] \mid i=0,\ldots,hp-1\} \ &\cup \{[i,i+1,i+hq,i+hq+1,\ldots,i+(p-1)hq,i+(p-1)hq+1] \mid i=0,\ldots,hq-1\} \ &\cup igcup_{i=0}^{n-1} \{[i,i+1,i+j,i+j+1] \mid j=hkp+1,\ldots,hkp+h-1\} \,. \end{array}$$

As an example, we present B = B(3, 4, 24). We note that h = 2, k = 5 and $hkp = 30 \equiv 6 \pmod{24}$.

$$\mathcal{F}(B) \ = \ \{[0,1,6,7,12,13,18,19], [1,2,7,8,13,14,19,20], [2,3,8,9,14,15,20,21], \\ [3,4,9,10,15,16,21,22], [4,5,10,11,16,17,22,23], [0,5,6,11,12,17,18,23]\} \\ \cup \{[0,1,8,9,16,17], [1,2,9,10,17,18,[2,3,10,11,18,19], [3,4,11,12,19,20], \\ [4,5,12,13,20,21], [5,6,13,14,21,22], [6,7,14,15,22,23], [0,7,8,15,16,23]\} \\ \cup \{[0,1,7,8], [1,2,8,9], [2,3,9,10], [3,4,10,11][4,5,11,12], [5,6,12,13], \\ [6,7,13,14], [7,8,14,15], [8,9,15,16], [9,10,16,17], [10,11,17,18], [11,12,18,19], \\ [12,13,19,20], [13,14,20,21], [14,15,21,22], [15,16,22,23], [0,16,17,23], \\ [0,1,17,18], [1,2,18,19], [2,3,19,20], [3,4,20,21], [4,5,21,22], [5,6,22,23], [0,6,7,23]\}.$$

3 The Periodically-cyclic Property

We recall that

$$\Gamma(t) = \Gamma_{pq}(t) = (\cos 2\pi pt, \sin 2\pi pt, \cos 2\pi qt, \sin 2\pi qt), \quad t \in I = [0, 1),$$

 $\Gamma = \Gamma(I)$ is closed, finite, locally of order 4 and that the behaviour of Γ at any one point is the same as at any other point. Next, the vertices of B(p,q,n) are n evenly spaced points on Γ , and k successive vertices determine a cyclic 4-polytope only if they are on a 4^{th} order subarc of Γ . Thus, we need to determine the size of the maximal subarc of order 4.

Let $t \in I$. Since Γ is locally of order 4, the vectors $\Gamma'(t)$, $\Gamma''(t)$ and $\Gamma'''(t)$ are linearly independent and it is well known that the osculating *i*-space $\Gamma_i(t)$ of Γ at t exists for i = 0, 1, 2, 3. We note that $\Gamma_0(t) = \Gamma(t)$ and that for i = 1, 2, 3,

 $\Gamma_i(t)$ is the affine space of dimention i that contains $\Gamma(t)$ and is spanned by the first i derivatives of $\Gamma(t)$.

Let $J \subset \mathbb{R}$ be an open segment. Then (cf. [6]) $\Gamma(J)$ is of order 4 if, and only if, it satisfies Sauter's Condition:

$$\Gamma_{3-eta}(s)\cap\Gamma_i(t)=\emptyset$$

 $\text{for every } s \neq t \ \text{in } J \ \text{and } i=0,1,2,3.$

In order to simplify our arguments, we identify segments of R, modulo 1, with $\left(\frac{-1}{2}, \frac{1}{2}\right]$.

Let
$$\frac{-1}{2} < s \neq t \leq \frac{1}{2}$$
. We note by (1) that

$$\Gamma_3(s) \cap \Gamma(t) = \emptyset \Leftrightarrow \Gamma_3(0) \cap \Gamma(t-s) = \emptyset \Leftrightarrow \Gamma_3(0) \cap \Gamma(s-t) = \emptyset$$

and

$$\Gamma_2(s)\cap \Gamma_1(t)=\emptyset \Leftrightarrow \Gamma_2\left(\frac{s-t}{2}\right)\cap \Gamma_1\left(\frac{t-s}{2}\right)=\emptyset \Leftrightarrow \Gamma_2\left(\frac{t-s}{2}\right)\cap \Gamma_1\left(\frac{s-t}{2}\right)=\emptyset.$$

Thus, we need to determine the least positive $t^*(\tilde{t})$ such that

$$\Gamma(t^*) \in \Gamma_3(0)$$
 and $\Gamma_2(-\tilde{t}) \cap \Gamma_2(\tilde{t}) \neq \emptyset$.

Then, with t_{pq} as the minimum of t^* and $2\tilde{t}$, $\Gamma(0,t_{pq}):=\Gamma((0,t_{pq}))$ is a maximal subarc of order 4.

Before determining the range of values for t^* and \tilde{t} , we wish to examine the graph of $y = \tan x$ in \mathbb{R}^2 .

Figure 3

Lemma 2 Let $a \ge 0$ be an integer and $\alpha > 0$ be an angle such that $a\pi < \alpha < a\pi + \frac{\pi}{2}$ or $a\pi - \frac{\pi}{2} < \alpha < \alpha\pi$. Let $\beta > \alpha$ be an angle such that $\frac{\tan \beta}{\tan \alpha} = \frac{\beta}{\alpha}$. Then $\beta > \delta = 1.42\pi$, β is a function of α and as α ranges from $a\pi$ to $a\pi + \frac{\pi}{2}$ $(a\pi - \frac{\pi}{2} \text{ to } a\pi)$, $\frac{\beta}{\alpha}$ is strictly monotonic.

Proof. Referring to Figure 3, we note that y=x is the tangent line to $y=\tan x$ at x=0 and that $\delta=1.42\pi$ is the smallest positive angle such that $\delta=\tan\delta$. Since $\beta>\alpha>0$, and $\frac{\tan\beta}{\tan\alpha}=\frac{\beta}{\alpha}$ implies that $(0,0), (\alpha,\tan\alpha)$ and $(\beta,\tan\beta)$ are collinear, it follows that $\beta>\delta$. Next, we may assume that $\tan\alpha>0$. Then $\tan\beta>0$ and there is a b>a such that $b\pi<\beta<0$ and $b\pi+\alpha=0$. Let $a\pi+\alpha=0$ denote the graph of $a\pi+\alpha=0$ for $a\pi+\alpha=0$ and $a\pi+\alpha=0$ for $a\pi+\alpha=0$ denote the graph of $a\pi+\alpha=0$ for $a\pi+\alpha=0$ and there is a $a\pi+\alpha=0$ denote the graph of $a\pi+\alpha=0$ for $a\pi+\alpha=0$ denote the graph of $a\pi+\alpha=0$ denote

Let c > 1. Clearly, it is sufficient to show that there is at most one α such that $a\pi \le \alpha < a\pi + \frac{\pi}{2}$ and $\frac{\beta}{\alpha} = c$. Since $c = \frac{\beta}{\alpha} = \frac{\tan \beta}{\tan \alpha}$ implies that

$$c(\alpha, \tan \alpha) = (c\alpha, c \tan \alpha) = (\beta, \tan \beta)$$

is a common point of $c\gamma_a$ and γ_b , we need to show that there is at most one such common point.

We remark that γ_a and γ_b are translates and that γ_a and $c\gamma_a$ are homothets. Let $(x,y) \in (c\gamma_a) \cap \gamma_b$. We note that the tangent of $c\gamma_a$ at (x,y) is parallel to the tangent of γ_a at $\left(\frac{x}{c},\frac{y}{c}\right)$, which in turn is a parallel to the tangent of γ_b at $\left(\frac{x}{c}+(b-a)\pi,\frac{y}{c}\right)$. Next, $c\gamma_a$ and γ_b are convex curves and the graphs of strictly increasing functions. Thus, it follows that the slope of the tangent to $c\gamma_a$ at (x,y) is strictly less than the slope of the tangent to γ_b at (x,y), and as a consequence, the two curves have at most one common point.

Lemma 3 Let $t^* > 0$ be the smallest solution to $\Gamma(t) \in \Gamma_3(0)$. Then $\frac{1}{2}p < t^* < \frac{1}{p}$ and in addition,

$$3.1 \ \frac{3}{4}p < t^* \ for \ 2 < \frac{q}{p} \ and$$

3.2
$$\frac{2}{q} < t^*$$
 for $2 < \frac{q}{p} < 3$.

Proof. From $\Gamma(t) = (\cos 2\pi pt, \sin 2\pi pt, \cos 2\pi qt, \sin 2\pi qt)$, we readily obtain that $\Gamma_3(0)$ is the 3-space defined by

$$q^2x - p^2z = q^2 - p^2.$$

Let H denote the plane y=w=0 (recall $(x,y,z,w)\in\mathbb{R}^4$). Then $\Gamma_3(0)$ is perpendicular to H and $L=H\cap\Gamma_3(0)$ is a line. Let $\widehat{\Gamma}$ denote the orthogonal projection of Γ on H. Then

$$\widehat{\Gamma}(t) = (\cos 2\pi pt, \cos 2\pi qt)$$

and

$$\Gamma(t) \in \Gamma_3(0)$$
, if, and only if, $\widehat{\Gamma}(t) \in L$.

We wish to analyze $\widehat{\Gamma}$. Since $\widehat{\Gamma}(-t)=\widehat{\Gamma}(t)$, we may assume that $0 \leq t \leq \frac{1}{2}$. We note that $\widehat{\Gamma}\left[0,\frac{1}{2}\right]$ is contained in the square $S=[-1,1]\times[-1,1]$, and that $\widehat{\Gamma}(0)$, $\widehat{\Gamma}\left(\frac{1}{2q}\right)$, $\widehat{\Gamma}\left(\frac{1}{2p}\right)$, $\widehat{\Gamma}\left(\frac{1}{q}\right)$ and $\widehat{\Gamma}\left(\frac{1}{p}\right)$ are points on the side of S; cf. Figure 4. Since $\mathrm{slope}(L)=\frac{q^2}{p^2}>0$, we have that $L\cap\mathrm{int}\,S\neq\emptyset$.

Let T(t) denote the tangent line of $\widehat{\Gamma}$ at t. We show that L=T(0) and that $\widehat{\Gamma}\left(0,\frac{1}{2q}\right)$ is locally convex. Then, referring to Figure 4 and the fact that $x=\cos 2\pi pt$ is strictly decreasing as t ranges from 0 to $\frac{1}{2p}$, it follows that $\widehat{\Gamma}\left[0,\frac{1}{2q}\right]$ is convex, $L\cap\widehat{\Gamma}\left(0,\frac{1}{2q}\right]=\emptyset$ and L strictly separates $\widehat{\Gamma}\left(\frac{1}{2p}\right)$ and $\widehat{\Gamma}\left(\frac{1}{p}\right)$. Thus, $L\cap\widehat{\Gamma}\left(\frac{1}{2p},\frac{1}{p}\right)\neq\emptyset$ and $\frac{1}{2p}< t^*<\frac{1}{p}$. Since $\widehat{\Gamma}'(t)=(-2\pi p\sin 2\pi pt,-2\pi q\sin 2\pi qt)$ implies that

slope
$$(T(t)) = \frac{q \sin 2\pi qt}{p \sin 2\pi pt}$$
 for $0 < t < \frac{1}{2p}$

and

slope
$$(T(0)) = \lim_{t\to 0}$$
 slope $(T(t)) = \frac{q^2}{p^2} = \text{slope}(L)$,

it follows that L = T(0). Next, we recall that $\widehat{\Gamma}\left(0, \frac{1}{2q}\right)$ is locally convex if the curvature $\left|\widehat{\Gamma}'(t) \times \widehat{\Gamma}''(t)\right| / \left|\widehat{\Gamma}'(t)\right|^3$ is not zero for $0 < t < \frac{1}{2q}$. It is easy to check that

$$\begin{split} \left| \widehat{\Gamma}'(t) \times \widehat{\Gamma}''(t) \right| &= 0 \quad \Leftrightarrow \quad p \sin 2\pi pt \cos 2\pi qt = q \sin 2\pi qt \cos 2\pi pt \\ & \Leftrightarrow \quad \frac{\tan 2\pi qt}{\tan 2\pi pt} = \frac{q}{p}, \qquad 0 < t < \frac{1}{2q}. \end{split}$$

Figure 4

Let $\alpha = 2\pi pt$ and $\beta = 2\pi qt$. Since $0 < \alpha < \beta$, $\frac{\tan \beta}{\tan \alpha} = \frac{\beta}{\alpha}$ and Lemma 2 imply that $\beta > \pi$, it follows from $\beta < \pi$ for $0 < t < \frac{1}{2q}$ that $\left| \widehat{\Gamma}'(t) \times \widehat{\Gamma}''(t) \right| \neq 0$ and $\widehat{\Gamma}\left(0, \frac{1}{2q}\right)$ is locally convex.

 $3.1 \ \text{Let } \frac{q}{p} > 2. \ \text{Since L intersects $x = 0$ at $\left(0, 1 - \frac{q^2}{p^2}\right)$ and $1 - \frac{q^2}{p^2} < -1$, it follows that $x > 0$ for $(x,y) \in L \cap S$. Thus, $\widehat{\Gamma}(t^*) \in L \cap S$ implies that $\cos 2\pi p t^* > 0$, and $\frac{1}{2p} < t^* < \frac{1}{p}$ implies that $t^* > \frac{3}{4p}$.}$

 $3.2 \text{ Let } 2 < \frac{q}{p} < 3. \text{ Then } \frac{1}{2} < \frac{1}{p} \text{ and } \widehat{\Gamma}\left(\frac{2}{q}\right) \text{ is a point on the upper side of } S. \text{ Also,}$ $\frac{1}{2q} < \frac{1}{4p} \text{ and the } x\text{-coordinate of } \widehat{\Gamma}\left(\frac{1}{2q}\right) \text{ is positive. Finally, } \widehat{\Gamma}\left(\frac{3}{4p}\right) \text{ is on the line } x = 0.$ Altogether, these imply that $\widehat{\Gamma}\left[0,\frac{1}{2q}\right]$ separates in S the points, $\widehat{\Gamma}\left(\frac{2}{q}\right)$ and $\widehat{\Gamma}\left(\frac{3}{4p}\right)$, from $L \cap S$.

Since $\frac{q}{p} \geq \frac{8}{3}$ implies that $\frac{2}{q} \leq \frac{3}{4p} < t^*$, we may assume that $2 < \frac{q}{p} < \frac{8}{3}$. Then by the preceding, if $\widehat{\Gamma}\left[0,\frac{1}{2q}\right] \cap \widehat{\Gamma}\left[\frac{3}{4p},\frac{2}{q}\right] = \emptyset$ then $t^* > \frac{2}{q}$.

Suppose that there exist $0 \le t_1 \le \frac{2}{q}$ and $\frac{3}{4p} \le t_2 \le \frac{2}{q}$ such that $\widehat{\Gamma}(t_1) = \widehat{\Gamma}(t_2)$. Then $\cos \pi p t_1 = \cos 2\pi p t_2$ with

$$0 \le 2\pi p t_1 \le \pi \frac{p}{q} < \frac{\pi}{2}$$
 and $\frac{3\pi}{2} \le 2\pi p t_2 \le 4\pi \frac{p}{q} < 2\pi$

yield that $2\pi p t_1 + 2\pi p t_2 = 2\pi$ and $t_1 + t_2 = \frac{1}{p}$. Next, $\cos 2\pi q t_1 = \cos 2\pi q t_2$ with

$$0 \le 2\pi q t_1 \le \pi$$
 and $3\pi < 2\pi q t_2 \le 4\pi$

yield that $2\pi q t_1 + 2\pi q t_2 = 4\pi$ and $t_1 + t_2 = \frac{1}{2q} = \frac{1}{p}$; a contradiction.

Lemma 4 Let $\tilde{t} > 0$ be the smallest solution to $\Gamma_2(-t) \cap \Gamma_1(t) \neq \emptyset$.

4.1 If
$$\frac{q}{p} > 3$$
 then $\frac{0.71}{q} < \tilde{t} < \frac{3}{4q}$.

4.2 If
$$2 < \frac{q}{p} < 3$$
 then $\frac{3}{4q} < \tilde{t} < \frac{1}{p}$.

4.3 If
$$1 < \frac{q}{p} < 2$$
 and \tilde{t} exists then $\frac{1}{p} < \tilde{t}$.

Proof. We observe that $\Gamma_2(-t) \cap \Gamma_1(t) \neq \emptyset$ implies that $\Gamma_2(-t)$ and $\Gamma_1(t)$ span a 3-space, the vectors $\Gamma(t) - \Gamma(-t)$, $\Gamma'(t)$, $\Gamma'(-t)$ and $\Gamma''(-t)$ are linearly dependent, and as a consequence,

$$p\sin 2\pi pt\cos 2\pi qt=q\sin 2\pi qt\cos 2\pi pt.$$

Since p and q are relatively prime, it follows readily that

$$\sin 2\pi pt \neq 0 \neq \sin 2\pi pt$$

and that if $\cos 2\pi pt = 0 = \cos 2\pi qt$ then p and q are both odd and $\tilde{t} = \frac{1}{4} > \frac{1}{q}$.

Let $\cos 2\pi pt \neq 0 \neq \cos 2\pi pt$. Then with $\alpha = 2\pi pt < \beta = 2\pi qt$ and $\frac{\tan \beta}{\tan \alpha} = \frac{\beta}{\alpha}$, we need to solve for the smallest α and β such that $\frac{\beta}{\alpha} = \frac{q}{p}$.

Let $\frac{q}{p} > 3$. With $0 < \alpha < \frac{\pi}{2}$ and $\pi < \beta < \frac{3\pi}{2}$, we refer to Figure 3 and Lemma 2. We note that $\beta > 1.42\pi$ and that as α ranges from $\frac{\pi}{2}$ to 0, $\frac{\beta}{\alpha}$ ranges monotonically from 3 to ∞ . Hence there are α_0 and β_0 in the given domains such that $\frac{\tan \beta_0}{\tan \alpha_0} = \frac{q}{p}$. As $1.42\pi < \beta_0 = 2\pi q \tilde{t} < \frac{3\pi}{2}$, 4.1 follows.

Let $2 < \frac{q}{p} < 3$. With $\frac{\pi}{2} < \alpha < \pi$ and $\frac{3\pi}{2} < \beta < 2\pi$, we have that as α ranges from π to $\frac{\pi}{2}$, $\frac{\beta}{\alpha}$ ranges monotonically from 2 to 3. Thus $\frac{3\pi}{2} < 2\pi q\tilde{t} < 2\pi$ and 4.2 follows.

Let $1 < \frac{q}{p} < 2$. Now if \tilde{t} exists, then by the preceding cases, $2\pi q\tilde{t} > 2\pi$ and $\tilde{t} > \frac{1}{q}$. \blacksquare Since $t^* < \frac{1}{n} \le \frac{1}{2}$, we set

$$t_{pq} = \left\{ \begin{array}{ll} \min\{t^*, \tilde{2}t\} \\ t^* \end{array} \right. \quad \text{if} \quad \begin{array}{ll} \tilde{t} \text{ exists} \\ \tilde{t} \text{ doesn't exist.} \end{array}$$

Then $\Gamma(0, t_{pq})$ is of order 4 and by (1), $\Gamma(s, s + t_{pq})$ is of order 4 for each $s \in I$.

Theorem 2 B(p,q,n) is periodially-cyclic with the period $k = [t_{pq}n] \ge 6$ and

$$t_{pq} = \left\{ egin{array}{ll} 2t & & rac{q}{p} > 2 \ t* & & if & rac{q}{p} < 2. \end{array}
ight.$$

Proof. Let $\frac{q}{p} > 3$. Then by 4.1 and 3.1,

$$2\tilde{t} < \frac{3}{2q} < \frac{3}{2} \cdot \frac{1}{3p} = \frac{1}{2p} < \frac{3}{4p} < t^*.$$

Let $2 < \frac{q}{p} < 3$. Then by 4.2 and 3.2,

$$2\tilde{t} < \frac{2}{q} < t^*.$$

Finally, if $\frac{q}{p} < 2$ and \tilde{t} exists then by Lemma 3 and 4.1,

$$t^* < \frac{1}{p} < \frac{2}{q} < 2\tilde{t}. \quad \blacksquare$$

As a final remark, we note that either $\widehat{\Gamma}(t_{pq}) \in L$ or $\widehat{\Gamma}(t_{pq})$ is the first inflection point of $\widehat{\Gamma}\left[0,\frac{1}{2}\right]$.

In regard to specific values, we know that $t_{23} \approx 0.419569$, $t_{25} \approx 0.31$, $t_{27} \approx 0.2110$ and $t_{29} \approx 0.1618$. Thus, for example, B(2,3,30) is Gale and periodically-cyclic with the period $k = [t_{23}30] = 12$.

References

- [1] A. Altshuler and L. Steinberg, Neighborly 4-polytopes with 9 vertices, J. Comb. Th. (A), 15 (1973), 270–287.
- [2] T. Bisztriczky, On a class of 4-dimensional Gale polytopes, to appear.
- [3] D. Gale, Neighborly and cyclic polytopes, Proc. Symp. Pure Math. 7 (Convexity), (1963), 225–232.
- [4] H. Gluck, Higher curvatures of curves in Euclidean space, A.M. Monthly, **73** (1966), 699–704.
- [5] B. Grünbaum and V.P. Sreedharan, An enumeration of simplicial 4-polytopes with 8 vertices, J. Comb. Th. 2 (1967), 437-465.
- [6] J. Sauter, Zur Theorie der Bogen n'ter Realitätsordnung im projektiven R_n, Math. Z. 41 (1936), 507-536.
- [7] Z. Smilansky, Convex hulls of generalized moment curves, Isr. J. Math. **52** (1985), 115–128.
- [8] Z. Smilansky, Bi-cyclic 4-polytopes, Isr. J. Math. 70 (1990), 82–92.

T. Bisztriczky
Dept. of Mathematics
University of Calgary
Calgary, AB T2N 1N4
Canada

K. Böröczky, Jr. Math. Institute of the Hungarian Academy of Science Budapest H-1053 Hungary